水电站消防供水系统设计分析论文

| 收藏本文 下载本文 作者:zbz

下面是小编给各位读者分享的水电站消防供水系统设计分析论文(共含10篇),欢迎大家分享。同时,但愿您也能像本文投稿人“zbz”一样,积极向本站投稿分享好文章。

水电站消防供水系统设计分析论文

篇1:水电站消防供水系统设计分析论文

1工程概述

某水电站采用的是一级混合式的开发模式,在其中安装3台单机容量为100MW的轴流转桨式机组,总的装机容量为300MW,属于大型规模的水电站。其消防用水主要来自闸坝的上游,然后采用两台自动过滤装置将其输送到消防水池当中,然后采用两台水泵抽到坝顶段的消防水箱当中。对消防的用水在通过消防水箱抽出之后然后将其输送到各个厂区的消防栓以及雨淋阀、油库等用水,以此组成较为完善的消防水系统;在这当中,对于两台变频消防水泵和消防泵、隔膜式气压供水罐将其接入到这个系统中。对于隔膜式气压供水罐接入0.5~0.7MPa的低压气,主要将其作为对消防水系统进行压力的调节,对于变频调速水泵其主要能够使得消防水泵能够保证一定的压力,在厂房内产生火灾时同时启动消防联动器,从而启动消防泵进行给雨淋阀提供大量的水。

2现阶段水电站消防供水所存在的问题

2.1水泵运行时间太长

水泵在实际的运行当中,对于消防水系统来讲其组成主要就是密封用水以及生活和润滑用水,并且在这个过程中消防管网的压力也在一直产生变化,对于管网的压力其维持主要依靠消防变频泵,在此基础上对其进行来回切换,这样就导致寿命降低。相对于该水电站当中的变频泵,其在运行两年后由于寿命达到了一定的极限而被烧毁。

2.2消防供水能耗比较大

一般,可以采用两台变频泵进行消防用水压力的维持,应用这种方式其效率非常的高。由于对于消防用水来讲其主要采用上游的水,因此在输送到消防水池之后,继而采用变频泵对清水池当中的水输送到用户,采用这种供水方式主要就是对水自身所携带的重力势能以及能效没有充分的发挥。第二,在这当中除了需要将消防管网的水压控制在0.67MPa,然而对于其他的没有该要求的用户,在实际的供水中就会产生浪费情况。

3消防供水系统改造设计

3.1消防用水的合理化配置

通过上述的分析,该水电站当中的消防供水在基本的运行当中对于消防水箱没有充分的'应用,而是采用变频水泵,并且消防需求用户也不需要0.67MPa压力值的消防用水,因此这就需要对其进行优化设置,在一般状态中,相对于消防供水其自身的切换阀基本上都是处在全关的状态,日常用水主要就是来自于消防水箱,并且对于其自身的压力一般主要就是由消防主供水系统来进行提供的。

3.2新型消防水压维持系统的设计

对于新型的消防设施其水压的维持当中的压力值主要就是采用对低压气系统的连接来维持的,同时采用压力水罐的水位来对消防维压水泵的启停进行控制的,以此来维持基本的用水。在产生火灾时若是需要大量的水,这就可以采用大功率的消防水泵作为管网进行对其供水。这样压力水罐就可以当做隔膜式气压供水罐来对消防水系统的正常压力进行调节。

3.3封闭式消防清水池的设计

由于封闭式正压消防水池基本上都是处于密封的状态,并且消防用水的高程通常都是高于取水口的高程,用户1:消防管网(等价高程499m);用户2:消防水箱(437m),因此对于上游所获取的消防水就会朝向封闭式水池不断的流进,这样流水就会对封闭式的正压清水池上方的空气进行挤压,从而产生正压空气,在这个过程中,封闭式的正压清水池基本上都可以将其当做连通器的中间环节,对上游来的重力势能进行有效的应用。

4改造后的消防供水系统

4.1改造前后能耗分析

4.1.1原消防供水系统的能耗

改造前,消防系统的耗能主要就是对消防清水池的水进行高度以及压力的提升,以此使得能够符合压力需求的电能,同时在实际的计算中对所需要的供水源重力势能主要就是其势能的增加。按照实际的运行数据可以指导,相对于上述该水电站在完成改造之后每日的用水量为360m3。

4.1.2改造后消防供水系统的能耗

在对其实施改造之后,对于用户在生活当中的用水主要就是消防水箱,在应用了封闭式的消防水池之后,可以使得高程相当于只有5m。采用相关的公式进行计算之后可以知道改造之后的消防日消耗只有18MJ。因此可以得出结论,在通过改在之后其能耗大大的降低。

4.2改造后效果分析

首先,消耗少。综上所述,在对消防供水实施改造之后其所产生的耗能有效降低,并且所产生的节能效果也是非常的明显。其次,成本比较低,在对其进行改造之后其供水的压力只需要应用定频泵对其进行控制,这样就可以不需要使用价格昂贵的变频泵,同时由于压力罐自身就是有着隔膜供水的特征,因此在一定意义上对于供水的成本也能够降低。第三,具有良好的可靠性。由于采用的是新型的水压西永,对传统的以及不停运的变频泵进行了替代,这样就能够将其可靠性进行增加。第四,水压较为稳定。相对于传统的消防供水来讲其主要就是应用变频泵对其压力实施控制,并且两台变频泵在实际的切换中就会使得其压力出现变化,在这个过程中使用新型的水压系统就能够对于水位当中的启停实施控制,还能够通过连通低压气系统,这样就能够使得消防的管网压力能够一直都维持在0.67MPa,从而确保水压的稳定性。

水电站作为比较特殊的一种建筑物,和其他的工民建不同,因此消防系统在设计当中也有较为特殊的要求。因此本文主要就采用对消防水所需用户进行科学配制以及封闭式清水池、新型水压系统的设计等方式。来降低其能耗和提升其可靠性,确保消防水系统的稳定以及成本的降低等,因此采用这种设计方式在之后的消防水系统中可以大力推行。

参考文献

[1]龙有宾.百龙滩水电站消防系统设计[J].广西电力工程,,02:24-27+35.

[2]朱文松.潘家口水电站消防供水系统技术改造[J].海河水利,,03:59-61.

