下面是小编收集整理的《函数的图象》数学教学方案设计(共含18篇),仅供参考,希望能够帮助到大家。同时,但愿您也能像本文投稿人“zhang0315”一样,积极向本站投稿分享好文章。
《函数的图象》数学教学方案设计
教学目标
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图象上由自变量的值求出对应的函数的近似值。
教学重点和难点
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。
难点:对已恬图象能读图、识图,从图象解释函数变化关系。
教学过程设计
(一)复习
1.什么叫函数?
2.什么叫平面直角坐标系?
3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?
4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).
5.请在坐标平面内画出A点。
6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)
(二)新课
我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。
这个函数关系中,y与x的函数。
这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。
具体做法是
第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。
函数式y=2x+1
自变量x
-2
-1
1
2
函数值y
-3
-1
1
3
5
(这种用表格表示函数关系的方法叫做列表法)
第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。
第三步 连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13-24
例1 在同一直角坐标系中画出下列函数式的图象:
(1)y=-3x;(2)y=-3x+2; (3)y=-3x-3
分析:按照列表、描点、连线三步操作。
解:
函数式(1)y=-3x
自变量x
-2
-1
1
2
函数y
6
3
-3
-6
函数(2)y=-3x+2
自变量x
-2
-1
1
2
函数y
8
5
2
-1
-4
函数(3)y=-3x-3
自变量x
-2
-1
1
2
函数y
3
-3
-6
-9
它们的图象分别是图13-25中的(1)(2)(3)。
例2 某化工厂1月到12月生产某种产品的统计资料如下:
X/月份
1
2
3
4
5
6
7
8
9
10
11
12
Y/产品吨数
2
3
3
4
5
6
6
6
5
4
5
7
(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同一直角坐标系中。
(2)按照月份由小到大的顺序,把每两个点用线段连接起来。
(3)解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。
(4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?
解:(1),(2)见图13-26
(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。
产量下降:8月到9月,9月到10月。
产量不升不降:2月到3月;6月到7月,7月到8月。
(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5 ,所以4月15日的产量约为4.5吨。
(三)课堂练习
已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。
(四)小结
到现在,我们已经学过了表示函数关系的方法有三种:
1.解析式法——用数学式子表示函数的关系。
2.列表法——通过列表给出函数y与自变量x的对应关系。
3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。
这三种表示函数的方法各有优缺点。
1.用解析法表示函数关系
优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。
缺点:在求对应值时,有时要做较复杂的计算。
2.用列表表示函数关系
优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。
缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。
3.用图象法表示函数关系
优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。
缺点:从自变量的值常常难以找到对应的函数的准确值。
函数的.三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。
(五)作业
1.在图13-27中,不能表示函数关系的图形有
(A)(a),(b),(c) (B)(b),(c),(d) (C)(b),(c),(e) (D)(b),(d),(e)
2.函数y=的图象是图13-28中的( )
3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2).
(1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;
(2) 列表、描点、连线画出此函数的图象
4.(1)画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);
(2)判断下列各有序实数对是不是函数。Y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上:
(-2,2 ), (- ,2 ), (-1,3), ( ,1 )
5.画出下列函数的图象:
(1)y=4x-1; (2)y=4x+1
6.图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:
(1)8时,12时,20时的气温各是多少;
(2)最高气温与最低气温各是多少;
(3)什么时间气温最高,什么时间气温最低。
7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点):
X
-2
-1.5
-1
-0.5
0.5
1
1.5
2
y
8.画出函数y= 图象(先填下表,再描点,然后用平滑曲线顺次连结各点):
X
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
y
作业的答案或提示
1. 选(C),因为对应于x的一个值的y值不是唯一的。
2. 选(D)当x<0时, y=“=” x=“”>0时, =x,所以y= = =1
3.
(1)y=x(6-x)其中0 (2) X 1 2 3 4 5 6 y 5 8 9 8 5 4. Y=- x+2 x -4 -3 -2 -1 1 2 3 4 y 3 3 2 2 2 1 1 1 经过检验,点(- ,2 )及点( ,1 )在所画的函数图象上。 5. Y=4x-1 X -2 -1 1 2 y -9 -5 -1 3 7 Y=4x+1 x -2 -1 1 2 y -7 -3 1 5 9 6.(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。 7. Y=x2 X -2 -1.5 -1 -0.5 0.5 1 1.5 2 y 4 2.25 1 0.25 0.25 1 2.25 4 8. Y= X -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 y -1 - - -2 -3 -6 6 3 2 1 课堂教学设计说明 1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。 2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。 3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。 4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。 5.作业中的第1-3题,对训练函数图象很有帮助。 第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。 第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。 第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。 函数的图象数学教学设计 一、教学目的 1.使学生进一步理解自变量的取值范围和函数值的意义. 2.使学生会用描点法画出简单函数的图象. 二、教学重点、难点 重点:1.理解与认识函数图象的意义. 2.培养学生的看图、识图能力. 难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题. 三、教学过程 复习提问 1.函数有哪三种表示法?(答:解析法、列表法、图象法.) 2.结合函数y=x的图象,说明什么是函数的图象? 3.说出下列各点所在象限或坐标轴: 新课 1.画函数图象的方法是描点法.其步骤: (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了. 一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来. (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点. (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线. 一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线). 2.讲解画函数图象的'三个步骤和例.画出函数y=x+0.5的图象. 小结 本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图. 练习:①选用课本练习(前一节已作:列表、描点,本节要求连线) ②补充题:画出函数y=5x-2的图象. 作业:选用课本习题. 四、教学注意问题 1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征. 2.注意充分调动学生自己动手画图的积极性. 3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力. 2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几 何规律。 3、学会作简单函数的图象,并对图象作初步了解。 4、通过本节课的教学,把几何画板作为学生认知的工具,从而激 发学生学习和探索数学的兴趣。 活动重点:图形的性质和规律的探索 活动难点:几何画板的操作(作函数的图象) 活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp、ymdl1.gsp、ymdl2.gsp。 活动过程: 一、展示活动主题和目标: 二、活动过程: 操作练习一: 按下列步骤进行操作,并回答相应的问题。 1、打开c:sketchhstx1.gsp画板文件; 2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。 ①当k>0时,图象经过哪几个象限? ②当k<0时,图象经过哪几个象限? 3、双击显示按钮后,在k>0和k<0两种情况下,拖动点P沿直线移动,观察y随x怎样变化?(或双击动画2按钮,单击鼠标左键动画停止,要继续动画,再双击动画2按钮) 4、先在坐标系内作出直线(或直接打开文件:c:sketchhstx2.gsp) 附:作图步骤 ①点击“文件”菜单中的“新绘图”命令; ②用“直尺工具”中的直线工具,在绘图板内画一直线,并用文本工具给直线上的两个空心点加上标签A和B; ③用“选择工具”选中直线后,点击“度量”菜单中的“方程”命令,得坐标系和直线的'方程;然后,再进行以下操作,并回答问题: (1)用鼠标拖动直线进行平移,k和b中哪个变,哪个不变? (2)当直线通过原点时,b为多少?