超高层框架核心筒结构工程设计研究论文

| 收藏本文 下载本文 作者:momoco

这里小编给大家分享一些超高层框架核心筒结构工程设计研究论文(共含3篇),方便大家学习。同时,但愿您也能像本文投稿人“momoco”一样,积极向本站投稿分享好文章。

超高层框架核心筒结构工程设计研究论文

篇1:超高层框架核心筒结构工程设计研究论文

超高层框架核心筒结构工程设计研究论文

摘要:框架核心筒结构以其优异的内部空间灵活度、超高的整体稳定性、出色的抗震和力学性能成为高层建筑最优先选择的结构形式。文章结合具体工程实例对超高层框架核心筒结构在工程结构设计中的设计过程,计算控制参数等进行说明。为工程结构设计提供参考,为类似结构提供借鉴。

关键词:多遇地震的弹性动力时程分析;中震不屈服验算;中震弹性计算

1工程概况

地上结构40层,房屋高度为144.8米;结构型式为混凝土结构框架—核心筒体结构。外框架柱-2层~22层采用型钢混凝土结构,梁采用钢筋混凝土梁。楼层和屋面层采用现浇钢筋混凝土楼面。抗震等级:核心筒剪力墙一级,混凝土框架一级;中震时出现小偏心受拉的混凝土特一级构造。外框架平面轴线尺寸为37.1m×34.6m,长宽比值为1.07。混凝土核心筒外墙中心线尺寸为14.275m×13.8m。房屋高度为144.8m,结构高宽比值为4.2,核心筒高宽比值为10.5。一层层高为5.4m,二层层高为5.0m,公寓层层高均为3.25m,办公层层高度为3.9m。

2计算及分析

该项目分别采用SATWE、ETABS程序进行三围空间整体的内力位移计算,并采用中国建筑科学研究院建筑工程软件研究所研发的SATWE程序的弹性时程分析法进行多遇地震下的补充计算,采用PUSHOVER程序的静力弹塑性分析方法进行罕遇地震下的结构弹塑性计算。对楼面开大洞的楼层采用弹性楼板计算。

2.1采用SATWE进行小震与风作用的弹性计算

计算结果如下:地震总质量恒载的总质量84181.297t;50%活载的总质量5472.247t;地震总质量89653.547t。有效质量系数X方向98.45%;Y方向97.25%结构周期第一平动周期3.9743s,第一扭转周期2.7928s,第一扭转周期与第一平动周期比0.703。风荷载作用下最大层间位移:X方向风1/1238,Y方向风1/1214。最大层间位移与平均值之比:X向为1.17,Y向为1.58,满足规范不应大于1.6的要求。最小剪重比规范限值:X方向1.47%,Y方向1.59%。楼层侧向刚度比(按层剪力与层间位移角之比计算):本楼层与相邻上楼层的比值不宜小于0.9,当本楼层的层高大于相邻上楼层层高的1.5倍(2层层高5m,3层层高3.25m,层高比值为1.54)时,该比值不宜小于1.1。在规定水平力作用下,底层框架部分承受地震倾覆力矩占结构总地震倾覆力矩的百分比为:X向27.54%,Y向24.25%。

2.2多遇地震的弹性动力时程分析

该项目结构质量及刚度均匀、对称,按单向地震作用进行计算,并考虑偶然偏心的影响。多遇地震弹性时程分析采用一组人工波及两组天然波,三组地震波的平均地震影响系数曲线和阵型分解反应谱法所采用的地震影响系数曲线,在统计意义上相符。按GB50011-第5.1.2条要求,取三组加速度的时程曲线输入时,计算结果取时程法的包络值和振型分解反应谱法的较大值。考虑本工程到超限高层结构的安全重要性,施工图设计时按照小震弹性设计时取时程分析和反应谱法结果的包络值进行设计[1]。

2.3中震弹性计算

为了保证底部加强部位的混凝土墙肢及混凝土框架柱在中震地震力作用下受剪为弹性,采用SATWE程序进行中结构震弹性验算,具体为:地震影响系数最大值αmax=0.23及场地特征周期取0.40s且不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯等内力调整系数),构件组合内力计算中,不计入风荷载作用效应的组合;采用荷载作用的分项系数、材料的分项系数和抗震承载力调整系数;材料强度值取设计值[2]。

2.4中震不屈服验算

采用中国建筑科学研究院建筑工程软件研究所研发的SATWE程序进行中震不屈服验算。地震影响系数最大值αmax=0.23,场地特征周期取0.40s,不考虑地震组合内力调整系数,构件的组合内力计算时,不计入风荷载作用效应的组合。采用荷载作用分项系数均为1.0;抗震承载力调整系数γRE=1.0;材料强度采用标准值。剪力墙墙肢和框架柱的取中震不屈服、小震弹性及风荷载作用分析的.较大值进行设计。