篇2:浑江梯级水电站设计分析论文

浑江梯级水电站设计分析论文

1流域及工程概况

1.1流域概况浑江是鸭绿江右侧的一大支流,发源于龙岗山东南山麓,自东北流向西南,流经吉林省白山市、通化市、辽宁省桓仁县、宽甸县,于辽宁省桓仁县沙尖子乡下游约50km处注入鸭绿江。浑江全长435km,流域面积15414km2,为山区性河流,沿程汇入的较大支流有十余条,桓仁水库以下较大支流集中在右岸,桓仁水库至回龙山水库区间有大二河、大雅河;回龙山水库至太平哨水库坝址间有小雅河;太平哨水库坝址以下有半拉江、漏河汇入。浑江蜿蜒曲折,河道多急滩哨口,坡度大,桓仁以上平均比降为0.0943%,全河平均比降为0.0630%。1.2工程概况浑江中下游于上世纪60年代至80年代初陆续建成了桓仁、回龙山、太平哨3座梯级水电站,各水电站以水能开发利用为主,其中桓仁水库同时承担有下游防洪任务,对浑江下游洪水特性有一定的影响。1)桓仁水电站。桓仁水电站是浑江梯级电站的龙头,位于辽宁省桓仁满族自治县桓仁镇上游约4km处。坝址控制流域面积10364km2,占浑江流域总面积的67.2%。电站于1958年施工,1972年7月竣工,主要任务是发电,同时承担有下游桓仁县的防洪任务。桓仁水库是浑江干流仅有的一座年调节水库,总库容34.6×108m3,调节库容8.2×108m3,调洪库容12.6×108m3。2)回龙山水电站。回龙山水电站坝址距上游桓仁坝址44km,控制流域面积12433km2。电站于1969年开工,1977年竣工。回龙山水库为日调节水库,总库容1.23×108m3,调节库容0.18×108m3。3)太平哨水电站。太平哨水电站位于辽宁省宽甸县太平哨乡葫芦头村,坝址控制流域面积12961km2,距上游回龙山坝址36.5km。电站于1976年开始施工,1982年1月竣工。太平哨水库为日调节水库,总库容1.82×108m3,调节库容0.19×108m3。

2暴雨洪水特性

2.1暴雨特性受水汽来源、气团活动和地形条件的制约,浑江流域暴雨走向多为南北向和西南东北向,雨量分布长轴与流域长轴平行。由于流域面积不大,上、下游暴雨起迄时间几乎相同,整个流域能同时落在雨区之中。形成浑江流域暴雨的天气系统有台风、气旋、副热带高压边缘的幅合扰动和高空槽等,特大暴雨多由两种以上天气过程遭遇所造成,暴雨中心主要集中在下游右侧半拉江的上游、中游左侧的东明、横路和上游通化一带。浑江流域内暴雨多发生在6月至9月间,大暴雨集中在7,8月份。一次暴雨一般历时3d左右,其中强度最大的暴雨量又集中在一天内,最大一日暴雨占一次暴雨的50%以上。多年平均3d暴雨超过120mm。1960年桓仁以上三天面雨量达178.7mm,1958年浑江下游右侧支流半拉江上大柞树沟站3天雨量达415.9mm。2.2洪水特性浑江流域洪水由暴雨造成,洪水与暴雨相应,发生在6月至9月,全年最大洪水多发生在7月至8月,尤以8月最多。浑江属山区性河流,土壤被覆薄、地形起伏大,河道坡降陡,河槽调蓄作用小,故急骤强烈的暴雨形成陡涨陡落的`洪水。由于一次天气过程造成的暴雨历时较短,而且主要集中在1d时间内,致使较大洪水多呈单峰型。一次洪水历时7d左右,涨洪历时较短,从起涨到峰顶一般1d左右,洪峰滞时约为6h,退水历时较长,一般6左右。一次洪水总量多数集中于3d时间内。下游沙尖子水文站3d洪量占7d洪量的63%以上,1960年特大洪水3d洪量占7d洪量的80%,可见洪量非常集中。

3设计依据站及洪水系列采用

桓仁、回龙山、太平哨水电站坝址洪水设计的依据站为桓仁水文站和回龙山水文站,因此,这次重点对桓仁、回龙山水文站设计洪水进行复核。桓仁、回龙山水文站的水文测验工作始于1936年,在1942—1945年期间陆续停测,解放后五十年代初又恢复观测,各水文站1971年以前的资料系列在太平哨初设时已进行了还原和插补,这次主要对1972—洪水资料系列进行了还原。其中,桓仁站已受桓仁水库调蓄影响,通过桓仁入库流量过程采用马斯京根法演进至桓仁站,还原成桓仁站天然洪水过程;回龙山站由桓仁站天然洪水过程演进到回龙山站,与桓仁~回龙山区间洪水过程相加求得,桓仁~回龙山区间洪水过程由回龙山入库洪水过程减桓仁水库出库洪水过程推求。通过这次还原计算,将桓仁、回龙山水文站洪峰、洪量系列延长到20,洪水系列为1936—年计77年。4历史洪水及重现期的确定桓仁、回龙山水文站站的历史洪水在浑江各梯级电站设计时做过多次调查和分析,各站历史洪水洪峰流量成果见表1.历史洪水的定位根据流域洪水调查情况及实测资料综合分析确定:将1888年洪水作为1755年以来第1位,重现期为258年;将1960,1935,1923三年洪水的重现期作为1888年以来的第2,3,4位。

5设计洪水计算

5.1洪水参数计算桓仁、回龙山站洪峰流量采用1936—2012年计77年系列,并计入1888,1810,1960,1935年和1923年历史洪水组成不连序系列计算;设计洪量采用1936—2012年计77年连序系列计算。经验频率采用数学期望公式计算,线型采用P-Ⅲ型曲线,参数用矩法初估并进行均值、Cv优选,Cs/Cv按地区规律取2.5,最后根据适线及上、下游参数平衡分析确定采用的Cv值。桓仁、回龙山坝址与桓仁、回龙山水文站的集水面积相差很小,桓仁坝址、回龙山坝址洪水直接采用桓仁站、回龙山站洪水。太平哨坝址洪峰、洪量参数用回龙山水文站参数按面积比转换,其中洪峰用面积比的2/3次方、洪量用一次方。5.2成果合理性分析将桓仁、回龙山、太平哨坝址设计洪水成果及流域上下游各水文站设计洪水成果点绘在地区综合图上进行分析,洪峰、洪量均值随集水面积的增大而增大,Cv值随集水面积的增大而减小,各设计成果在地区分布上是合理的。另外,通过将桓仁、回龙山站的设计洪水成果点绘在实测峰量关系图上进行分析,设计峰量值与实测点据的分布趋势较为协调。因此,本次计算的设计洪水参数是合理的。5.3成果对比分析将这次计算的桓仁、回龙山、太平哨水电站坝址设计洪水成果与1972年太平哨初设审定成果比较,均值减小,Cv值增大,各频率设计洪水成果均有所减小。其中洪峰流量设计成果减小幅度在0%~8%之间,3d洪量成果减小幅度在4%~10%之间,分析其原因,主要为1971年以后浑江流域虽然发生了1986,1995,等大水,但其量级相对于1888,1960年等历史洪水还有一定差距,对前4位大洪水的排位无影响,而洪水系列的延长导致大洪水重现期增加,致使频率曲线中的大洪水点距左移,且本次延长系列中大多数年份洪水量级不大,导致均值减小,从而使本次洪峰、洪量设计值较太平哨初设成果整体减小。

6结语

通过对桓仁、回龙山、太平哨水电站坝址设计洪水进行复核分析,各坝址设计洪峰、洪量成果较审定成果有一定程度的减小,因此,从工程安全角度分析,太平哨初设审定的洪水成果仍然是安全的。考虑各水电站工程均已建成,为保持工程设计洪水成果相对稳定、且从工程安全考虑,桓仁、回龙山、太平哨坝址洪水仍可沿用既往审定成果。

[参考文献]

[1]常景坤,邓秋良等.受上游水库群影响的设计洪水分析研究[J].中国水运,(11):240-241.

[2]L278-,水利水电工程水文计算规范[S].北京:中国水利水电出版社,2002.

