以下是小编帮大家整理的余弦函数图象教学设计(共含20篇),仅供参考,希望能够帮助到大家。同时,但愿您也能像本文投稿人“陌尘”一样,积极向本站投稿分享好文章。
余弦函数图象教学设计
一、教学内容与任务分析
本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象。本节课的教学是以之前的任意角的三角函数,三角函数的诱导公式的相关知识为基础,为之后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。
二、学习者分析
学生已经学习了任意三角函数的定义,三角函数的诱导公式,并且刚学习三角函数线,这为用几何法作图提供了基础,但能不能正确应用来画图,这还需要老师做进一步的指导。
三、教学重难点
教学重点:正弦余弦函数图象的做法及其特征
教学难点:正弦余弦函数图象的做法,及其相互间的关系
四、教学目标
1. 知识与技能目标
(1) 了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图
象
(2) 掌握正弦函数、余弦函数的图象及特征
(3) 掌握利用图象变换作图的方法,体会图象间的联系 (4) 掌握“五点法”画正弦函数、余弦函数的简图 2. 过程与方法目标
(1) 通过动手作图,合作探究,体会数学知识间的内在联系 (2) 体会数形结合的思想
(3) 培养分析问题、解决问题的能力 3. 情感态度价值观目标
(1) 养成寻找、观察数学知识之间的内在联系的意识 (2) 激发数学的学习兴趣
(3) 体会数学的`应用价值
五、教学过程
一、复习引入
师:实数集与角的集合之间可以建立一一对应关系,而确定的角又有着唯一确定的正弦(或余弦)值。
这样任意给定一个实数x有唯一确定的值sinx(cosx)与之对应,有这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R。
遇到一个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?
我们先来做一个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢
【设计意图】通过动手实验,体会数学与其他的联系,激发学习兴趣。
二、讲授新课
(1)正弦函数y=sinx的图象
下面我们就来一起画这个正弦函数的图象
第一步:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).
第二步:在单位圆中画出对应于角0,
,2π的正弦线正弦线
(等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).
第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.
【设计意图】通过按步骤自己画图,体会如何画正弦函数的图象。 根据终边相同的同名三角函数值相等,所以函数y=sinx,x∈[2k∏,2(k+1)∏,k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2∏)的图象的形状完全一致。于是我们只要将y=sinx,x∈[0,2∏)的图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象. 【设计意图】由三角函数值的关系,得出正弦函数的整体图象。
把角x(x?R)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y
=sinx的图象.
(2)余弦函数y=cosx的图象
探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变得
到余弦函数的图象? 根据诱导公式cosx
?sin(x?
?2
)
,可以把正弦函数y=sinx的图象向左平移
?2
单位即得余弦函数y=cosx的图象.
正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.
【设计意图】通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。 思考:在作正弦函数的图象时,应抓住哪些关键点? 【设计意图】通过问题,为下面五点法绘图方法介绍做铺垫 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0) ((
3?2
?
2
,1) (?,0)
,-1) (2?,0)
?
2
余弦函数y=cosxx?[0,2?]的五个点关键是哪几个?(0,1) ((
3?2
,0) (?,-1)
,0) (2?,1)
只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图. 3、讲解范例
例1 作下列函数的简图
(1)y=1+sinx,x∈[0,2π],(2)y=-COSx
【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。
探究1. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到
(1)y=1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。 探究2.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx ,x∈〔0,2π〕的图象? 小结:这两个图像关于X轴对称。 探究3.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx ,x∈〔0,2π〕的图象?
小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,
再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。 探究4.