此时函数又叫什么函数? (3)拖动点A,使直线绕点B旋转,观察直线的倾斜程度与k之间的关系? 操作练习二: 1、打开文件:c:sketchhstx3.gsp 2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关? 3、上下移动c改变c的大小,看抛物线怎样变化? 4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关? 5、c保持不变,改变a、b时,抛抛线总是经过哪一点? 6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系? 7、双击显示按钮,再双击动画按钮,观察y随x怎样变化? 8、当a=0时,函数的图象是什么? 操作练习三: 打开文件:c:sketchymdl1.gsp 圆的两弦AB、CD相交于圆内一点P,我们得到,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢? 操作练习四:作函数y=x2-2的图象 作图步骤: 1、击“文件”菜单中“新绘图”命令,建立新的绘图板; 2、点击“图表”菜单中的“建立坐标轴”; 3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2.80,0.00),再用“选择工具”选择它。(度量值变黑) 4、点击“度量”菜单中的“计算”命令,出现计算器; 5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2.80再用“选择工具”选择它。(度量值变黑) 6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、“确定”按纽。得到代数式的值:xc2-2=14.45. 7、用“选择工具”,分别选中Xc=-2.80xc2-2=14.45.(选取第二个对象要按键盘上的“shift”键的同时再选); 8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内); 9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。 操作练习五: 运用练习四的原理,绘制其它函数的图象(包括学过的和没有学过的),谈谈你对所绘函数图象的认识。 人教版八年级数学上册《函数图象性质》教学反思 “有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的值。 研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的`时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。 反比例函数的图象和性质八年级数学教学反思 这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。 课堂设计程序是: 例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3; 例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习; 例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的.能力。 在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。 利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。 用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。 由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。 3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2)。 (1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围; (2) 列表、描点、连线画出此函数的图象 4.(1)画出函数y=-x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图); (2)判断下列各有序实数对是不是函数。Y=-x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上: (-2,2), (-,2), (-1,3), (,1) 5.画出下列函数的图象: (1)y=4x-1; (2)y=4x+1 6。图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天: (1)8时,12时,20时的气温各是多少; (2)最高气温与最低气温各是多少; (3)什么时间气温最高,什么时间气温最低。 7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点): X -2 -1。5 -1 -0。5 0 0。5 1 1。5 2 y 8。画出函数y=图象(先填下表,再描点,然后用平滑曲线顺次连结各点): X -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 y 作业的答案或提示 1. 选(C),因为对应于x的一个值的y值不是唯一的。 2. 选(D)当x<0时,=-x,所以y===-1,当x>0时,=x,所以y===1 3. (1)y=x(6-x)其中0 (2) X 0 1 2 3 4 5 6 y 0 5 8 9 8 5 0 4。 Y=-x+2 x -4 -3 -2 -1 0 1 2 3 4 y 3 3 2 2 2 1 1 1 经过检验,点(-,2)及点(,1)在所画的函数图象上。 5. Y=4x-1 X -2 -1 0 1 2 y -9 -5 -1 3 7 Y=4x+1 x -2 -1 0 1 2 y -7 -3 1 5 9 6。(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。 7. Y=x2 X -2 -1。5 -1 -0。5 0 0。5 1 1。5 2 y 4 2。25 1 0。25 0 0。25 1 2。25 4 8。 Y= X -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 y -1 - - -2 -3 -6 6 3 2 1 课堂教学设计说明 1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。 2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。 3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。 4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。 5.作业中的第1-3题,对训练函数图象很有帮助。 第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。 第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。 第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。 余弦函数图象教学设计 一、教学内容与任务分析 本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象。本节课的教学是以之前的任意角的三角函数,三角函数的诱导公式的相关知识为基础,为之后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。 二、学习者分析 学生已经学习了任意三角函数的定义,三角函数的诱导公式,并且刚学习三角函数线,这为用几何法作图提供了基础,但能不能正确应用来画图,这还需要老师做进一步的指导。 三、教学重难点 教学重点:正弦余弦函数图象的做法及其特征 教学难点:正弦余弦函数图象的做法,及其相互间的关系 四、教学目标 1. 知识与技能目标 (1) 了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图 象 (2) 掌握正弦函数、余弦函数的图象及特征 (3) 掌握利用图象变换作图的方法,体会图象间的联系 (4) 掌握“五点法”画正弦函数、余弦函数的简图 2. 过程与方法目标 (1) 通过动手作图,合作探究,体会数学知识间的内在联系 (2) 体会数形结合的思想 (3) 培养分析问题、解决问题的能力 3. 情感态度价值观目标 (1) 养成寻找、观察数学知识之间的内在联系的意识 (2) 激发数学的学习兴趣 (3) 体会数学的`应用价值 五、教学过程 一、复习引入 师:实数集与角的集合之间可以建立一一对应关系,而确定的角又有着唯一确定的正弦(或余弦)值。 这样任意给定一个实数x有唯一确定的值sinx(cosx)与之对应,有这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R。 遇到一个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢? 我们先来做一个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢 【设计意图】通过动手实验,体会数学与其他的联系,激发学习兴趣。 二、讲授新课 (1)正弦函数y=sinx的图象 下面我们就来一起画这个正弦函数的图象 第一步:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应). 第二步:在单位圆中画出对应于角0, ,2π的正弦线正弦线 (等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ). 第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象. 【设计意图】通过按步骤自己画图,体会如何画正弦函数的图象。 根据终边相同的同名三角函数值相等,所以函数y=sinx,x∈[2k∏,2(k+1)∏,k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2∏)的图象的形状完全一致。于是我们只要将y=sinx,x∈[0,2∏)的图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象. 【设计意图】由三角函数值的关系,得出正弦函数的整体图象。 把角x(x?R)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y =sinx的图象. (2)余弦函数y=cosx的图象 探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变得 到余弦函数的图象? 根据诱导公式cosx ?sin(x? ?2 ) ,可以把正弦函数y=sinx的图象向左平移 ?2 单位即得余弦函数y=cosx的图象. 正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线. 【设计意图】通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。 思考:在作正弦函数的图象时,应抓住哪些关键点? 【设计意图】通过问题,为下面五点法绘图方法介绍做铺垫 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0) (( 3?2 ? 2 ,1) (?,0) ,-1) (2?,0) ? 2 余弦函数y=cosxx?[0,2?]的五个点关键是哪几个?