[3]SL44-,水利水电工程设计洪水计算规范[S].北京:中国水利水电出版社,2006.

篇3:龙马水电站消防系统设计分析

龙马水电站消防系统设计分析

摘要:根据工程消防设计原则,结合电站枢纽总体布置特点,从消防平面布置、建筑物耐火等级、防火间距、火灾自动报警系统、自动喷水灭火系统、室内外消火栓系统、应急照明疏散指示标志系统、防火门、灭火器等设置了完善的.消防设施,从而保证电站设备和运行人员的安全,并做到安全可靠、使用方便、技术先进、经济合理.作 者:许素玲    XU Su-ling  作者单位:云南德宏师范高等专科学校,云南,德宏,678400 期 刊:云南水力发电   Journal:YUNNAN WATER POWER 年,卷(期):, 26(1) 分类号:X931 X932 TU892 关键词:龙马水电站    消防    系统    设计   

篇4:水电站厂用电应用分析相关论文

关于水电站厂用电应用分析相关论文

1、概述

湖南省江垭水电站装设3台10万kW的水轮发电机组,电站于至相继投入商业运行,发电机额定电压为13.8kV,3台水轮发电机电压侧采用单机单变—即单元接线方式,主变高压侧为110kV和220kV电压等级送出,其中一台机组接110kV/220kV自耦变压器,另两台机组接220kV双圈变,3台高压厂用变取自3台主变的低压侧,变压比为13.8/10.5kV,10.5kV侧采用分段接线方式,未改造前高压厂用变压器的额定容量为1250kVA,改造后新增一台2500kVA的变压器接1台机组,一台机组接1250kVA变压器不变,另一台机组采用2台1250kVA并列运行。原高压厂用变压器高压侧(即13.8kV侧)均采用负荷开关进行保护,运行中出现非正常动作及熔丝烧坏现象,因此结合此次厂用变增容改造,同时对保护设备进行改造。整个改造于元月完成,至今已运行近3年,效果良好,业主及运行人员对此非常满意。现就改造方案的选取及在选型过程需要考虑的主要问题进行探讨,对今后正确选用FUR设备及高压限流熔断器将会起到一定的作用。

2、改造方案的选取及原方案存在的问题

由于13.8kV原开关设备均为装柜形式,且地方狭窄,不可能再增加设备位置,只能在原有设备的基础上进行改造完善,为了保证今后的安全运行,在全面了解现有设备的基础上,拟定了三个方案供选择比较。

第一方案是更换原有负荷开关,即增加额定电流以满足厂用变容量的变化要求,此方案最为方便简单。从表面上看,在正常情况下,选择负荷开关额定电流为1250A或630A均可满足要求,但若厂用变二次侧发生短路时,考虑厂用变阻抗后,流过一次侧的最大电流约为A,而目前负荷开关的最大额定电流为1250A,所以不能满足要求,有可能会出现负荷开关爆炸等严重现象的发生,不是彻底的解决问题的方案。

第二方案是在原有开关柜内将负荷开关更换为真空断路器。通过短路电流计算,当在高压厂用变高压侧发生三相短路时,系统各设备提供的最大短路电流达到77.9kA(自耦变侧)和54.4kA(双圈变侧),假定断路器能切断如此大的短路电流,但由于断路器实际开断时间(继电保护时间与断路器分闸时间之和)大于80ms,所以在短路故障切除之前,与之相连接的电气设备将受到3个周波以上的大短路电流冲击,几次这样大的短路电流冲击必然对设备带来很大的损害,影响其使用寿命和经济效益的充分发挥。实际上,现有常规断路器也无法切断如此大的短路电流,若选用发电机专用断路器,其价格十分昂贵,也不能保证短路动作有良好的选择性,也难以避免大短路电流的冲击。

第三方案是采用FUR组合装置加真空断路器的组合方案。真空断路器仅作为操作电气设备代替负荷开关,可选择轻型断路器,FUR作为保护设备(FU即高压限流熔断器,FR为高能氧化锌过电压保护器,两者组合简称FUR),FU的限流性和快速性使得在短路电流远未达到最大值之前就切断短路电流,其切断时间可根据保护特性进行调整和选择,以保证上、下级的动作选择性,从而达到保护设备的目的。而FR的降压性和移能性限制了网络中的操作过电压,并将短路网络中的磁场能量释放,快速将电流衰减至零。因此使用FUR装置有如下优点:

(1)由于FU的快速性和限流性是由其物理特性所决定,而无机械拒动的可能,所以有较高可靠性;

(2)由于FU的限流性,系统设备不再会受到预期短路冲击电流的冲击,有效避免了因穿越故障电流而损坏设备的事故,延长了电气设备的使用寿命,且设备选择无需考虑动、热稳定校验问题;

(3)由于FU的快速性,使故障切断时间大大缩短;

(4)由于FR的非线型性有效的限制了FU的过电压,使操作过电压小于2.5倍的额定相电压,FR吸收了FU在开断过程中系统各部分提供的能量,使FU开断时的电弧能量降低至安全线以下,从而减轻了FU的承受压力。

FUR的上述这些优点克服了方案一、二的某些缺点,且价格较方案二低很多,同时可实现在原有开关柜内进行改造,工作量较少,改造时间短。

3、柜内结构方案的设计

在确定了采用普通真空断路器加FUR组合保护装置方案后,在不增加外置设备及占地的情况下,分析所增加的设备在柜内安装的可能性。原柜内装设了一台高压负荷开关,在不改变柜体尺寸的情况下,将此开关拆除后,略加改造(即增加相关的支撑件)自上而下依次布置FU的撞击机构、FU、FR及真空断路器。真空断路器仅作为切断负荷电流之用,因此它安装在FUR之前或之后都是可取的,根据开关的型式及操作、检修及维护更换设备的方便,在此次改造中,将真空断路器布置在FUR之后,主要原因是①断路器操作机构易于安装,引出线易于连接;②在更换FU熔丝时,可断开断路器,使FU下触头在无电压情况下更换,保证了人身安全;③FUR装设在开关柜后板上,支撑容易,且与封闭母线套管和真空断路器连接方便,经校核安装尺寸及带电距离均可满足要求,但柜内需增加一定数量的设备支撑件及面板现场开孔工作。如果能在FUR前再装设一组隔离开关,则该方案就更加完美,即当在机组运行时,需更换FU的熔丝时,不会影响机组正常发电,上、下端均不带电,人员更加安全。

4、FUR参数的选择

FUR参数的选择至关重要,应认真分析研究,收集资料。它的参数既要保证能可靠动作,又要保证在发生短路事故时能与厂用变低压侧主保护的协调配合,这样即保证了选择性又起到使主设备免遭冲击的作用,现以2500kVA高压厂用变高压侧FUR的参数选择,举例说明其选择方法与一般负荷开关和熔断器选择方法的.主要区别和应考虑的问题。

4.1按额定电流选

2500kVA厂用变高压侧的额定电流为104.6A,同时考虑变压器允许过载2小时时按过载系数为1.3倍不动作,并留有10%的裕度及5%的容差后,计算电流应为157.1A,意味着FU的额定电流选择为160A,在正常运行情况下不会动作。