不用作图,你能判断函数y=sin( x - 3π/2 )和y=cosx的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。
小结:sin( x - 3π/2 )= sin[( x - 3π/2 ) +2 π] =sin(x+π/2)=cosx 这两个函数相等,图象重合。
【设计意图】通过四个探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。 4、小结作业
对本节课所学内容进行小结
【设计意图】在梳理本节课所学的知识点归纳的过程中进一步加深对正弦函数、余弦函数图象认知。培养学生归纳总结的能力,自主构建知识体系。 布置分层作业
基础题A题,提高题B题
【设计意图】将课堂延伸,使学生将所学知识与方法再认识和升华,进一步促进学生认知结构内化。注重学生的个体发展,是每个层次的学生都有所进步。
<?xml:namespace prefix = youyang_cms_code /> 河南省说课大奖赛教案 高中新教村《数学》第一册(下) §4.8 正弦函数、余弦函数的图象和性质(一) 一、教材分析: 本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》 的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法.为今后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用. 二、学情分析: 在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础。动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。 三、教学目标: 依据教学大纲的要求,制订如下三维教学目标: 知识目标是:1.理解几何法作图原理(难点); 2.掌握五点法作图(重点); 3.了解三角函数图象的变换作图. 能力目标是:通过识记正、余弦曲线的形状特征,培养学生分析问题、 解决问题的能力;强化学生"数形结合"的数学思想. 发展目标是:教给学生灵活的思维方法,培养学生的学习兴趣和勇于 探索、勇于创新的精神,提高综合素质. 四、设计理念: 教无定法,贵在得法.诱思探究学科教学论认为:在教学思想上是启发式,在教学过程上是探究式,在教学价值上是发展式。德国教育学家第斯多惠也曾说过:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞.为了充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,充分让学生参与教学活动。同时利用多媒体电教手段提高学生的学习兴趣.采用启发、引导和学生探究、实践、体验相结合的教学方法;教给学生“多动手、勤动脑、敢猜想、善发现、重体验、促发展”的学习方法.体现“教师是主导,学生是主体”的教学原则.使学生不但“学会”而且“会学”,并逐步感受到数学的美,产生成就感,从而极大地提高对数学的学习兴趣.也只有这样做,才能适应素质教育下培养“创新型”人才的需要. 五、教学程序: 本节课的教学过程设计,主要是从“三性”即“课堂流程的可操作性,知识目标的可接受性,学生主动学习的积极性”考虑的,对整个教学过程作如下安排: 教学程序图如下: 第一部分:导入.先复习以前学过的函数图象的作法——描点法,再让学生观察波动图象演示仪,激起学生的兴趣.指出这种形状的曲线就是今天要研究的正、余弦函数的图象.如何作出该曲线呢? 以设问和探索的方式导入新课,创设情境,激发思维,让学生带着问题,有目的地参与下列教学活动. 第二部分:几何法作图.引导学生在单位圆中作出特殊角的三角函数线,并进行平移,描点作图.先作出 y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,再依据诱导公式一平移图象得出 y=sinx,x∈R的图象.同法得出 y=cosx,x∈R的图象. 第三部分:多媒体展示.教师利用多媒体展示用Flash动画制作的>课件,规范作图过程和步骤,统一认识y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,在此提醒学生在直角坐标系中,横、纵坐标轴的长度单位必须一致。否则画出的图象不是正弦函数的真实面貌。 第四部分:“五点法”作图.曲线形成后,让学生观察图象的形状特征,分析讨论,提炼出五个关键点,归纳出“五点法”作图步骤. 第五部分:总结.让学生自己总结本节课的重点、难点和学习目标,教师再补充.这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用. 如此设计,联系了新旧知识,体现了从特殊到一般,再由一般到特殊的认知规律.在这种螺旋式上升的过程中,学生将通过自己的亲自动手实践,不仅学到本节课的知识,而且还将提高思维水平和认知能力.同时也体现了“教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展”的教学思想.同时在教学过程中配以多媒体>课件的展示,图文并茂,简洁明快,充分调动学生的各个感官,使学生学的生动,学的有趣,增大课堂容量,提高课堂效率. 为了突破几何法作图这个难点,制作了多媒体>课件,将 y=sinx,x∈R 和 y=cos x,x∈R图象的作法分解为三个问题来解决,降低了难度.通过展示>课件,生动形象地再现三角函数线的平移和曲线形成过程.使原本枯燥地知识变得生动有趣,激发学生的兴趣,调动学生的积极性(通过教学也的确是这样的).及时让学生跟着演示作图,提高学生的动手能力、模仿能力、创造能力.