(0,1) (( 3?2 ,0) (?,-1) ,0) (2?,1) 只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图. 3、讲解范例 例1 作下列函数的简图 (1)y=1+sinx,x∈[0,2π],(2)y=-COSx 【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。 探究1. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到 (1)y=1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象? 小结:函数值加减,图像上下移动;自变量加减,图像左右移动。 探究2. 如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx ,x∈〔0,2π〕的图象? 小结:这两个图像关于X轴对称。 探究3. 如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx ,x∈〔0,2π〕的图象? 小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象, 再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。 探究4. 不用作图,你能判断函数y=sin( x - 3π/2 )和y=cosx的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。 小结:sin( x - 3π/2 )= sin[( x - 3π/2 ) +2 π] =sin(x+π/2)=cosx 这两个函数相等,图象重合。 【设计意图】通过四个探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。 4、小结作业 对本节课所学内容进行小结 【设计意图】在梳理本节课所学的知识点归纳的过程中进一步加深对正弦函数、余弦函数图象认知。培养学生归纳总结的能力,自主构建知识体系。 布置分层作业 基础题A题,提高题B题 【设计意图】将课堂延伸,使学生将所学知识与方法再认识和升华,进一步促进学生认知结构内化。注重学生的个体发展,是每个层次的学生都有所进步。 反比例函数及其图象教学教案 教学目标: 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力,及数学地发现问题,解决问题的能力. 教学重点: 结合图象分析总结出反比例函数的性质; 教学难点:描点画出反比例函数的图象 教学用具:直尺 教学方法:小组合作、探究式 教学过程: 1、从实际引出反比例函数的概念 我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例 即vt=S(S是常数); 当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数) 从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成: (S是常数) (S是常数) 一般地,函数 (k是常数, )叫做反比例函数. 如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数. 在现实生活中,也有许多反比例关系的`例子.可以组织学生进行讨论.下面的例子仅供 2、列表、描点画出反比例函数的图象 说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图 一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线. 3、观察图象,归纳、总结出反比例函数的性质 前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习. 显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考) (1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限. 的讨论与此类似. 抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程. (2)函数 的图象,在每一个象限内,y随x的增大而减小; 从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小. 同样可以推出 的图象的性质. (3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质. 函数 的图象性质的讨论与次类似. 4、小结: 本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中. 教学目标 (一)知道函数图象的意义; (二)能画出简单函数的图象,会列表、描点、连线; (三)能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (一)复习 1.什么叫函数? 2.什么叫平面直角坐标系? 3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标? 4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5). 5.请在坐标平面内画出A点。 6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应) (二)新课 我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。 这个函数关系中,y与x的函数。 这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。 课堂教学设计说明 1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。 2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的'数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。 3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。 4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。 5.作业中的第1-3题,对训练函数图象很有帮助。 第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。 第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。 第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。 教学目标 知识与技能: 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。 3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。 过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力. 情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。 教学重点 教学难点 1)重点:画反比例函数图象并认识图象的特点. 2)难点:画反比例函数图象. 教学关键教师画图中要规范,为学生树立一个可以学习的模板 教学方法激发诱导,探索交流,讲练结合三位一体的教学方式 教学手段教师画图,学生模仿 教具三角板,小黑板 学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法 教学过程 (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置) 内容设计意图 一:课前检测: 1.什么叫做反比例函数; (一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。) 2.反比例函数的定义中需要注意什么? (1)k为常数,k0 (2)从y=中可知x作为分母,所以x不能为零. 二:激发兴趣导入新课 问题1:对于一次函数y=kx+b(k0)的图象与性质,我们是如何研究的? y=kx+by=kx K0一、二、三一、三 b0一、三、四 K0一、二、四二、四 b0二、三、四 问题2:对于反比例函数y=k/x(k是常数,k0),我们能否象一次函数那样进行研究呢? 可以 问题3:画图象的步骤有哪些呢? (1)列表 (2)描点 (3)连线 (教学片断: 师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。 生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。 生:我知道反比例函数的解析式为且k不等于0 生:我知道反比例函数的图象是曲线。 师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢? 生:该研究反比例函数图象和性质了。 师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画? 三:探求新知 学生思考、交流、回答。 提问:你能画出的图象吗? 学生动手画图,相互观摩。 (1)列表(取值的特殊与有效性) x-8-4-2-1-1/21/21248 (2)描点(描点的准确) (3)连线(注意光滑曲线) 议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点? (4)曲线的发展趋势如何? 曲线无限接近坐标轴但不与坐标轴相交 学生先分四人小组进行讨论,而后小组汇报 做一做 作反比例函数的图象。 学生动手画图,相互观摩。 想一想 观察和的图象,它们有什么相同点和不同点? 学生小组讨论,弄清上述两个图象的异同点 相同点: (1)图象分别都是由两支曲线组成 (2)都不与坐标轴相交 (3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点) 不同点:第一个图象位于一、三象限;第二个图象位于二、四象限 四:归纳与概括 反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。 (1)当k0时,两支曲线分别位于第___、___象限, (2)当k0时,两支曲线分别位于第___、___象限. 五:课堂练习 (1) (2)反比例函数的图象是________,过点(,____),其图象分布在___象限; 六:形成性检测 (1)已知函数的图象分布在第二、四象限内,则的取值范围是_________ (2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的 (A)(B)(C)(D) (3)画和的图象 七:反馈拓展 在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标. 八:作业布置 (1)作反比例函数y=2/x,y=4/x,y=6/x的图象 (2)习题5.2.1 (3)预习下一节反比例函数的图象与性质II 复习上节主要内容 (3分钟) (5分钟) 运用类比研究一次函数性质的方法,来研究反比例函数图象与性质 由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。 数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。 数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。 (12分钟) 引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质. 在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。 