4.2按变压器承受的冲击电流选择

保护变压器用的熔断器应能承受变压器励磁涌流冲击而不熔断。根据目前的规定,当变压器突然合闸时,励磁涌流最大为变压器满载电流的12倍,持续时间为0.1s,即励磁涌流Ic=104.6×12=1254A,考虑到熔丝熔断时的分散性,应留有20%以上的裕度,即保证在0.1s时熔丝不熔断的电流Ic’=1505A,查160A的限流熔断器安—秒特性曲线,在0.1s时的熔断电流为1600A,能够避开变压器励磁涌流而不熔断。

4.3按保护配合性选择

当高压厂用变低压侧发生短路时,反应到高压侧的电流估算为104.6/0.06=1743.3A(0.06为厂用变压器的阻抗电压值),查160A限流熔断器的安—秒特性曲线,在1743.3A时相应的熔断时间为60ms,而低压侧真空断路器的跳闸动作时间为80ms以上,即当低压侧发生短路时,低压侧断路器在未及时跳闸的情况下,高压侧限流熔断器即FU既已被熔断,说明当额定电流为160A时不能与厂用变低压侧主保护相配合。为了使FUR在厂用变低压侧短路时保证动作的选择性,熔断器的额定电流应选高一级即250A,查250A限流熔断器的安—秒特性曲线,此时熔断时间为700ms,可以满足动作选择性要求。

4.4按FU限流特性及FR残压水平进行校验

当厂用变高压侧发生三相金属短路时,根据250A限流熔断器的预期电流有效值—截断电流峰值曲线,根据短路电流计算结果(在自耦变压器低压侧)最大运行方式下的短路电流值为77.9kA,可以查到其截断电流峰值为35kA,熔断时间约为1.1ms,而在厂用变低压侧短路时高压侧电流为1743.3A时的熔断时间为700ms,可以满足选择性要求。同时为了与FU截断电流相配合,高压侧真空断路器额定开断电流必须选择为40kA,在40kA情况下FU的熔断时间为即40ms。热容量I2t分为熔断件的I2t和弧前I2t,熔断件的I2t即在给定时间间隔内电流平方的积分,弧前的I2t既是在熔断件整个弧前时间内电流平方的积分,两者从概念上是不同的。为了保证熔断器的安全性和可靠性,采用熔断件的I2t值与被保护设备的I2t值进行选择校验熔断件,要比用弧前时间—电流特性选择校验更为合理和科学。从厂家给定的熔断件热容量曲线可以看出250A的熔断件I2t值为1.2×106(A2?s)(熔断时间为0.7s),而断路器在0.7s时间内承受的热容量为352×0.7=0.857×106(A2?s),小于此时断路器3s时额定热容量。因此可以满足要求,对断路器是安全的。

由于FR的非线型性和快速导通特性,将操作过电压限制在2.5倍额定相电压之内,其残压值约为U=2.5×(根号)2?Ue/3=28.17kV,残压值小于运行中发电机及变压器的冲击耐压值29.3kV,更小于出厂时的冲击耐压值(额定电压为13.8kV),因此FR可避免发电机及变压器免受操作过电压的冲击,假如没有FR的作用,其限流熔断器的操作过电压将达38kV以上,已经大于运行中发电机及变压器的最大冲击耐压值35.2kV,将会使设备受到很大的电压冲击而损坏,缩短了使用寿命,影响机组经济效益的发挥和设备的投资,因此设备FR的作用是不可低估的。

从以上各方面的分析计算可以看出,FU的额定电流选定为250A是满足安全性和可选择性要求的。同时也必须装设FR以限制操作过电压。

5、结语

经过理论计算和实践证明,FUR组合保护装置有其很大的优越性,并已在江垭水电站厂用电系统中成功运用,它减少了设备的误动率,有效的保护了主要电气设备,提高了电站的经济效益。但在选用该设备时,应多方案比较,综合考虑和计算,既要保证电站安全的安全性,又要保证动作的可靠性和选择性,它不同于一般熔断器或负荷开关的选择。从该电站的选型中可得出以下结论,也是在通常设计中易于忽视的方面/问题:

(1)对短路电流较大的电站,在选用普通真空断路器不能满足要求时,可选用负荷开关或FUR组合保护装置,不论选择哪种设备,均应满足动作的可靠性和可选择性,以及截流过电压对主要设备的危害性。

(2)FUR组合设备中FU即高压限流熔断器的额定电流选择不能单纯按负荷电流选择,应充分考虑熔断时间与下级断路器在动作时间上的配合性,并应取得生产厂家准确的电流—时间关系曲线、热容量曲线等参数。

(3)应对FU的限流性进行校验,以便选择轻型断路器或负荷开关、隔离开关等电气设备。

(4)应根据熔断时间计算(或查曲线)FU的热容量,该值应大于断路器或负荷开关在该熔断时间内的热容量,且小于其额定时间内的热容量,确保电气设备在熔断时间内的安全。

(5)由于FR的能量转移,降低了操作过电压,有效地保护了主要电气设备免受过电压的冲击,但应对FR的残压水平与电气设备的冲击耐压水平进行比较校验后,才能确定。

(6)如有条件可在发电机母线引下线处设置一组隔离开关,以便于设备的检修和更换,同时不影响机组的正常运行。

篇5:PLC恒压供水系统优化设计的论文

PLC恒压供水系统优化设计的论文

一、项目选题背景及研究内容

变频技术不仅仅是异步电动机,结构坚固,易于维护,更重要的是由于采用变频技术的异步电动机的机械性可以达到了直流电动机调压调速的功能。这样子可以很好的解决国内供水的很多问题。从而人们可以按照序曲自行研发一个合适的而且比较方便环保的调速控水系统。恒压供水系统改变原有的调速方式,实现了无极控制恒压供水,依据用水量的变化自动控制调节系统运行的参数,保证了供水的安全可靠。随着电子技术的不断深入,恒压变频器的日益完善,功能越来越强,即可利用恒压变频的各种功能对其变频调速恒压供水系统提供更多的服务,从而保证恒压供水系统的更多功能,供水的更稳定,更好的为人类服务。

二、项目介绍

恒温恒压供水控制系统由可编程控制器、可视化触摸屏显示器、变频器、交流电动机、压差传感器、液位变送器、温度变送器、板式换热器、继电器、辅助加热器、以太网线及相应模块、等其它电控设备、以及5台循环水泵和一台小流量隔膜泵等构成。在整个系统中,可编程控制器与可视化显示器安装在中控室,远程可使用以太网络监控现场模块。在水箱入空和出口安装压差传感器,检测水压。在水箱底部安装液位变送器。在水箱里安装温度变送器。可编程控制器中的模拟量模块采集液位变送器、温度变送器送来的4-20mA信号电流。将测量信号与PLC设置的信号进行比较,经过PID模糊运算后,由PLC控制变频器输出的频率来调节交流电动机的转速,改变循环泵的流量,来保证供水水压恒定。箱体水温温度由板式换热器供给。温度控制阀来调节温度。辅助加热器用来保证温度的恒定。这样就构成了以设定压力温度为基准的恒压恒温闭环系统。触摸屏显示器用于显示供电电压、工作电流、变频器实际频率、供水压力及各循环泵的工作状态等;可以通过触摸屏以太网络在线修改供水压力和温度控制恒温供水系统的运行。