直观的动画,不仅使学生愉快地接受新知识,而且将激发学生的创造性思维和想象力,使学生充分发挥其思维潜能,拓展思维空间. 用“三步曲”来突出“五点法”作图这个重点.第一步设疑:“几何法作图.由于取点个越多,画出的图象也就比较精确,但也较为麻烦.在精确度要求不高的前提下,能否少定一些点,作出其简图呢?”问题的提出可以立刻抓住学生的'好奇心,激起学生强烈的求知欲.第二步引导:让学生观察正弦函数 y=sinx,x∈[0,2π]和余弦函数y= cosx,x∈[0,2π]的图象,启发哪些点对决定图象的形状起着关键的作用呢?引导学生寻找出五个关键点.体现教师的主导作用;第三步小结:让学生分组讨论,互相补充,归纳出五点法作图步骤.教师对学生讨论的情况作出评价并指出作图应注意的问题,然后小结:“五点法”可以比较简捷地作出正弦、余弦函数的草图,对于以后研究正弦、余弦函数的性质将起到重要的作用.这样设计体现了“多动手、勤动脑、敢猜想、善发现”的学习方法,使学生真正成为教学的主体. 应用:画出下列函数的简图: (1)y=1+sinx x∈[0,2π]; (2)y=-cosx x∈[0,2π]. 解:(1)按五个关键点列表: 利用正弦函数的性质描点画图(如下图). (2)按五个关键点列表:利用余弦函数的性质描点作图(如下图). 反馈练习: 1.在同一坐标系中用五点法分别画出函数y=sinx,x∈[0,2π]和y=cosx,x[- , ]的简图.通过观察两条曲线,后者经过怎样平行移动就可以得到前者? 2.观察正弦函数和余弦函数,写出满足下列条件的x的区间: (1)sinx>0 (2)sinx<0 (3)cosx>0 (4)cosx<0 (例题、练习都用>课件展示) 本节例题仍选用教材上的例题,但解答除“五点法”之外,又引导学生利用函数图象的平移对称变换来作图.通过一题多解,可帮助学生加深对知识的认知程度,培养灵活的思维方式.学会遇到新问题时,善于调动所学过的旧知识,运用新旧知识间的联系,增强分析问题和解决问题的能力. 反馈练习设计层次分明:练习1为巩固基础知识型,对课堂内容知识的再认识(五点作图及图象变换);练习2为提高能力型,是对正(余)弦函数图象的灵活运用,由易到难,体现因材施教重效果,循序渐进促发展的教学理念. 最后师生共同总结,强化数形结合的数学思想,使学生的理论达到发展和升华,能力达到提高,并为相关学科的学习做好铺垫,提高综合素质. 六、板书设计:(略) 七、布置作业:(略) 一、教材分析 1、教材的地位与作用 《正弦函数、余弦函数的图象与性质》是高中《数学》第一册(下)第四章第八节的内容,其主要内容是正弦函数、余弦函数的图象与性质。过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数、余弦函数的图象与性质,为今后正切函数的图象与性质、函数的图象的研究打好基础。因此,本节的学习有着极其重要的地位。 2、教学重点和难点 教学重点:正弦函数、余弦函数的图象的形状及“五点作图法” 。 教学难点:(1)利用单位圆画正弦函数图象; (2)利用正弦函数图象和诱导公式画出余弦函数图象。 二、目标分析 根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下。 1、知识目标 (1)利用正弦线画出正弦函数的图象。 (2)利用正弦函数的图象和诱导公式画出余弦函数的图象。 (3)用“五点作图法”画正弦函数、余弦函数的简图。 2、能力目标(1)会用单位圆中的正弦线画出正弦函数图象; (2)掌握正弦函数图象的“五点作图法”; (3)培养观察能力、分析能力、归纳能力、表达能力; (4)培养数形结合和化归转化的数学方法。 3、德育目标 (1)渗透由抽象到具体的,使学生理解动与静的辩证关系,培养辩证唯物主义观点; (2)培养学生勇于探索、勤于思考的; (3)使学生懂得数学是源于生活,服务于生活的数学特点。 4.美育目标 通过作图,使学生感受波形曲线的流畅美、对称美,使学生体会事物周期变化的奥秘,激发学生学习数学的兴趣。 三、教法、学法分析 1.教学方法 教学形式是为教学内容服务的,不同的教学形式会产生不同的效果。以“开放、多样、互动”为主旨的教学形式必然使教学过程丰富多彩。以学生为中心,在整个教学过程中由教师起组织者,指导者、帮助者和促进者的作用,利用情景,协作发挥学生的主动性、创造性,最终达到使学生有效的对所学知识,自主建构。本节采用建构主义学习环境下的启发式教学模式。 2.学习方法 建构主义认为,学习并非学生对于教师所授予知识的被动接受,而是以其自身己有的知识和经验为基础的主动建构。教学过程的实质是学生主动探索、主动建构的过程。本节课引导学生采用以下两种学习方式: (1).交流合作的学习方式: 学生与学生、学生与教师之间交流,讨论,合作实践学习任务。 (2).抽象归纳的学习方式: 学生由具体的演示过程,分析归纳,并从中抽象出数学方法和结论。 3.教学手段: 课堂教学中,积极运用现代化教学手段,充分地发挥多媒体的形象性,直观性,同时也充分利用传统教学手段,在教学中体现教学手段的多样式,为学生的发展科学地、有效地保障。图文并茂的表现形式使学生更易吸收、消化。本节课利用多媒体演示“正弦函数的几何作图法”以及图象变换。 四、教学程序 教 学 过 程 设 计 意 图 (一)创设情景。 1。实物演示: “装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹” 思考: 问题一:1、该曲线是何曲线? 2、你有办法画出该曲线的图象吗? 2。复习 弧度制、函数相关知识、正弦线、作图法、图象的平移。 (二)探究新知。 1、课件演示:“正弦函数图象的几何作图法” 2、 教师引导:在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆,从圆O1与x轴的交点A起把圆O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O1上的各分点作x轴的垂线,可以得到对应于0、、、、……、等角的正弦线,相应地,再把x轴上从0到这一段(≈6。