注:(1)x取绝对值相等符号相反的数值 (2)x取值要尽可能多,而且有代表性 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。 (3分钟) 此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。 (5分钟) 活动效果及注意事项学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线 (4分钟) 培养学生归纳,语言表达能力 此中注意分类讨论思想的应用 巩固反比例函数图象性质 (2分钟) 与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。 (5分钟) 这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。 (4分钟) 此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。 (1分钟) 巩固作反比例函数图象的步骤,预习下一节课内容 教学反思与检讨: 本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。 由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。 在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。 反比例函数的图象与性质 一:画出的图象 (1)列表(取值的特殊与有效性) x-8-4-2-1-1/21/21248 (2)描点(描点的准确) (3)连线(注意光滑曲线) 注:(1)x取绝对值相等符号相反的数值 (2)x取值要尽可能多,而且有代表性三:练习 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 二:反比例函数的图象y=是由两支曲线组成的。 (1)当k0时,两支曲线分别位于第一、三象限, (2)当k0时,两支曲线分别位于第二、四象限. 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力,及数学地发现问题,解决问题的能力. 教学重点: 结合图象分析总结出反比例函数的性质; 教学难点 :描点画出反比例函数的图象 教学用具:直尺 教学方法:小组合作、探究式 教学过程 : 1、从实际引出反比例函数的概念 我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例 即vt=S(S是常数); 当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数) 从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成: (S是常数) (S是常数) 一般地,函数 (k是常数, )叫做反比例函数. 如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数. 在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供 2、列表、描点画出反比例函数的图象 例1、画出反比例函数 与 的图象 解:列表 x -6 -5 -4 -3 1 2 3 4 5 6 -1 -1.2 -1.5 -2 6 3 2 1.5 1.2 1 1 1.2 1.5 2 -6 -3 -2 -1.5 -1.2 1 说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图 一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线. 3、观察图象,归纳、总结出反比例函数的性质 前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习. 显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考) (1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限. 的讨论与此类似. 抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程. (2)函数 的图象,在每一个象限内,y随x的增大而减小; 从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小. 同样可以推出 的图象的性质. (3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质. 函数 的图象性质的讨论与次类似. 4、小结: 本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中. 5、布置作业 习题13.8 1-4 教学设计示例2 反比例函数及其图像 一、素质教育目标 (一)知识教学点 1.使学生了解反比例函数的概念; 2.使学生能够根据问题中的条件确定反比例函数的解析式; 3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况; 4.会用待定系数法确定反比例函数的解析式. (二)能力训练点 1.培养学生的作图、观察、分析、总结的能力; 2.向学生渗透数形结合的教学思想方法. (三)德育渗透点 1.向学生渗透数学来源于实践又反过来作用于实践的观点; 2.使学生体会事物是有规律地变化着的观点. (四)美育渗透点 通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力. 二、学法引导 教师采用类比法、观察法、练习法 学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号. 三、重点・难点・疑点及解决办法 1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题. 2.教学难点 :画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难. 3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内). 4.解决办法:(1) 中隐含条件是 或 ;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论. 四、教学步骤 (一)教学过程 提问:小学是否学过反比例关系?是如何叙述的? 由学生先考虑及讨论一下. 答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系. 看下面的实例:(出示幻灯) 1. 当路程s一定时,时间t与速度v成反比例; 2.当矩形面积S一定时,长a与宽b成反比例; 它们分别可以写成 (s是常数), (S是常数)写在黑板上,用以得出反比例函数的概念:(板书) 一般地,函数 (k是常数, )叫做反比例函数. 即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢? 通过这个问题,使学生进一步理解反比例函数的概念,只要满足 (k是常数, )就可以.因此可以说速度v是时间t的反比例函数,因为 (s是常量).对第2个实例也一样. 练习一:教材P129中1 口答.P130 1 根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么? 答:图像和性质. 通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后 学生要研究其他函数,也可以按照这种方式来研究. 下面,我们就来看桓隼?猓海ǔ鍪净玫疲?/P> 例1 画出反比例函数 与 的图像. 提问:1.画函数图像的关键问题是什么? 答:合理、正确地选值列表. 2.在选值时,你认为要注意什么问题? 答:(1)由于函数图像的特点还不清楚,多选几个点较好; (2)不能选 ,因为 时函数无意义; (3)选整数较好计算和描点. 这个问题中最核心的一点是关于 的问题,提醒学生注意. 3.你能不能自己完成这道题呢? 学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结: 注意:(1)一般地,反比例函数 的图像由两条曲线组成,叫做双曲线; (2)这两条曲线不相交; (3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交. 关于注意(3)可问学生:为什么图像与x和y轴不相交? 通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性. 再让学生观察黑板上的图,提问: 1.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化? 2.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化? 这两个问题由学生讨论总结之后回答,教师板书: 对于双曲线(1)当 :(1)当 时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当 时,双曲线的两分支位于二、四象限,y随x的增大而增大. 3.反比例函数的这一性质与正比例函数的性质有何异同? 通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用. 练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上 上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯) 例2已知y与 成反比例,并且当 时, ,求 时,y的`值. 用提问的方式对此题加以分析: (1)y与 成反比例是什么含义? 由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: . (2)根据这个式子,能否求出当 时,y的值? (3)要想求出y的值,必须先知道哪个量呢? (4)怎样才能确定k的值?用什么条件? 答:用待定系数法,把 时 代入 ,求出k的值. (5)你能否自己完成这道例题: 由一名同学板演,其他同学在练习本上完成. 例3 已知: , 与x成正比例, 与x成反比例,当 时, 时, ,求y与x的解析式. 分析:一定要先写出y与x的函数表达式 , 要用x分别把 , 表示出来得 , 要注意 不能写成k,∴ 解:设 , . 由题意得 ∴ . (二)总结、扩展 教师提问,学生思考回答: 1.什么是反比例函数? 2.反比例函数的图像是什么样的? 3.反比例函数 的性质是什么? 4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容. 五、布置作业 1.教材P130中4,5,6 2.选做:P130中B1,2 六、板书设计 13.8反比例函数及其图像 引例:(1)例1: 例2: 例3: (2) 1.反比例函数: 2.反比例函数的性质 探究活动 已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。 。 (1)求反比例函数的解析式; (2)设点A的横坐标为m, 的面积为S,求S与m的函数关系式,并写出自变量m的取值范围; (3)当 的面积等于 时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。 解:(1)过点B作 轴于点H。 在Rt 中, 由勾股定理,得 又 , ∴ 点B(-3,-1)。 设反比例函数的解析式为 。 ∵ 点B在反比例函数的图像上, 。 ∴ 反比例函数的解析式为 。 (2)设直线AB的解析式为 。 由点A在第一象限,得 。 又由点A在函数 的图像上,可求得点A的纵坐标为 。 ∵ 点B(-3,-1),点 , ∴ 解关于 、的方程组,得 ∴ 直线AB的解析式为 。 令 。 求得点D的横坐标为 。 过点A作 轴于点G 由已知,直线经过第一、二、三象限, ∴ ,即 。 