三、程序设计原理

3.1整套热水供给系统采用西门子CPU226PLC控制

软件使用西门子S7-200进行控制程序编辑。可视化面板使用西门子Smart1000显示屏,软件使用WinCCflexible。同一公司系列产品,兼容性好,协议一致利于通讯。STEP7是用于SIMATIC可编程控制器组态和编程的标准软件。它是SIMATIC工业软件的组成部分。为功能模板和通讯处理器赋值参数、强制和多处理器模式、全局数据通讯、使用通讯功能块的事件驱动数据传输、组态连接。WinCCflexible项目包括能让系统接受操作和监视的所有组态数据。在WinCCflexible中,组态数据根据主题类别进行编译。每个类别都在单独的编辑器中进行处理。编辑器的可用性取决于所用的WinCCflexible版本和要组态的HMI设备。WinCCflexible的工作环境只显示当前使用的HMI设备所支持的编辑器。也就是说,组态工作非常简单且易于进行。

3.2稳定运动状态的自动控制系统设计

系统为了解决水压波动,流量变化对供水系统的扰动。采集管网压力、温度、电流等信号。参考传统的PID调节器算法,即:U(T)=Kp[e(t)++T]

关于P值,I值,D值的设定可采用测试法

最短短时间内完成参数设定,避免造成不良影响。设定的依据:增益P值大,有利于减少供水管网的实际压力与恒压给定值的差值,但是P值过大,系统将产生振荡,稳定性变差。积分I值越小振荡作用越强烈,适当增大I值,使系统更加稳定,但是时间长又会发生难以迅速恢复的情况,系统的动态响应变差。微分D愈短,微分作用越弱。P,I,D经验值和参数设定依据,在测试过程中依照先比例后积分的原则对系统进行调节。在程序控制中使用比较指令函数运算等先关算法更精准的计算调整相关参数,实时精确的控制恒温恒压供水系统。

3.3变送器的安装、电气连接、调试和维护必须由通过培训、有资格的专业人员操作

如果在管系上需要进行焊接工作,不要将焊接设备的.接地接在本测量设备上。安装者必须保证仪表根据接线图正确接线。如果电源不隔离,变送器必须接地。在打开和修理电气设备时请遵守当地所有相关规定。

四、工作流程介绍

该系统具有手动操作模式和自动工作模式两种运行方式

4.1手动操作模式

选择手动模式时,操作可视画界面。可实现单独设备的启动和停止,这种方式用于检修或控制系统出现故障时使用。

4.2自动运行模式

4.2.1系统补水

4.2.1.1地下储水池由一台7.5KW的深井潜水泵供水,当蓄水池水位达到最低下限(通过压力传感器测量水位)1米时,启动深井补水泵开始补水。(蓄水池深度2米)达到最高水位2米时,停止供水。

4.2.1.2由地下蓄水池为1号水箱供水(冷水)(5.5KW水泵2台,由变频器控制),1号水箱高度3米,2号水箱高度2米,1、2号水箱之间落差1.5米;1、2号水箱由管道相连实现自动补水,补水时当1号水箱水位达到1.5米时,自动开始为2号水箱补水,2号水箱加满后,再为1号水箱加水,直至1号水箱加满为止。(2.8米)

4.2.1.3当1号水箱水位达到最低保持水位(热水)1米时,启动1、2号之间的补水泵(1台2.2KW)开始由2号水箱为1号水箱补水(热水);当2号水箱水位达到最低保持水位1米时,停止为1号水箱补水,关闭2号水箱为1号水箱补水的补水泵;同时开启冷水水箱上水电动阀门为1号水箱补水(冷水).1号水箱水位达到2.8米时,关闭水箱进水电动阀门。

4.2.1.4当1号或2号水箱水温达到80℃以上时,启动水箱上水电动阀门,水位达到2.8米,温度达到70℃时,关闭水箱上水电动阀门。设置一个最高水位,起保护作用,达到这个高度时停止所有上水。

4.2.2系统循环

4.2.2.1对1、2号集热器采集热能,通过与1号水箱相连的管道将热能传导进入1号水箱当1号水箱水温与1号或2号集热器水温的温差超过10℃时,启动1、2号集热器循环水泵。温差低于5℃时关闭.;1号、2号集热器循环泵各自独立可单独启停。

4.2.2.2冬天当1号、2号集热器室外管道温度低于5℃时,启动集热器和1号水箱之间的循环泵,室外管道温度高于10℃时循环泵停止。当1号水箱水温与板式换热器的温差超过15℃时,启动板式换热器循环水泵;温差低于5℃是循环泵停止。当1、2号水箱水温的温差达到10℃时启动1、2号之间的循环水泵;达到温差5℃范围内停止循环泵。

五、总结

PLC可视化控制变频器恒温恒压供水系统同其它供水方式相比较,除具有的节能效果外,还有以下优势:操作界面简单明了,易于学习培训。通过变频器调速控制循环泵的水流量,改变老式的调节节流阀来控制流量的方法,减低了管道阻力,延长元件的使用寿命。可编程控制器可实现软启动,对交流电动机的分时分步启动,躲开高峰电流避免对电网的冲击。PLC自动控制,不需要人员频繁操作,降低了人员劳动强度提高生产力。基于PLC的恒温恒压供水系统,应广泛推广使用。

篇6:水电站机下降转速分析论文

水电站机下降转速分析论文

摘要:在水电站机组运行中,绝对不允许出现机组转速在没有达到停机要求的情况下即水轮机在转速较高的情况下进行刹车异常停机事件。文章对官溪水电站机组异常停机事件的起因进行分析并提出处理办法,供同行们参考。

关键词:水电站;水轮机;机组转速;异常停机

1引言

官溪水电站共有三台水轮发电机组,其型号为ΖΖ560А—LH280,是立轴转浆式机组,调速器为ST—100,双调节。近几年三台机组相继出现了转速下降不到停机要求的现象,运行人员为了缩短停机时间,往往在机组转速较高(超过35%)的情况下进行刹车,危及机组安全运行;同时,机组在低转速下长时间运转,增加了机组各部轴承的磨损,缩短了检修周期。

2水轮机导叶漏水检查及原因分析

官溪水电站机组转速降不下来是什么原因造成的呢?首先,看三号机组,该机关机后浆叶一直处于关闭状态,经检查是联锁阀未动作造成浆叶启动阀不动作;其次,一号机组,转速下降50%时不再下降,浆叶也处在关闭位置,检查联锁阀已动作,而浆叶启动阀未动作;最后,看二号机,二号机的现象是关机后,导叶全关,浆叶回到启动位置,运行人员在转速50%的情况下将机组刹车,解除刹车后机组又转动起来,因此,判断是导叶漏水过大引起。

水轮机导叶漏水的原因,大致有如下几方面:

①机组的运行条件恶劣,造成导叶漏水。如某些多泥沙河流的水电站,由于泥沙的.磨蚀,叶密封面易产生磨蚀损耗,定位导叶的轴套间隙不断加大,致使停机时导叶关闭不严密,引起导漏水。②结构设计的原因,使机组在停机时导叶顶盖和底环之间存在着导叶端面间隙,造成导叶