2.5弹塑性静力分析

采用中国建筑科学研究院编制的,高层结构弹塑性分析程序EPDA/PUSH进行。PUSH程序是一个三维有限元空间弹塑性静力分析程序,程序单元库包括梁、柱元及剪力墙元两种非线性单元形式[3]。EPDA/PUSH是完全基于空间模型而设计的,尽量做到计算模型能够比较真实模拟结构实际的受力状态并最大限度的避免计算模型的计算误差。弹塑性梁、柱单元,采用标准的有限元方法进行构造,单元切线刚度是直接基于混凝土材料微元及钢筋材料微元的本构关系,这种模型通常被称为纤维束模型。弹塑性墙元的面内刚度的力学模型是采用平面应力模,并且可以考虑开洞,与梁、柱单元相同,它的单元切线刚度也是直接基于混凝土材料微元及钢筋材料微元的本构关系。墙元的面外刚度是用简化的弹塑性板元来进行考虑的。

3结束语

当今社会,几乎所有的超高层建筑都是由钢筋混凝土框架核心筒以及钢框架-混凝土核心筒结构所支撑的。超高层框架核心筒结构工程设计的重要性与日俱增。参考以上工程实例设计过程,即可完成超高层框架核心筒结构的结构初步设计。

参考文献:

[1]王来玮.基于性能抗震设计的超高层框架—核心筒结构的抗震性能分析[D].合肥工业大学,.

[2]杨文光.超高层建筑结构方案选型及抗震性能分析与优化研究[D].长安大学,2013.

[3]李慧.高层钢筋混凝土框架—核心筒结构体系的优化研究[D].广州大学,.

篇2:框架-核心筒结构布置有哪些重点注意问题?

框架-核心筒结构布置有哪些重点注意问题?

(1)框架布置形式多样,可以是方形、长方形、圆形或其他形状;结构布置尽可能规则,平面刚度布置宜均匀、对称,以减小扭转影响,质量分布均匀,内筒尽可能居中。

(2)在钢筋混凝土框架-核心筒结构中,外框架构件截面不宜过小,框架承担的剪力和弯矩需要按规范和规程的要求调整增大。在混合结构中,如果采用钢骨混凝土、钢管混凝土柱,则较容易达到双重抗侧力体系的要求;如果采用外钢框架,其总高度不宜太大,

(3)在纵横墙相交的地方设置钢骨,在楼板标高设置钢骨暗梁,可形成小钢框架以提高核心筒的承载力和抗震性能。

(4)核心筒与外柱之间距离以10-12 米为宜。如果距离很大,则需要另设内柱或采用预应力混凝土楼盖。否则导致楼层梁太大,不利于减小层高。

(5)一般要布置楼板大梁。在楼盖布置中,需要注意使竖向荷载集中传递到大柱子上去,避免柱子出现拉力(水平荷载作用下柱拉力大于重力荷载下压力)。

1

2

篇3:哪些情况用带加强层的巨型框架-核心筒结构?

哪些情况用带加强层的巨型框架-核心筒结构?

1 建筑使用功能要求外框大柱距,且结构高度较大,刚重比偏小;

2 核心筒承担的倾覆力矩较大,在风或小震作用下,核心筒翼缘墙受拉,

注:带加强层的巨型框架-核心筒结构指与加强层水平伸臂桁架连接的外框架落地柱截面较大,数量较少(一般不多于8根),有三道或以上的带水平伸臂桁架的加强层,外框架承担的倾覆力矩不少于总倾覆力矩的40%,

* 带伸臂加强层的巨型框架-核心筒结构是一种抗震、抗风受力性能优良、适用于超高层建筑的结构型式。其受力特点为:加强层伸臂桁架及其连结的巨柱、核心筒弯曲刚度极大,近乎满足平截面假定,侧向荷载产生的转角引起巨柱的拉伸和压缩,由于巨柱间力臂较大,从而提供了巨大的抗倾复力矩,大大减少核心筒承担的倾复力矩。

与此同时,由于巨型框架的侧向刚度大致与伸臂加强层间的间距成三次方的反比例关系,故其侧向刚度很小,核心筒需承担全部的水平剪力。此外,建筑物的全部重量集中于核心筒及小数几根巨柱,巨柱的竖向荷载较大,在大风及强震作用下一般不出现拉力,从而提高了结构的整体抗倾覆稳定性。

薄壁筒模具设计研究论文

外资银行核心竞争力研究论文

水利工程设计中水土保持理念研究论文

小学美术教育核心驱动力研究论文

合作管理研究框架

土木工程设计中结构与地基加固技术研究的论文

项目管理信息化框架和模型研究的论文

脉冲星辐射区结构研究

高职英语教师核心竞争力的构成与能力结构研究

论文的结构

超高层框架核心筒结构工程设计研究论文(共3篇)

欢迎下载DOC格式的超高层框架核心筒结构工程设计研究论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档