由此得 ∴ 。 即 。 (3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。 证明如下: 。 由 , 得 解得 。 经检验, 都是这个方程的根。 , ∴ 不合题意,舍去。 ∴ 点A(1,3)。 设过A(1,3)、B(-3,-1)两点的抛物线的解析式为 。 ∴ 由此得 即 。 设抛物线与x轴两交点的横坐标为 。 则 令 则 。 即 。 整理,得 。 , ∴ 方程 无实数根。 因此过A、B两点的抛物线在x轴上截得的线段长不能等于3。 高一数学二次函数教学方案设计 2.5函数、方程与不等式 一、数学应用 3.例题2 如图 是一个二次函数=f(x)的图象. (1)写出这个二次函数的零点. (2)写出这个二次函数的解析式. (3)确定f(-4)f(-1)、f(0)f(2)的符号. 二、建构数学 问题5 由例题2的图象可以发现零点附近的函数值有什么特点? (1) (非二重根) (2) 问题6 若x0是二次函数= ax2+bx+C的零点,且 三、回顾反思 (1)三个二次的`关系; (2)一元二次不等式的解法; (3)函数f(x)=0的零点概念及其特点. (4)思考题:若方程x2+2x+3=0的两根都小于1,试求的取值范围。 六、课外作业 P76 、P81.1,2, 整体设计 教学分析 本节通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响,讨论函数y=Asin(ωx+φ)的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.这节是本章的一个难点. 如何经过变换由正弦函数y=sinx来获取函数y=Asin(ωx+φ)的图象呢?通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系. 本节课建议充分利用多媒体,倡导学生自主探究,在教师的引导下,通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在. 三维目标 1.通过学生自主探究,理解φ对y=sin(x+φ)的图象的影响,ω对y=sin(ωx+φ)的图象的影响,A对y=Asin(ωx+φ)的图象的影响. 2.通过探究图象变换,会用图象变换法画出y=Asin(ωx+φ)图象的简图,并会用“五点法”画出函数y=Asin(ωx+φ)的简图. 3.通过学生对问题的自主探究,渗透数形结合思想.培养学生的独立意识和独立思考能力.学会合作意识,培养学生理解动与静的辩证关系,善于从运动的观点观察问题,培养学生解决问题抓主要矛盾的思想.在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观. 重点难点 教学重点:用参数思想分层次、逐步讨论字母φ、ω、A变化时对函数图象的形状和位置的影响,掌握函数y=Asin(ωx+φ)图象的简图的作法. 教学难点:由正弦曲线y=sinx到y=Asin(ωx+φ)的图象的变换过程. 课时安排 2课时 教学过程 第1课时 导入新课 思路1.(情境导入)在物理和工程技术的许多问题中,都要遇到形如y=Asin(ωx+φ)的函数(其中A、ω、φ是常数).例如,物体做简谐振动时位移y与时间x的关系,交流电中电流强度y与时间x的关系等,都可用这类函数来表示.这些问题的实际意义往往可从其函数图象上直观地看出,因此,我们有必要画好这些函数的图象.揭示课题:函数y=Asin(ωx+φ)的图象. 思路2.(直接导入)从解析式来看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系?从图象上看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系?接下来,我们就分别探索φ、ω、A对y=Asin(ωx+φ)的图象的影响. 推进新课 新知探究 提出问题 ①观察交流电电流随时间变化的图象,它与正弦曲线有何关系?你认为可以怎样讨论参数φ、ω、A对y=Asin(ωx+φ)的图象的影响? ②分别在y=sinx和y=sin(x+)的图象上各恰当地选取一个纵坐标相同的点,同时移动这两点并观察其横坐标的变化,你能否从中发现,φ对图象有怎样的影响?对φ任取不同的值,作出y=sin(x+φ)的图象,看看与y=sinx的图象是否有类似的关系? ③请你概括一下如何从正弦曲线出发,经过图象变换得到y=sin(x+φ)的图象. ④你能用上述研究问题的方法,讨论探究参数ω对y=sin(ωx+φ)的图象的影响吗?为了作图的方便,先不妨固定为φ=,从而使y=sin(ωx+φ)在ω变化过程中的比较对象固定为y=sin(x+). ⑤类似地,你能讨论一下参数A对y=sin(2x+)的图象的影响吗?为了研究方便,不妨令ω=2,φ=.此时,可以对A任取不同的值,利用计算器或计算机作出这些函数在同一坐标系中的图象,观察它们与y=sin(2x+)的图象之间的关系. ⑥可否先伸缩后平移?怎样先伸缩后平移的? 活动:问题①,教师先引导学生阅读课本开头一段,教师引导学生思考研究问题的方法.同时引导学生观察y=sin(x+)图象上点的坐标和y=sinx的图象上点的坐标的关系,获得φ对y=sin(x+φ)的图象的影响的具体认识.然后通过计算机作动态演示变换过程,引导学生观察变化过程中的不变量,得出它们的横坐标总是相差的结论.并让学生讨论探究.最后共同总结出:先分别讨论参数φ、ω、A对y=Asin(ωx+φ)的图象的影响,然后再整合. 图1 问题②,由学生作出φ取不同值时,函数y=sin(x+φ)的图象,并探究它与y=sinx的图象的关系,看看是否仍有上述结论.教师引导学生获得更多的关于φ对y=sin(x+φ)的图象影响的经验.为了研究的方便,不妨先取φ=,利用计算机作出在同一直角坐标系内的图象,如图1,分别在两条曲线上恰当地选取一个纵坐标相同的点A、B,沿两条曲线同时移动这两点,并保持它们的纵坐标相等,观察它们横坐标的关系.可以发现,对于同一个y值,y=sin(x+)的图象上的点的横坐标总是等于y=sinx的图象上对应点的横坐标减去.这样的过程可通过多媒体课件,使得图中A、B两点动起来(保持纵坐标相等),在变化过程中观察A、B的坐标、xB-xA、|AB|的变化情况,这说明y=sin(x+)的图象,可以看作是把正弦曲线y=sinx上所有的点向左平移个单位长度而得到的,同时多媒体动画演示y=sinx的图象向左平移使之与y=sin(x+)的图象重合的过程,以加深学生对该图象变换的直观理解.再取φ=,用同样的方法可以得到y=sinx的图象向右平移后与y=sin(x)的图象重合. 如果再变换φ的值,类似的情况将不断出现,这时φ对y=sin(x+φ)的图象的影响的铺垫已经完成,学生关于φ对y=sin(x+φ)的图象的影响的一般结论已有了大致轮廓. 问题③,引导学生通过自己的研究认识φ对y=sin(x+φ)的图象的影响,并概括出一般结论: y=sin(x+φ)(其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到. 问题④,教师指导学生独立或小组合作进行探究,教师作适当指导.注意提醒学生按照从具体到一般的思路得出结论,具体过程是:(1)以y=sin(x+)为参照,把y=sin(2x+)的图象与y=sin(x+)的图象作比较,取点A、B观察.发现规律: 图2 如图2,对于同一个y值,y=sin(2x+)的图象上点的横坐标总是等于y=sin(x+)的图象上对应点的倍.教学中应当非常认真地对待这个过程,展示多媒体课件,体现伸缩变换过程,引导学生在自己独立思考的基础上给出规律.(2)取ω=,让学生自己比较y=sin(x+)的图象与y=sin(x+)图象.教学中可以让学生通过作图、观察和比较图象、讨论等活动,得出结论:把y=sin(x+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),就得到y=sin(x+)的图象. 当取ω为其他值时,观察相应的函数图象与y=sin(x+)的图象的关系,得出类似的结论.这时ω对y=sin(ωx+φ)的图象的影响的铺垫已经完成,学生关于ω对y=sin(ωx+φ)的图象的影响的一般结论已有了大致轮廓.教师指导学生将上述结论一般化,归纳y=sin(ωx+φ)的图象与y=sin(x+φ)的图象之间的关系,得出结论: 函数y=sin(ωx+φ)的图象可以看作是把y=sin(x+φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的倍(纵坐标不变)而得到. 图3 问题⑤,教师点拨学生,探索A对图象的影响的过程,与探索ω、φ对图象的影响完全一致,鼓励学生独立完成.学生观察y=3sin(2x+)的图象和y=sin(2x+)的图象之间的关系.如图3,分别在两条曲线上各取一个横坐标相同的点A、B,沿两条曲线同时移动这两点,并使它们的横坐标保持相同,观察它们纵坐标的关系.可以发现,对于同一个x值,函数y=3sin(2x+)的图象上的点的纵坐标等于函数y=sin(2x+)的图象上点的纵坐标的3倍.这说明,y=3sin(2x+)的图象,可以看作是把y=sin(2x+)的图象上所有的点的纵坐标伸长到原来的3倍(横坐标不变)而得到的通过实验可以看到,A取其他值时也有类似的情况.有了前面两个参数的探究,学生得出一般结论: 函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作是把y=sin(ωx+φ)上所有点的纵坐标伸长(当A>1时)或缩短(当0 由此我们得到了参数φ、ω、A对函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象变化的影响情况.一般地,函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作用下面的方法得到:先画出函数y=sinx的图象;再把正弦曲线向左(右)平移|φ|个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍,这时的曲线就是函数y=Asin(ωx+φ)的图象. ⑥引导学生类比得出.其顺序是:先伸缩横坐标(或纵坐标),再伸缩纵坐标(或横坐标),最后平移.但学生很容易在第三步出错,可在图象变换时,对比变换,以引起学生注意,并体会一些细节. 由此我们完成了参数φ、ω、A对函数图象影响的探究.教师适时地引导学生回顾思考整个探究过程中体现的思想:由简单到复杂,由特殊到一般的化归思想. 讨论结果:①把从函数y=sinx的图象到函数y=Asin(ωx+φ)的图象的变换过程,分解为先分别考察参数φ、ω、A对函数图象的影响,然后整合为对y=Asin(ωx+φ)的整体考察. ②略. ③图象左右平移,φ影响的是图象与x轴交点的位置关系. ④纵坐标不变,横坐标伸缩,ω影响了图象的形状. ⑤横坐标不变,纵坐标伸缩,A影响了图象的形状. ⑥可以.先伸缩后平移(提醒学生尽量先平移),但要注意第三步的平移. y=sinx的图象 得y=Asinx的图象 得y=Asin(ωx)的图象 得y=Asin(ωx+φ)的图象. 规律总结: 先平移后伸缩的步骤程序如下: y=sinx的图象 得y=sin(x+φ)的图象 得y=sin(ωx+φ)的图象 得y=Asin(ωx+φ)的图象. 先伸缩后平移的步骤程序(见上). 应用示例 例1 画出函数y=2sin(x-)的简图. 活动:本例训练学生的画图基本功及巩固本节所学知识方法. (1)引导学生从图象变换的角度来探究,这里的φ=,ω=,A=2,鼓励学生根据本节所学内容自己写出得到y=2sin(x-)的图象的过程:只需把y=sinx的曲线上所有点向右平行移动个单位长度,得到y=sin(x-)的图象;再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y=sin(x-)的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到函数y=2sin(x-)的图象,如图4所示. 图4 (2)学生完成以上变换后,为了进一步掌握图象的变换规律,教师可引导学生作换个顺序的图象变换,要让学生自己独立完成,仔细体会变化的实质. (3)学生完成以上两种变换后,就得到了两种画函数y=2sin(x-),简图的方法,教师再进一步的启发学生能否利用“五点法”作图画出函数y=2sin(x-)的简图,并鼓励学生动手按“五点法”作图的要求完成这一画图过程. 