面漏水。③由于加工精度达不到一定的高度,水轮在停机时,导叶之间不能紧密地压合在一起,因不能严密地封水,尽管操作导叶开闭的接力器都有足够的压紧行程,但由于导叶立密封面的接触态不好,仍避免不了导叶漏水。

3机组转速降不到停机要求的原因分析

首先,根据水轮机组的工作原理,即水轮机是将水的动能和势能转化为机械能的设备,当通过水轮机水的能量足以克服水轮机组静止磨擦力时,机组就会转动。因此,导叶关闭不严,漏水大是造成机组转速缓慢下降的原因之一。

其次,ΖΖ560А—LH280是转浆式机组,其浆叶在机组停机时处于启动位置,开机后经过一定时间浆叶自动到全关位置,机组转速达到100%后,导叶自动关闭到一个较小位置,也就是说机组达到额定转速时的水流量要比机组启动时的水流量小;关机后经过一定时间浆叶自动回到启动位置,因导叶不可能完全不漏水,因此,浆叶回不到启动位置也是造成机组转速下降缓慢的原因之一。

对于导叶关闭不严,漏水大这点大多数人都能理解。对于浆叶回不到启动位置造成机组转速下降缓慢这点很多人都难于理解,一般认为导叶关闭后,无论浆叶处于什么位置机组都应停下来;事实上浆叶处于不同位置对机组出力是有影响的,浆叶的形状是按流体力学设计的,浆叶随着导叶的开度不同而调节,保持机组效率处于最佳,这种功能由调速器来完成。从机组的空载工作状态可以知道,当机组处于停机状态时浆叶在启动位置(零度角),导叶开度限制在30%,开机时导叶开至30%位置,浆叶由启动位置经过一定时间关闭至全关位置,导叶也随转速的升高而关闭在一个较小位置直到转速达到额定,也就是说,当机组转动后由于浆叶的调整作用导叶只需较小的开度就能保持机组额定转速。同理,关机时由于导叶不可能完全密封,总有一定量的漏水,同时,浆叶又不能回到启动角时,当漏水量达到某一个量时机组有可能维持在某一相对转速不再下降。

4机组转速降不下来采取的对策

根据上述原因分析,对于三号机组转速降不下来主要原因是联阀顶杆锣丝长期动作磨损引起联阀开启不到位,经调整顶杆锣丝后,浆叶启动阀动作,浆叶回到启动位置,机组转速下降到35%以下能达到技术要求。对于一号机,发现联锁阀顶杆锣丝已弯曲,其原因是检修人员把顶杆锣丝调整过长而长期受力引起,用手转动浆叶启动阀后浆叶回到启动位置,显然浆叶启动阀被卡住引起浆叶不动作,因此,应拆下浆叶启动阀重新安装调试使其动作灵活,并重新调整联锁阀顶杆锣丝直到浆叶启动阀动作。从一、三号机组可以看出,我们在维护检修调试机组时对各部位的调试应到位而不过头,动作应灵活无卡阻,同时,要保持调速器油的清洁,如果是调速器浆叶配压阀被卡或转轮体活塞及操作油管被卡处理将会很困难。对于二号机应重新调整导叶间隙,导叶关闭时,用塞尺测量两块导叶立面间隙一般为零,在长度280毫米范围内局部不大于0.1毫米;同时,相邻导叶最大可能开口(280毫米)偏差不大于5毫米。

综上所述,机组转速降不下来,应分清情况,分别处理,这样才能做到事半功倍。

参考文献:

[1]魏川黔.小水电站水击压力和机组转速升高的隐患初探[J].科技咨询导报,,(4).

篇7:中小型水电站的控制系统设计论文

摘要:自动控制系统能提高水电站运行管理的自动化水平以及改善系统维护人员的工作条件和环境,使水电站有人值班变成“无人值班”。本文就水电站的特点和水电站控制的目的过渡到自动控制系统的设计思路,为以后水电站自动控制系统研究提供参考经验.

关键词:中小型水电站;自动控制系统;特点目的;设计思路

水电站的主要动力来源是水轮机组,不仅结构简单,所需辅助设备也不多,容易实现少人管理和自动化。另外,水轮机组开停便捷迅速,调整方便。水轮机组从静止状态过渡到满负荷运行一般只需要1-2分钟,能灵活调频、调相和调峰,发生事故时还能备用。水电站的耗电量仅占同期发电量的百分之一,既降低了控制系统的发电成本、耗煤量,又提高了系统运行的经济性。

1水电站特点

随着我国社会经济的发展,水力发电的程度也越来越高,因为水利发电既无环境污染,对洪水的防治也有一定作用。水电站在运行的时候不消耗任何燃料,所以不会产生粉尘、废渣等有害物体,因此对环境无任何污染。水力发电受径流影响较大,而径流在年际间或年内经常出现变化较大的现象,尽管多数水电站能借助水库的调节能力减小这种现象的影响程度,但是无法完全平衡径流的变化。水电站在丰水期发电量大,但是在枯水期由于缺乏水力而达不到相应的发电量,正是这种自然条件的制约,形成了水电站发电量变化大的特点。

2水电站控制目的

2.1提高水电站设备运行的安全性和可靠性

水电站设备在运行的时候经常会出现不正常或事故的现象,如果运行人员在处理事故的时候误操作,很有可能使事故产生其他危害。如果在水电站运行中加入自动控制装置,则可有效避免事故的发生。当设备运行不正常的时候,自动控制系统就会发出警报,以引起设备运行人员的注意:当水电站设备发生故障的时候,自动控制系统能及时停机,避免事故扩大化,为水电站设备运行的安全性和可靠性提供保障。

2.2减少劳动人员,降低水电站运行成本

水电站自动控系统几乎取代了设备操作人员对水电站设备的调节控制,使得设备运行人员对设备操作的工作量大大减少,真正让水电站从有人值班变为少人值班或无人值班,实现自动控制系统的作用。由于操作人员的减少,水电站的很多基础设施都会相应减少,在操作人员减少的同时,水电站的发电成本和运行费用也有所降低。