28)分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数,的图象。 因为终边相同的角有相同的三角函数值,所以函数 在的图象与函数,的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每 次个单位长度),就可以得到正弦函数,的图象,即正弦曲线。 问题二:1、函数,的图象中起着关键作用的点是哪些点? 2、几何作图法虽然比较精确,但是不太实用,如何快捷地画出正弦函数的图象呢? 五个关键点: 事实上,描出这五个点,函数,的图象的形状就基本确定了。今后在精确度要求不太高时,常常先找出这五个关键点,用光滑曲线将它们连结起来即可得到函数的简图,我们把这种方法称为“五点作图法”。 课件演示:“正弦函数图象的五点作图法” 用变换法作余弦函数y=cosx 是同一个函数;余弦函数的图象可由正弦曲线向左平移个单位 图中的五个关键点: 与画函数,的简图类似,通过这五个点,可以画出函数,的简图。 例1:用“五点作图法”画出函数 ,的简图。 课堂练习: (1) y = — cosx ,x∈[0,2π] (2) y = sinx—1,,x∈[0,2π] 7、课堂 (1)正弦函数图象的几何作图法; (2)正弦函数、余弦函数图象的五点作图 法;使学生通过作业进一步掌握和巩固本节内容。 (3)正弦函数与余弦函数图象间的联系。 8、布置作业: 1、习题4。8第1题、第8题 五、板书设计 一 、正弦函数的图象 1、代数描点法 2、几何描点法(多媒体课件展示) 3、函数y=sinx, xR的图象 二、余弦函数的图象 函数y=cosx,xR的图象 三、五点作图法 四、例1。y = sinx+1,x∈[0,2π] 五、课堂练习(1) y = — cosx x∈[0,2π] (2) y = sinx—1 x∈[0,2π] 六、 七、作业习题4。8第1题、第8题 六、分析 本课教学设计力求体现以教师为主导、以学生为主体的原则,体现“数学教学主要是数学活动的教学”这一教学。又要体现知识的发现过程,培养学生的创新意识和探索实践能力,突出以下几点: 1。注重目标控制,面向全体学生,启发式教学。 2。学生参与知识的形成过程,使学生听有所思,思有所获,增强学生学习数学的信心和兴趣。 3。注重师生双边交流,学生间协作交流。 让学生观察,了解日常生活中的实际问题,使学生领悟到“数学源于生活,服务于生活的特点” 从而培养学生的兴趣,激发学习的热情。 为后面的学习作为铺垫。 通过课件演示突破利用单位圆画正弦函数图象这一难点。培养学生观察能力、分析能力。 注意渗透由抽象到具体的,促进学生数学方法的形成,引导学生确实掌握“数形结合”的方法。 让学生交流、讨论、合作,由具体的演示过程分析归纳,从中抽象出数学结论。 通过问题引导学生思考、分析,培养学生数形结合的数学方法。 图象中起关键作用的五点,学生可能说不全,应进行耐心引导。 重在培养学生掌握研究问题的方法,让学生在学习中自主建构。 让学生感觉正弦函数的图象的形状。帮助学生理解五个关键点。并且提高学生的审美情趣和对数学浓厚的兴趣。 “五点作图法”的一般步骤:列表、描点、连线。应注意在图中标出关键点的横、纵坐标。 对学生提问,由学生讨论,培养学生的归纳能力、表达能力。 然后教师重新演示课件,进行和补充。 通过对比、分析、引导学生学会化归转化的数学方法。 通过例题的方式巩固学生的学习,将知识转化为能力。 让两个学生板演,重在检验学生理解知识、 运用知识的能力情况。 培养学生合作学习和数学交流的能力。渗透由具体到抽象的。 作业布置注意分层,满足不同层次学生的需要。 【学习目标】 1、了解利用正弦线作正弦函数图象的方法; 2、掌握正、余弦函数图象间的关系; 3、会用“五点法”画出正、余弦函数的图象。 预习课本P30———33页的内容 【新知自学】 知识回顾: 1、正弦线、余弦线、正切线: 设角α的终边落在第一象限,第二象限,… 则有向线段 为正弦线、余弦线、正切线。 2、函数图像的画法: 描点法:列表,描点,连线 新知梳理: 1、正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有向线段_________叫做角α的正弦线,有向线段___________叫做角α的余弦线。 2、正弦函数图象画法(几何法): (1)函数y=sinx,x∈的图象 第一步:12等分单位圆; 第二步:平移正弦线; 第三步:连线。 根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为______,就得到y=sinx,x∈R的图象。 感悟:一般情况下,两轴上所取的单位长度应该相同,否则所作曲线的“胖瘦不一”,形状各不相同。 (2)余弦函数y=cosx,x∈的图象 根据诱导公式 ,还可以把正弦函数x=sinx的图象向左平移 单位即得余弦函数y=cosx的图象。 探究: 正弦函数曲线怎么变换可以得到余弦曲线?方法唯一吗? 3、正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线。 4、“五点法”作正弦函数和余弦函数的简图: (1)正弦函数y=sinx,x∈的图象中,五个关键点是: (0,0),__________, (p,0), _________,(2p,0)。 (2) 余弦函数y=cosx,x?的图象中,五个 关键点是: (0,1),_________,(p,—1),__________,(2p,1)。 