解:方法一:画出函数y=2sin(x-)简图的方法为 y=sinxy=sin(x-) y=sin(x-) y=2sin(x-). 方法二:画出函数y=2sin(x-)简图的又一方法为 y=sinxy=sinx y=2sinxy=2sin(x-)=2sin(x-). 方法三:(利用“五点法”作图——作一个周期内的图象) 令X=x-,则x=3(X+).列表: X π 2π X 2π 5π Y 2 -2 描点画图,如图5所示. 图5 点评:学生独立完成以上探究后,对整个的图象变换及“五点法”作图会有一个新的认识.但教师要强调学生注意方法二中第三步的变换,左右平移变换只对“单个”x而言,这点是个难点,学生极易出错.对于“五点法”作图,要强调这五个点应该是使函数取最大值、最小值以及曲线与x轴相交的点.找出它们的方法是先作变量代换,设X=ωx+φ,再用方程思想由X取0,,π,,2π来确定对应的x值. 变式训练 1.20xx山东威海一模统考,12 要得到函数y=sin(2x+)的图象,只需将函数y=sinx的图象( ) A.向左平移个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 B.向右平移个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 C.向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变 D.向右平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变 答案:C 2.20xx山东菏泽一模统考,7 要得到函数y=2sin(3x)的图象,只需将函数y=2sin3x的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 答案:D 例2 将y=sinx的图象怎样变换得到函数y=2sin(2x+)+1的图象? 活动:可以用两种图象变换得到.但无论哪种变换都是针对字母x而言的由y=sin2x的图象向左平移个单位长度得到的函数图象的解析式是y=sin2(x+)而不是y=sin(2x+),把y=sin(x+)的图象的横坐标缩小到原来的,得到的函数图象的解析式是y=sin(2x+),而不是y=sin2(x+). 解:方法一:①把y=sinx的图象沿x轴向左平移个单位长度,得y=sin(x+)的图象;②将所得图象的横坐标缩小到原来的,得y=sin(2x+)的图象;③将所得图象的纵坐标伸长到原来的2倍,得y=2sin(2x+)的图象;④最后把所得图象沿y轴向上平移1个单位长度得到y=2sin(2x+)+1的图象. 方法二:①把y=sinx的图象的纵坐标伸长到原来的2倍,得y=2sinx的图象;②将所得图象的横坐标缩小到原来的,得y=2sin2x的图象;③将所得图象沿x轴向左平移个单位长度,得y=2sin2(x+)的图象;④最后把图象沿y轴向上平移1个单位长度得到y=2sin(2x+)+1的图象. 点评:三角函数图象变换是个难点.本例很好地巩固了本节所学知识方法,关键是教师引导学生理清变换思路和各种变换对解析式的影响. 变式训练 1.将y=sin2x的图象怎样变换得到函数y=cos(2x-)的图象? 解:y=sin2x=cos(-2x)=cos(2x-). 在y=cos(2x-)中以x-a代x,有y=cos[2(x-a)-]=cos(2x-2a-).根据题意,有2x-2a-=2x-,得a=-. 所以将y=sin2x的图象向左平移个单位长度可得到函数y=cos(2x-)的图象. 2.如何由函数y=3sin(2x+)的图象得到函数y=sinx的图象? 方法一:y=3sin(2x+)y=sin(2x+) y=sin(x+)y=sinx. 方法二:y=3sin(2x+)=3sin2(x+)y=3sin2x y=sin2xy=sinx. 3.20xx山东高考,4 要得到函数y=sinx的图象,只需将函数y=cos(x-)的图象( ) A.向右平移个单位 B.向右平移个单位 C.向左平移个单位 D.向左平移个单位 答案:A 知能训练 课本本节练习1、2. 解答: 1.如图6. 点评:第(1)(2)(3)小题分别研究了参数A、ω、φ对函数图象的影响,第(4)小题则综合研究了这三个参数对y=Asin(ωx+φ)图象的影响. 2.(1)C;(2)B;(3)C. 点评:判定函数y=A1sin(ω1x+φ1)与y=A2sin(ω2x+φ2)的图象间的关系.为了降低难度,在A1与A2,ω1与ω2,φ1与φ2中,每题只有一对数值不同. 课堂小结 1.由学生自己回顾总结本节课探究的知识与方法,以及对三角函数图象及三角函数解析式的新的认识,使本节的总结成为学生凝练提高的平台. 2.教师强调本节课借助于计算机讨论并画出y=Asin(ωx+)的图象,并分别观察参数φ、ω、A对函数图象变化的影响,同时通过具体函数的图象的变化,领会由简单到复杂、特殊到一般的化归思想. 作业 1.用图象变换的方法在同一坐标系内由y=sinx的图象画出函数y=sin(-2x)的图象. 2.要得到函数y=cos(2x-)的图象,只需将函数y=sin2x的图象通过怎样的变换得到? 3.指出函数y=cos2x+1与余弦曲线y=cosx的关系. 解答:1.∵y=sin(-2x)=sin2x,作图过程: y=sinxy=sin2xy=sin2x. 2.∵y=cos(2x-)=sin[+(2x-)]=sin(2x+)=sin2(x+), ∴将曲线y=sin2x向左平移个单位长度即可. 3.∵y=cos2x+1, ∴将余弦曲线y=cosx上各点的横坐标缩短到原来的倍,再将所得曲线上所有的点向上平移1个单位长度,即可得到曲线y=cos2x+1. 设计感想 1.本节图象较多,学生活动量大,因此本节设计的主要指导思想是充分利用信息技术工具,从整体上探究参数φ、ω、A对函数y=Asin(ωx+φ)图象整体变化的影响.这符合新课标精神,符合教育课改新理念.现代教育要求学生在富有的学习动机下主动学习,合作探究,教师仅是学生主动学习的激发者和引导者. 2.对于函数y=sinx的图象与函数y=Asin(ωx+φ)的图象间的变换,由于“平移变换”与“伸缩变换”在“顺序”上的差别,直接会对图象平移量产生影响,这点也是学习三角函数图象变换的难点所在,设计意图旨在通过对比让学生领悟它们的异同. 3.学习过程是一个认知过程,学生内部的认知因素和学习情景的因素是影响学生认知结构的变量.如果学生本身缺乏学习动机和原有的认知结构,外部的变量就不能发挥它们的作用,但外部变量所提供的刺激也能使内部能力引起学习. (设计者:张云全) 第2课时 导入新课 思路1.(直接导入)上一节课中,我们分别探索了参数φ、ω、A对函数y=Asin(ωx+φ)的图象的影响及“五点法”作图.现在我们进一步熟悉掌握函数y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的图象变换及其物理背景.由此展开新课. 思路2.(复习导入)请同学们分别用图象变换及“五点作图法”画出函数y=4sin(x-)的简图,学生动手画图,教师适时的点拨、纠正,并让学生回答有关的问题.在学生回顾与复习上节所学内容的基础上展开新课. 推进新课 新知探究 提出问题 ①在上节课的学习中,用“五点作图法”画函数y=Asin(ωx+φ)的图象时,列表中最关键的步骤是什么? ②(1)把函数y=sin2x的图象向_____平移_____个单位长度得到函数y=sin(2x-)的图象;(2)把函数y=sin3x的图象向_______平移_______个单位长度得到函数y=sin(3x+)的图象;(3)如何由函数y=sinx的图象通过变换得到函数y=sin(2x+)的图象? ③将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位长度,所得到的曲线是y=sinx的`图象,试求函数y=f(x)的解析式. 对这个问题的求解现给出以下三种解法,请说出甲、乙、丙各自解法的正误.(多媒体出示各自解法) 甲生:所给问题即是将y=sinx的图象先向右平移个单位长度,得到y=sin(x-)的图象,再将所得的图象上所有点的横坐标缩短到原来的,得到y=sin(2x-),即y=cos2x的图象,∴f(x)=cos2x. 乙生:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(x+φ)的图象,再将所得的图象向左平移个单位长度,得到y=Asin(x++φ)=sinx,∴A=,=1,+φ=0, 即A=,ω=2,φ=-.∴f(x)=sin(2x-)=cos2x. 丙生:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(x+φ)的图象,再将所得的图象向左平移个单位长度,得到y=Asin[(x+)+φ]=Asin(x++φ)= sinx, ∴A=,=1,+φ=0. 解得A=,ω=2,φ=-, ∴f(x)=sin(2x-)=cos2x. 活动:问题①,复习巩固已学三种基本变换,同时为导入本节课重、难点创设情境.让学生回答并回忆A、ω、φ对函数y=Asin(ωx+φ)图象变化的影响.引导学生回顾“五点作图法”,既复习了旧知识,又为学生准确使用本节课的工具提供必要的保障. 问题②,让学生通过实例综合以上两种变换,再次回顾比较两种方法平移量的区别和导致这一现象的根本原因,以此培养训练学生变换的逆向思维能力,训练学生对变换实质的理解及使用诱导公式的综合能力. 问题③,甲生的解法是考虑以上变换的“逆变换”,即将以上变换倒过来,由y=sinx变换到y=f(x),解答正确.乙、丙两名同学都是采用代换法,即设y=Asin(ωx+φ),然后按题设中的变换得到两次变换后图象的函数解析式,这种思路清晰,但值得注意的是:乙生的解答过程中存在实质性的错误,就是将y=Asin(x+φ)的图象向左平移个单位长度时,把y=Asin(x+φ)函数中的自变量x变成x+,应该变换成y=Asin[(x+)+φ],而不是变换成y=Asin(x++φ),虽然结果一样,但这是巧合,丙同学的解答是正确的 三角函数图象的“逆变换”一定要注意其顺序,比如甲生解题的过程中如果交换了顺序就会出错,故在对这种方法不是很熟练的情况下,用丙同学的解法较合适(即待定系数法).平移变换是对自变量x而言的,比如乙同学的变换就出现了这种错误. 讨论结果:①将ωx+φ看作一个整体,令其分别为0, ,π, ,2π. ②(1)右, ;(2)左, ;(3)先y=sinx的图象左移,再把所有点的横坐标压缩到原来的倍(纵坐标不变). ③略. 提出问题 ①回忆物理中简谐运动的相关内容,并阅读本章开头的简谐运动的图象,你能说出简谐运动的函数关系吗? ②回忆物理中简谐运动的相关内容,回答:振幅、周期、频率、相位、初相等概念与A、ω、φ有何关系. 活动:教师引导学生阅读并适时点拨.通过让学生回忆探究,建立与物理知识的联系,了解常数A、ω、φ与简谐运动的某些物理量的关系,得出本章开头提到的“简谐运动的图象”所对应的函数解析式有如下形式:y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T=,这是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公式f==给出,它是做简谐运动的物体在单位时间内往复运动的次数;ωx+φ称为相位;x=0时的相位φ称为初相. 讨论结果:①y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0. ②略. 应用示例 例1 图7是某简谐运动的图象.试根据图象回答下列问题: (1)这个简谐运动的振幅、周期和频率各是多少? (2)从O点算起,到曲线上的哪一点,表示完成了一次往复运动?如从A点算起呢? (3)写出这个简谐运动的函数表达式. 图7 活动:本例是根据简谐运动的图象求解析式.教师可引导学生再次回忆物理学中学过的相关知识,并提醒学生注意本课开始时探讨的知识,思考y=Asin(ωx+φ)中的参数φ、ω、A在图象上是怎样反映的,要解决这个问题,关键要抓住什么.关键是搞清φ、ω、A等参数在图象上是如何得到反映的让学生明确解题思路,是由形到数地解决问题,学会数形结合地处理问题.完成解题后,教师引导学生进行反思学习过程,概括出研究函数y=Asin(ωx+φ)的图象的思想方法,找两名学生阐述思想方法,教师作点评、补充. 