篇8:中小型水电站的控制系统设计论文

早期水电站计算机控制系统因为技术和价格的影响而以集中式为主,水轮发电机组的监测、辅助设备的监测,线路监测等都仅由一套计算机来完成。由于计算机性能的限制,集中式水电站控制系统还无法代替传统的自动控制系统,例如:辅助设备的控制、机组的停开机控制等都是由传统的自动控制系统来完成。而集中式计算机控制系统主要监测的`也仅仅是线路电流、机组、电压功率等参数,由于需要完成的项目太多,导致计算机控制的速度、实时性比较差。此外,因为只有一台计算机,如果出现硬件或软件故障,所有的自动控制系统都将崩溃,可靠性比较低。随着计算机技术的迅猛发展,计算机应用已经非常普及,相对的,价格也比较低。特别是小型可编程控制器PLC的发展,真正实现了小型水电站从传统的控制方法转变为计算机控制系统。为了保证水电站的稳定性、可靠性以及经济比较,在设计的时候通常采用分层分布式结构。所谓分层分布结构即分为上下两层,上一层为上位机,主要由工控机来担当,所用软件为国内较为常见的组态王6.0或者是6.5;而下一层是当地控制单元,下位机一般选择小型可编程序控制器SIMATICS7-200的PLC来担当,这主要是因为现阶段的PLC对中小型水电站的改造技术完全适应,下一层软件采用的是SIMATICSTEP7-Micro/Win32。此外,系统的主机为水轮发电机组,还辅以其他监测设备。当地控制单元与上位机之间的通讯主要由SIMATICS7-200内部集成的PPI借口来完成,该软件完全遵守西门子S7-200PLC专用的PPI通讯协议,其物理特征为RS485,连接材料采用的是一般性两芯屏蔽双绞电缆,连接后通讯的波特率最高可达187.5kbit/s,不过平常状态下波特率为9.6kbit/s。PPI通讯联网的接口与S7-200系列CPU上集成的编程口是同一个。PPI通讯协议在该系统的应用使得通讯变得异常简单,只需使用NEYW和NETR两条语句就可传递数据信息,不需要再配置额外的软件或模块。PPI通讯是一种令牌式的传递网,在不加入中继器的时候,最多能容纳31个S7-200系列PLC,以OP/TP或TD200(插MPI卡)的上位机为站点,由站点和PLC共同构成适应中小型水电站自动控制系统要求的PPI网络。在整体的结构中,现场的采集量分为电气量和非电气量两种,这两种采集量都是中小型水电站所必须具备的监测量。同时,在结构中一般选择中小型水电站,水轮发电机组为两台,其中一台的主变压器以供电系统形式作为控制系统的监测对象。

4结束语

该自动控制系统在黔南州罗甸县石门坎水电站已运行五年多,系统各方面运行也良好,为其他水电站自动控制系统运行提供宝贵的实践经验。

参考文献

[1]何玉雄.综述水电站自动控制系统的设计[J].大科技,(02):167-168.

[2]周荣富.中小型水电站自动控制系统设计[J].机械与电子,(s1):182-184.

篇9:水电站管理的未来发展趋势分析论文

水电站管理的未来发展趋势分析论文

当前,我国已经成为世界上最大的能源消耗国,时刻面临着能源短缺的危机。我国幅员辽阔,河流众多,径流丰沛,具有十分丰富的水能资源,理论蕴藏量6.94亿千瓦,技术可开发量5.42亿千瓦,均居世界第一位,十分有利于水电的开发。水电能源作为一种可再生能源,因为其环保、可持续利用的特点,已经得到了越来越多人的重视和认可。水电站作为开发水电能源的主体,其经营管理对于水电能源开发效率有重要影响。本文试图结合水电站管理的历史和现在,谈一谈水电站管理的未来发展趋势。

一、水电站管理的历史和现状

总管我国水电站管理的发展路程,大致是一个从无到有、从混乱到规范、从传统到现代逐渐发展和完善的过程,主要可以分为计划经济时期的.早期管理阶段和现代管理阶段。

(一)早期管理模式

一般而言,水电站都建在偏远山区,自然及社会条件都比较艰苦。水电开发作为一项具有社会和环境等综合效益的事业,水电建设也是一项系统工程。在计划经济时期,我国的水电工程一般是由国家负责,集中资金和人力进行水电站的建设、管理和维护。由于科技水平和管理理念的局限,在计划经济的体制下,要发展水电站,就只有不断扩大水电站规模,导致水电站管理维护人员越来越多,机构越来越臃肿,管理成本越来越高,管理压力越来越大,管理效率自然也就越来越低。

(二)现代管理模式

改革开放后,为了适应市场经济的发展,提高自身竞争力,大部分水电站在管理模式及管理手段等方面都进行了一定改革。随着国际间的经济技术交流日益频繁,我国水电站管理也逐渐学习和引进世界先进的管理经验,特别是90 年代后,我国装机容量在100 万kW 以上的大型水电站相继投产发电,很多水电站开始引进发达国家的先进设备,先进的管理方式,学习国外先进的管理方法,并按照先进的组织机构,选拔招聘岗位人员,不仅缩小了用人数量,还有利于保障安全生产,水电站的高效率建设,科学化管理,市场化运营打下坚实的制度基础。

二、水电站管理的未来发展趋势

随着先进技术和先进管理理念的进一步发展和成熟,水电站的管理技术、管理理念和管理模式也会出现新的发展。 年,我国原电力工业部颁发《关于水电站“无人值班,少人值守”的若干规定(试行)》的文件,建议水电站逐渐朝着无人值班,少人值守的管理模式发展。诸多水电站陆续朝着这一管理模式进行改革,并且已经初见成效。所谓“无人值班”,是指水电站内不需要再全天安排工作人员值班,可每日安排少许人在行政工作时间负责设备和环境的常规巡检、维护、清扫等工作,其余时间电站可以进行自动化运作,电站运行的一切如开停机组数据监视、操作控制、工况调整等工作都可通过远程控制系统由值班人员在远端集控中心统一完成。

要实现无人值班,少人值守,集中控制,必须做好以下工作:首先,要做好电站设计工作,提高电站设计质量。这是实现是水电站实现“无人值班,少人值守,集中控制”模式的前提。由于这一模式是建立在新的生产方式和运营方式上的,因此,设计单位在进行电站设计时,应充分考虑电站各种新的不利因素,积极调整设计理念,最大限度实现电站运营安全。其次,要提高设备质量及安装水平。水电站的设备质量和安装水平是实现新模式的必要条件,要确保这一模式的顺利实施,在设备采购中,应尽量选择高质量的设备,确保设备运行的可靠性,可以有效减少设备故障发生,还应该提高设备安装、调试水平,提高设备运行的稳定性。 其三,要采用先进的自动化设备,实现电站自动化运转。这是实现“无人值班,少人值守,集中控制”的关键。要实现电站的自动化运营,必须拥有以下技术设备:计算机监控设备,主要进行数据采集、辅助决策根据编写的程序进行运行操作及事故处理等;视频监视系统,主要负责实时观测大坝、发电机组、输电设备、水库等设备和环境的各种变化及电站现场生产情况;消防监控系统,主要负责火灾探测和火灾联动灭火;仿真培训系统,主要负责对运维人员进行概念性培训以及日常操作训练和事故演习,并进行事故分析和典型事故的演示等;信息管理系统,主要负责对电站生产过程中各类信息进行收集、汇总、统计、分析,以便管理人员做出周密的生产、经营、管理计划。

三、结束语

当前,为了保障我国的能源安全,提高水电站管理效率,最大限度发挥水电站的经济和社会效益刻不容缓。随着时代和科技的进步,水电站的管理模式也应朝着先进技术、先进工艺、先进管理理念的方向发展,积极实行“无人值班,少人值守”的新模式。从而使水能资源能够被充分利用,电站潜力能够被最大限度挖掘,生产成本大大降低,劳动强度大大减少,真正实现电站安全、经济、高效运行.