对点练习: 1、函数y=cosx的图象经过点( ) A、( ) B、( ) C、( ,0 ) D、( ,1) 2、函数y=sinx经过点( ,a),则的值是( ) A、1 B、—1 C、0 D、 3、函数y=sinx,x∈的图象与直线y= 的交点个数是( ) A、1 B、2 C、0 D、3 4、sinx≥0,x∈的解集是________________________、 【合作探究】 典例精析: 题型一:“五点法”作简图 例1、作函数y=1+sinx,x∈ 的简图。 变式1、画出函数y=2sinx ,x∈〔0,2π〕的简图。 题型二:图象变换作简图 例2、用图象变换作 下列函数的简图: (1)y=—sinx; (2)y=|cosx|,x 、 题型三:正、余弦函数图象的应用 例3 利用函数的图象,求满足条件sinx ,x 的x的集合。 变式2 、求满足条件cosx ,x 的x的集合。 【课堂小结】 知识&nbs p; 方法 思想 【当堂达标】 1、函数y=—sinx的图象经过点( ) A、( ,—1) B、( ,1) C、( ,—1) D、( ,1) 2、函数y=1+sinx, x 的图象与直线y=2的交点个数是( ) A、0 B、1 C、2 D、3 3、方程x2=cosx的解的个数是( ) A、0 B、1 C、2 D、3 4、求函数 的定义域。 【课时作业】 1、用“五点法”画出函数y=sin x—1,x 的图象。 2、用变换法画出函数y=—cosx, x 的图象。 3、求满足条件cosx (x 的x的集合。 4、在同一 坐标系内,观察正、余弦函数的图象,在区间 内,写出满足不等式sinx≤cos的集合。 【延伸探究】 5、方程sinx=x的解的个数是_____________________、 6、画出函数y=sin|x|的图象。 教学目标 (一)知道函数图象的意义; (二)能画出简单函数的图象,会列表、描点、连线; (三)能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (一)复习 1.什么叫函数? 2.什么叫平面直角坐标系? 3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标? 4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5). 5.请在坐标平面内画出A点。 6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应) (二)新课 我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。 这个函数关系中,y与x的函数。 这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。 课堂教学设计说明 1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。 2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的'数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。 3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。 4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。 5.作业中的第1-3题,对训练函数图象很有帮助。 第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。 第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。 第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。 教学目标 知识与技能: 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。 3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。 过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力. 情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。 教学重点 教学难点 1)重点:画反比例函数图象并认识图象的特点. 2)难点:画反比例函数图象. 教学关键教师画图中要规范,为学生树立一个可以学习的模板 教学方法激发诱导,探索交流,讲练结合三位一体的教学方式 教学手段教师画图,学生模仿 教具三角板,小黑板 学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法 教学过程 (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置) 内容设计意图 一:课前检测: 1.什么叫做反比例函数; (一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。) 2.反比例函数的定义中需要注意什么? (1)k为常数,k0 (2)从y=中可知x作为分母,所以x不能为零. 二:激发兴趣导入新课 问题1:对于一次函数y=kx+b(k0)的图象与性质,我们是如何研究的? y=kx+by=kx K0一、二、三一、三 b0一、三、四 K0一、二、四二、四 b0二、三、四 问题2:对于反比例函数y=k/x(k是常数,k0),我们能否象一次函数那样进行研究呢? 