解:(1)从图象上可以看到,这个简谐运动的振幅为2 cm;周期为0.8 s;频率为. (2)如果从O点算起,到曲线上的D点,表示完成了一次往复运动;如果从A点算起,则到曲线上的E点,表示完成了一次往复运动. (3)设这个简谐运动的函数表达式为y=Asin(ωx+φ),x∈[0,+∞), 那么A=2;由=0.8,得ω=;由图象知初相φ=0. 于是所求函数表达式是y=2sinx,x∈[0,+∞). 点评:本例的实质是由函数图象求函数解析式,要抓住关键点.应用数学中重要的思想方法——数形结合的思想方法,应让学生熟练地掌握这种方法. 变式训练 函数y=6sin(x-)的振幅是,周期是____________,频率是____________,初相是___________,图象最高点的坐标是_______________. 解:6 8π (8kπ+,6)(k∈Z) 例2 若函数y=Asin(ωx+φ)+B(其中A>0,ω>0)在其一个周期内的图象上有一个最高点(,3)和一个最低点(,-5),求这个函数的解析式. 活动:让学生自主探究题目中给出的条件,本例中给出的实际上是一个图象,它的解析式为y=Asin(ωx+φ)+B(其中A>0,ω>0),这是学生未遇到过的教师应引导学生思考它与y=Asin(ωx+φ)的图象的关系,它只是把y=Asin(ωx+φ)(其中A>0,ω>0)的图象向上(B>0)或向下(B<0)平移|B|个单位.由图象可知,取最大值与最小值时相应的x的值之差的绝对值只是半个周期.这里φ的确定学生会感到困难,因为题目中毕竟没有直接给出图象,不像例1那样能明显地看出来,应告诉学生一般都会在条件中注明|φ|<π,如不注明,就取离y轴最近的一个即可. 解:由已知条件,知ymax=3,ymin=-5, 则A=(ymax-ymin)=4,B= (ymax+ymin)=-1,=-=. ∴T=π,得ω=2. 故有y=4sin(2x+φ)-1. 由于点(,3)在函数的图象上,故有3=4sin(2×+φ)-1, 即sin(+φ)=1.一般要求|φ|<,故取+φ=.∴φ=. 故所求函数的解析式为y=4sin(2x+)-1. 点拨:这是数形结合的又一典型应用,应让学生明了,题中无图但脑中应有图或根据题意画出草图,结合图象可直接求得A、ω,进而求得初相φ,但要注意初相φ的确定.求初相也是这节课的一个难点. 变式训练 已知函数y=Asin(ωx+φ)(其中A>0,ω>0)一个周期的图象如图8所示,求函数的解析式. 解:根据“五点法”的作图规律,认清图象中的一些已知点属于五点法中的哪一点,而选择对应的方程ωxi+φ=0,,π,,2π(i=1,2,3,4,5),得出φ的值. 方法一:由图知A=2,T=3π, 由=3π,得ω=,∴y=2sin(x+φ). 由“五点法”知,第一个零点为(,0), ∴·+φ=0荭=-, 故y=2sin(x-). 方法二:得到y=2sin(x+φ)同方法一. 由图象并结合“五点法”可知,(,0)为第一个零点,(,0)为第二个零点. ∴·+φ=π荭=. ∴y=2sin(x-). 点评:要熟记判断“第一点”和“第二点”的方法,然后再利用ωx1+φ=0或ωx2+φ=π求出φ. 2.20xx海南高考,3函数y=sin(2x-)在区间[,π]上的简图是( ) 图9 答案:A 知能训练 课本本节练习3、4. 3.振幅为,周期为4π,频率为.先将正弦曲线上所有的点向右平行移动个单位长度,再在纵坐标保持不变的情况下将各点的横坐标伸长到原来的2倍,最后在横坐标保持不变的情况下将各点的纵坐标缩短到原来的倍. 点评:了解简谐运动的物理量与函数解析式的关系,并认识函数y=Asin(ωx+φ)的图象与正弦曲线的关系. 4..把正弦曲线在区间[,+∞)的部分向左平行移动个单位长度,就可得到函数y=sin(x+),x∈[0,+∞)的图象. 点评:了解简谐运动的物理量与函数解析式的关系,并认识函数y=sin(x+φ)的图象与正弦曲线的关系. 课堂小结 1.由学生自己回顾本节学习的数学知识:简谐运动的有关概念.本节学习的数学方法:由简单到复杂、特殊到一般、具体到抽象的化归思想,数形结合思想,待定系数法,数学的应用价值. 2.三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,这种题目的解题的思路是:如果函数同名则按两种变换方法的步骤进行即可;如果函数不同名,则将异名函数化为同名函数,且需x的系数相同.左右平移时,如果x前面的系数不是1,需将x前面的系数提出,特别是给出图象确定解析式y=Asin(ωx+φ)的题型.有时从寻找“五点法”中的第一零点(,0)作为突破口,一定要从图象的升降情况找准第一零点的位置. 作业 把函数y=cos(3x+)的图象适当变动就可以得到y=sin(-3x)的图象,这种变动可以是( ) A.向右平移 B.向左平移 C.向右平移 D.向左平移 解:∵y=cos(3x+)=sin(-3x)=sin[-3(x-)], ∴由y=sin[-3(x-)]向左平移才能得到y=sin(-3x)的图象. 答案:D 点评:本题需逆推,教师在作业讲评时应注意加强学生逆向思维的训练.如本题中的-3x需写成-3(x-),这样才能确保平移变换的正确性. 设计感想 1.本节课符合新课改精神,突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索及发现问题、分析问题和解决问题的能力.注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一. 2.由于本节内容综合性强,所以本节教案设计的指导思想是:在教师的引导下,让学生积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.新课改要求教师在新的教学理念下,要勇于,更要善于把问题抛给学生,激发学生探求知识的强烈欲望和创新意识.教学的目的是以知识为平台,全面提升学生的综合能力. 本节课分为“正弦函数的图象”和“性质(一)”两部分,在教学中充分发挥学生的主体性,循序渐进地引导学生发现问题——探索问题——解决问题。职高学生的数学基础差,理解能力不强,因此对教师提出了新的要求,要达到良好的教学效果,就必须采取更形象、更具体的教学模式,引导学生积极地投入到课堂学习中去,真正体会到学习数学的乐趣。本节课利用FLASH课件更能体现出直观、形象、生动的特点。具体情况如下: 一、对教学设计的反思。 教学设计过程中真正考虑学生的实际情况,对教材的内容及教学顺序进行了大胆地调整,真正做到因材施教。同时征求科组老师的意见,探讨教学设计的合理性以及实用性。但通过实际的教学发现自己对教材知识整体感知把握不够,设计上存在一些不足,比如:知识的有效性建构方面有待提高;设计中,没有考虑对学生知识的实际应用和学生口语交际能力的培养,在以后的教学设计中应渗入“小组合作学习”的模式,注重课堂知识的生成和学生表达能力的培养,与新课标接轨。 二、对教学过程的反思。 1、课堂导入中,教师与学生共同探讨生活中的波浪现象,让学生对正弦曲线产生感性上的认识,体现出数学来源于生活,服务于生活的理念。基于学生的生活经验不足,自信心不足,导致在导入时占用较长的时间,教师没有能真正与学生互动起来,因此,日后应多培养学生用数学语言表达的能力。 2、概念、图象部分。学生通过自学概念后,教师列举几种函数模型,检查学生是否对概念有正确地理解,如: , , 等。这样通过反例,学生的思维受到一定冲击,激发他们去探索、思考。另外,教师引导学生观察正弦函数的特征,让他们理解得更深入。当学生理解完概念后,教师暗示学生本节课的重难点,认识函数 的图象和能根据图象归纳出其性质,考虑到学生的数学基础薄弱,对于作出 的图象利用正弦线法和五个关键点作图,教师选择了五个关键点作图法,这样学生理解起来更容易,(强调学生一定要用圆滑的曲线把5个关键点连接起来)。在实际的教学中,指导学生在讲义上作图,列表——描点——连线,让每个学生都参与到课堂中去,充分调动学生的积极性,而本节课的难点在于——学生能否利用诱导公式: 作出 在 , 等区间上的图象,依次类推,描绘出整条正弦曲线。这种由特殊到一般,由结论到实例的直线型思维模式,一反数学的严格推理论证模式,由浅入深,使我们的学生在思维上易于理解与接受。 3、对函数 性质教学。教师引导学生根据图象归纳出 的定义域、值域、,以及奇偶性。在重难点知识上,如 性质归纳上讲得不够深入,时间安排不足,应避免课堂教学过于追求“形式”。 总体来说,本节课气氛活跃,互动性强,充分调动学生的积极性,认真梳理好讲解的顺序,学生能够体会到数学的.奥秘。利用FLASH技术制作的课件,增加本节课的技术含量及新鲜感,适当弥补课堂上的不足。动画演示作图过程中,大大吸引了学生的注意力。 4、课堂练习反思。“讲练相结合法”是数学常用的方法之一,典型例题和巩固性练习相互交替,学生上台板演到邀请基础好的学生上台作评析等等环节都充分发挥学生的主体性,注重师生互动。根据学生所反馈的.信息,及时调整教学过程,使学生“听得懂,学得会”。在课后练习部分处理地较灵活,采用了阶梯式法,让各层次的学生都能根据自己的基础,完成教师布置的作业,如:让基础好的学生,模拟 的作图过程,作出y=cosx的简图,并试图归纳出其性质,课堂练习处理应采用多种方式。学生在练习时,留给他们思考时间不足,一定程度上抑制了他们的创造性。 5、课后小结的反思。考虑到学生的学情和时间的安排,将 的其余性质留到下次课讲解,并让全班同学一起回顾本节课的知识点,教师起到画龙点精的作用,这是考虑到课堂资源应该是生成的,应使学生由客体变为主体,使之积极地、目的明确地、主动热情地参与到教学活动中来。但教师引导学生小结的形式过于单一,只是对本节课重难点进行简单回顾,没有顾及到学生真正学会了什么?有哪些没有掌握的? 注:小结的形式①概括式小结②问题式小结③对比式小结④互动性小结 三、对教学效果的反思。 教学效果依赖于课堂中各种资源,其中最重要是教师的方法,虽然教无定法,但贵在得法,良好教学效果的形成是学生和教师思维同步的结果,所以课堂过程中时刻关注学生的学习动态相当重要,自己在这堂课上并没有完全顾及到学生的动态,感觉自己的思维与学生的思维进度不够协调,但由于采用生动形象的动画演示,使得本次公开课效果较好。 教育既要“教”,更重要懂得“育”,对于职业学校的学生,学习不重视文化课的学习,要想提高数学课堂教学效果,必须教会它们如何学习,兼顾育人和教学,绝不能走“满堂灌式、严肃型、唱独角戏型”的教学道路,应做到以生为本,授之以渔而不是授之以鱼,应该不断优化教学策略,不断进修学习,不断从各种渠道提高自身的能力,尤其应提高自身多媒体技术的处理和应用能力,赋予课堂更多的活力,为学生的营造一种轻松的学习气氛。 正弦函数的图象及性质教学反思 本节课能够大胆灵活处理教材,能够注重课堂资源的生成,能把多媒体技术与课堂教学进行有效地整合。但基于自己是名新教师和性格因素,授课时语速应该放慢些。在日后的教学中应进一步通过多种渠道提高自己的理论水平和驾驭课堂的能力,做一名研究型的教师。 本节课分为“正弦函数的图象”和“性质(一)”两部分,在教学中充分发挥学生的主体性,循序渐进地引导学生发现问题——探索问题——解决问题。职高学生的数学基础差,理解能力不强,因此对教师提出了新的要求,要达到良好的教学效果,就必须采取更形象、更具体的教学模式,引导学生积极地投入到课堂学习中去,真正体会到学习数学的乐趣。本节课利用FLASH课件更能体现出直观、形象、生动的特点。具体情况如下: 一、对教学设计的反思。 教学设计过程中真正考虑学生的实际情况,对教材的内容及教学顺序进行了大胆地调整,真正做到因材施教。同时征求科组老师的意见,探讨教学设计的合理性以及实用性。但通过实际的教学发现自己对教材知识整体感知把握不够,设计上存在一些不足,比如:知识的有效性建构方面有待提高;设计中,没有考虑对学生知识的实际应用和学生口语交际能力的培养,在以后的教学设计中应渗入“小组合作学习”的模式,注重课堂知识的生成和学生表达能力的培养,与新课标接轨。 二、对教学过程的反思。 1、课堂导入中,教师与学生共同探讨生活中的波浪现象,让学生对正弦曲线产生感性上的认识,体现出数学来源于生活,服务于生活的理念。基于学生的生活经验不足,自信心不足,导致在导入时占用较长的时间,教师没有能真正与学生互动起来,因此,日后应多培养学生用数学语言表达的能力。 2、概念、图象部分。学生通过自学概念后,教师列举几种函数模型,检查学生是否对概念有正确地理解,如: , , 等。