篇10:民用建筑消防给水设计论文

众所周知,消防给水设计已经成为了当前我国民用建筑工程项目中极为重要的一个方面,对于这种消防给水设计工作而言,其直接关系到民用建筑的安全性,尤其是对于火灾的控制和危害的弱化来说,其积极作用还是比较理想的,因此,切实做好民用建筑工程中消防给水系统的设计也就显得极为关键,必须要切实引起相关设计人员的高度重视。

1、民用建筑消防给水工程特点

1.1安全可靠性要求高。在进行民用建筑给水消防设计时,需要重点考虑的影响因素是对民用建筑消防系统的安全可靠性的高要求。民用建筑火灾隐患较多,而且一旦发生火灾,火势蔓延起来十分迅速,导致救火较为困难,因此确保民用建筑消防系统的安全可靠性是给排水消防设计的关键。考虑到当前我国国情,目前消防给水系统设计应将自救放在首要位置进行考虑。

1.2管道机械强度高。随着经济的发展,民用建筑的建设高度越来越高。相对于普通低层建筑,高层建筑的给水管道较长,且给水量要求也较高,因此在使用过程中管道内部的压力变化很大。在高层建筑给水消防设计时,要保证消防系统的给水能力,同时又要确保管道内压力稳定。因此,民用建筑的给水消防系统的管道应选用机械强度高的材料。

2、民用建筑消防给水设计措施分析

2.1消火栓的设计。对于消火栓的设计来说,在整个民用建筑消防的给水设计中处于重要的位置。特别是室内消防栓的设置,其直接关系到室内消火栓供水的可靠性。因此,消火栓必须设置于明显易操作的地方,消火栓箱外不允许再加门或有其他装饰。此外,在民用建筑中,同一个防火分区内不可以通过设置双消火栓的形式来达到压力的要求。非同一防火分区的消火栓不可以互相借用。通常民用建筑消火栓均设置在楼梯口附近,而大型的仓库一般设置在主通道上,以便于快速救援,小型的仓库就可以设置在仓库的出入口附近;如果房间面积较大或有需要在房间内设置消火栓时候,房间内的消火栓不能再作为此房间外的地方使用的消火栓;并且在设计消火栓距离时,民用建筑范围内两个消火栓距应≤25m。室外消火栓应考虑单体建筑室外消防水量,来配置室外消火栓的个数,室外消火栓距离应≤120m。

2.2消防水池设计。对于整个的民用建筑工程消防给水设计工作来说,消防水池的设计是比较重要的一个方面,这种消防水池的合理设计能够在较大程度上提升整个消防给水系统的应用效果,因此,必须要进行合理的设置。具体到这种消防水池的设置过程中来说,其具体的设计内容和要点就是消防水池自身的大小和安装的位置,具体到消防水池的大小上来看,为了促使其在后续的消防给水系统应用过程中更好的表现出较好的作用,应该结合具体的消防用水需求来进行恰当的设置,首先结合整个民用建筑工程项目的消防用水需求来设定最为合适的用水量,然后针对这一用水量来设定消防水池的大小,如此也就能够较好的提升其最终的消防水供应效果,避免出现水资源短缺的问题,当然,其具体的大小尺寸还应该结合具体的施工建设位置进行有效的构建。随着消防要求越来越高,为了安全性考虑,高层的消防水池需容纳室内及室外的全部消防水量。

2.3消防水泵设计。对于民用建筑工程中消防给水系统的设置来说,消防水泵也是极为重要的一个方面,这种消防水泵的设置主要就是要求其能够较好的满足消防给水的供应问题,进而也就能够较好的.实现灭火效果。具体到这种消防水泵的设置中来说,首先就应该针对具体的消防水泵设备进行有效的选取,只有保障相应的消防水泵设备具备着较为理想的实施效果,才能够不断提升其供水准确性,尤其是对于相应的供水压力问题来说,其重要性还是极为突出的;除了这种设备方面的恰当选择之外,还应该重点针对这些消防水泵位置的恰当选取进行严格的控制,相关位置的选取主要就是要求其具备着较为理想的可操作性,尤其是针对不同的应用方式来说,其应用的效果必须要得到较好的保障。

2.4消防水箱设计。消防水箱的作用大家都知道,所有的火灾都有一个初期火灾的过程,火场实践证明,扑灭初期火灾,对于避免更大的火灾是至关重要的,消防水箱用于贮存扑灭初期火灾用水。消防水箱贮水,一方面,使消防给水管道充满水,节省消防水泵开启后充满管道的时间,为扑灭火灾赢得了时间。另一个方面,屋顶设置的增压、稳压系统和水箱能保证消防水枪的充实水柱,对于扑灭初期火灾的成败有决定性作用。消防水箱一般设置在所保护范围的最高建筑的楼顶。可根据实际情况配置增压稳压装置。

2.5消火栓的设置。对于民用建筑工程中消防给水系统的使用来说,相对应的消火栓结构也是极为重要的一个方面,这种消火栓结构的合理设置必然也就能够在较大程度上提升其最终的灭火效果。一般来说,从后期消防给排水系统的使用中来看,为了提升其利用效果和价值,必须要重点针对相应的消火栓摆放位置进行严格的优化设置,这种位置的选取主要就是为了方便具体的操作和使用,并且这些消火栓的设置还应该确保其具备着较为理想的安全性效果,在后期的具体应用过程中做好检修工作。

2.6阀门开关的设计。阀门开关在整个的民用建筑工程消防给水系统中同样占据着极为重要的位置,对于这种阀门开关的设置来说,其主要就是为了尽可能的提升其控制效果,因此,应该结合消防给排水系统中各个环节的控制需求来设置较为合理恰当的消防给排水系统阀门开关,促使这些阀门开关的使用能够便于消防灭火的进行,避免其影响到灭火的及时性。

2.7自动化装置的应用。在民用建筑工程消防给排水系统中合理的应用自动化装置也是比较重要的一个方面,这种自动化装置的应用确实能够较好的提升其消防灭火的效率,因为其可以充分运用自动化设置模式来进行更为高效的控制,摆脱了对于人力的依赖性,最大程度上缩短了灭火的时间,进而也就能够提升灭火的及时性,尤其是对于自动化报警装置来说,其能够更为高效的避免人员的伤亡,将消防火灾损失降低到最小。

3、结语

总而言之,建筑消防给水设计的好坏直接影响到人们的生活质量和生命财产安全。因此,在设计过程中应该要严格按照相关消防规范要求,从使用效果上精心考虑,不断总结和完善设计技术,并结合建筑自身特点和实际需求,经过认真地核查,才能提高民用建筑消防给水系统质量,有力实现安居乐业,促进消防事业的蓬勃发展。

参考文献

[1] 吴杰.民用建筑消防给排水设计的若干问题探讨[J].江西化工, 2009(02):164-165.

[2] 林智慧.试析民用建筑消防给排水的设计策略与优化[J].建筑工程技术与设计,2015(26).

[3] 韩士路.浅析民用建筑消防给排水设计中存在的问题[J].城市建筑,2013(18):162-162.

[4] 资慧琴.民用建筑消防给排水设计中应注意问题探析[J].城市建设理论研究:电子版,2012(30).

教学系统设计论文

雨水回收利用系统的设计分析论文

水电站管理的未来发展趋势分析论文

对智能建筑暖通空调系统设计分析论文

系统整体设计的论文

地质剖面绘制系统设计论文

无人飞艇监测系统设计论文

幼儿园建筑消防设计探究论文

系统可行性分析报告

教学系统设计

水电站消防供水系统设计分析论文(共10篇)

欢迎下载DOC格式的水电站消防供水系统设计分析论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档