这样通过反例,学生的思维受到一定冲击,激发他们去探索、思考。另外,教师引导学生观察正弦函数的特征,让他们理解得更深入。当学生理解完概念后,教师暗示学生本节课的重难点,认识函数 的图象和能根据图象归纳出其性质,考虑到学生的数学基础薄弱,对于作出 的图象利用正弦线法和五个关键点作图,教师选择了五个关键点作图法,这样学生理解起来更容易,(强调学生一定要用圆滑的曲线把5个关键点连接起来)。在实际的教学中,指导学生在讲义上作图,列表——描点——连线,让每个学生都参与到课堂中去,充分调动学生的积极性,而本节课的难点在于——学生能否利用诱导公式: 作出 在 , 等区间上的图象,依次类推,描绘出整条正弦曲线。这种由特殊到一般,由结论到实例的直线型思维模式,一反数学的严格推理论证模式,由浅入深,使我们的学生在思维上易于理解与接受。 3、对函数 性质教学。教师引导学生根据图象归纳出 的定义域、值域以及奇偶性。在重难点知识上,如 性质归纳上讲得不够深入,时间安排不足,应避免课堂教学过于追求“形式”。 总体来说,本节课气氛活跃,互动性强,充分调动学生的积极性,认真梳理好讲解的.顺序,学生能够体会到数学的奥秘。利用FLASH技术制作的课件,增加本节课的技术含量及新鲜感,适当弥补课堂上的不足。动画演示作图过程中,大大吸引了学生的注意力。 4、课堂练习反思。“讲练相结合法”是数学常用的方法之一,典型例题和巩固性练习相互交替,学生上台板演到邀请基础好的学生上台作评析等等环节都充分发挥学生的主体性,注重师生互动。根据学生所反馈的信息,及时调整教学过程,使学生“听得懂,学得会”。在课后练习部分处理地较灵活,采用了阶梯式法,让各层次的学生都能根据自己的基础,完成教师布置的作业,如:让基础好的学生,模拟 的作图过程,作出y=cosx的简图,并试图归纳出其性质,课堂练习处理应采用多种方式。学生在练习时,留给他们思考时间不足,一定程度上抑制了他们的创造性。 5、课后小结的反思。考虑到学生的学情和时间的安排,将 的其余性质留到下次课讲解,并让全班同学一起回顾本节课的知识点,教师起到画龙点精的作用,这是考虑到课堂资源应该是生成的,应使学生由客体变为主体,使之积极地、目的明确地、主动热情地参与到教学活动中来。但教师引导学生小结的形式过于单一,只是对本节课重难点进行简单回顾,没有顾及到学生真正学会了什么?有哪些没有掌握的? 三、对教学效果的反思。 教学效果依赖于课堂中各种资源,其中最重要是教师的方法,虽然教无定法,但贵在得法,良好教学效果的形成是学生和教师思维同步的结果,所以课堂过程中时刻关注学生的学习动态相当重要,自己在这堂课上并没有完全顾及到学生的动态,感觉自己的思维与学生的思维进度不够协调,但由于采用生动形象的动画演示,使得本次公开课效果较好。 教育既要“教”,更重要懂得“育”,对于职业学校的学生,学习不重视文化课的学习,要想提高数学课堂教学效果,必须教会它们如何学习,兼顾育人和教学,绝不能走“满堂灌式、严肃型、唱独角戏型”的教学道路,应做到以生为本,授之以渔而不是授之以鱼,应该不断优化教学策略,不断进修学习,不断从各种渠道提高自身的能力,尤其应提高自身多媒体技术的处理和应用能力,赋予课堂更多的活力,为学生的营造一种轻松的学习气氛。 二次函数的图象和性质教学设计 教学目标: 1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。 2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。 3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。 重点难点: 重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。 难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。 教学过程: 一、提出问题 1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗? (函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。 2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系? (函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的) 3.函数y=-4(x-2)2+1具有哪些性质? (当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1) 4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗? [因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)] 5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗? 二、解决问题 由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。 解:(1)列表:在x的取值范围内列出函数对应值表; x … -2 -1 0 1 2 3 4 … y … -6 -4 -2 -2 -2 -4 -6 … (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。 (3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。 说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。 (2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的.图象美观。 让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质; 当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小; 当x=1时,函数取得最大值,最大值y=-2 三、做一做 1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗? 教学要点 (1)在学生画函数图象的同时,教师巡视、指导; (2)叫一位或两位同学板演,学生自纠,教师点评。 2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 教学要点 (1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系? 以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗? 教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识; y=ax2+bx+c =a(x2+x)+c =a[x2+x+ 2-()2]+c =a[x2+x+()2]+c- =a(x+)2+ 当a>0时,开口向上,当a<0时,开口向下。 对称轴是x=-b/ 2a ,顶点坐标是(-,) 四、课堂练习 课本练习第1、2、3题。 五、小结 通过本节课的学习,你学到了什么知识?有何体会? 《二次函数的图象和性质》教学设计 教学目标: 1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质. 2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同. 3.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验. 4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质. 教学重点: 1.利用描点法作出函数y=x2的图象,根据图象认识和理解二次函数y=x2的性质. 2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同. 教学难点: 经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现探索经验运用的思维过程. 教学过程: 一、学前准备 我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是_______________,一般的一次函数的图象是____________,反比例函数的图象是_________________.上节课我们学习了二次函数的一般形式为_________________________,那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题. 二、探究活动 (一)、作函数y=x2的图象. 回忆画函数图象的一般步骤吗?(列表,描点,连线.) 下面就请大家按上面的步骤作出y=x2的图象. (1)列表: x -3 -2 -1 0 1 2 3 y 9 4 1 0 1 4 9 (2)在直角坐标系中描点. (3)用光滑的,曲线连接各点,便得到函数y=x2的图象. (二)、议一议 对于二次函数y=x2的.图象, (1)你能描述图象的形状吗?与同伴进行交流. (2)图象与x轴有交点吗?如果有,交点坐标是什么? (3)当x0时,随着x值的增大,y的值如何变化?当x0时呢? (4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的? (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并交流. 下面我们系统地总结: (三)y=x2的图象的性质. 二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流. 大家讨论之后系统地总结出y=x2的图象的所有性质. 当堂练习:按照画图象的步骤作出函数y=-x2的图象. y=-x2的图象如右图,并让学生总结: 形状是___________,只是它的开口方向____________,它 与y=x2的图象形状________,方向________,这两个图形可 以看成是__________对称. 试着让学生讨论y=-x2的图象的性质. 并尝试比较y=x2与y=-x2的图象,比较异同点. 不同点: 相同点: 联系: (四)课堂练习: 随堂练习(P47) 三.学习体会 1.本节课你有哪些收获?你还有哪些疑问? 2.你认为老师上课过程中还有哪些须改进的地方? 3.预习时的疑问解决了吗? 四.自我测试 1.在同一直角坐标系中画出函数y=x2与y=-x2的图象. 2.下列函数中是二次函数的是 ( ) A. y=2+5x2 B.y= C.y=3x(x+5)2 D. y= 3.分别说出抛物线y=4x2与y=- x2的开口方向,对称轴与顶点坐标 4、已知函数y=mxm2+m. (1)m取何值时,它的图象开口向上. (2)当x取何值时,y随x的增大而增大. (3)当x取何值时,y随x的增大而减小. (4)x取何值时,函数有最小值. 这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。 课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。 在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的.解析式的题目类型学生的达成率不够好,要加强这方面的训练。篇2:函数的图象数学教学设计
篇3:数学函数图象的性质教学方案
篇4:八年级数学上册《函数图象性质》教学反思
篇5:反比例函数的图象和性质八年级数学教学反思
篇6:函数的图象教学方案
篇7:余弦函数图象教学设计
篇8:反比例函数及其图象教学教案
篇9:函数的图象教学设计
篇10:函数的图象教学设计
篇11:数学教案-反比例函数及其图象
篇12:高一数学二次函数教学方案设计
篇13:高中数学函数的图象教案
篇14:正弦函数的图象及性质教学反思
篇15:正弦函数的图象及性质教学反思
篇16:二次函数的图象和性质教学设计
篇17:《二次函数的图象和性质》教学设计
篇18:《反比例函数的图象和性质》教学反思