可以 问题3:画图象的步骤有哪些呢? (1)列表 (2)描点 (3)连线 (教学片断: 师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。 生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。 生:我知道反比例函数的解析式为且k不等于0 生:我知道反比例函数的图象是曲线。 师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢? 生:该研究反比例函数图象和性质了。 师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画? 三:探求新知 学生思考、交流、回答。 提问:你能画出的图象吗? 学生动手画图,相互观摩。 (1)列表(取值的特殊与有效性) x-8-4-2-1-1/21/21248 (2)描点(描点的准确) (3)连线(注意光滑曲线) 议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点? (4)曲线的发展趋势如何? 曲线无限接近坐标轴但不与坐标轴相交 学生先分四人小组进行讨论,而后小组汇报 做一做 作反比例函数的图象。 学生动手画图,相互观摩。 想一想 观察和的图象,它们有什么相同点和不同点? 学生小组讨论,弄清上述两个图象的异同点 相同点: (1)图象分别都是由两支曲线组成 (2)都不与坐标轴相交 (3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点) 不同点:第一个图象位于一、三象限;第二个图象位于二、四象限 四:归纳与概括 反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。 (1)当k0时,两支曲线分别位于第___、___象限, (2)当k0时,两支曲线分别位于第___、___象限. 五:课堂练习 (1) (2)反比例函数的图象是________,过点(,____),其图象分布在___象限; 六:形成性检测 (1)已知函数的图象分布在第二、四象限内,则的取值范围是_________ (2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的 (A)(B)(C)(D) (3)画和的图象 七:反馈拓展 在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标. 八:作业布置 (1)作反比例函数y=2/x,y=4/x,y=6/x的图象 (2)习题5.2.1 (3)预习下一节反比例函数的图象与性质II 复习上节主要内容 (3分钟) (5分钟) 运用类比研究一次函数性质的方法,来研究反比例函数图象与性质 由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。 数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。 数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。 (12分钟) 引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质. 在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。 注:(1)x取绝对值相等符号相反的数值 (2)x取值要尽可能多,而且有代表性 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。 (3分钟) 此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。 (5分钟) 活动效果及注意事项学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线 (4分钟) 培养学生归纳,语言表达能力 此中注意分类讨论思想的应用 巩固反比例函数图象性质 (2分钟) 与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。 (5分钟) 这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。 (4分钟) 此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。 (1分钟) 巩固作反比例函数图象的步骤,预习下一节课内容 教学反思与检讨: 本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。 由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。 在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。 反比例函数的图象与性质 一:画出的图象 (1)列表(取值的特殊与有效性) x-8-4-2-1-1/21/21248 (2)描点(描点的准确) (3)连线(注意光滑曲线) 注:(1)x取绝对值相等符号相反的数值 (2)x取值要尽可能多,而且有代表性三:练习 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 二:反比例函数的图象y=是由两支曲线组成的。 (1)当k0时,两支曲线分别位于第一、三象限, (2)当k0时,两支曲线分别位于第二、四象限. 正弦函数、余弦函数的图象和性质的说课稿 一、教材分析 1. 地位与重要性 “正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。 2. 教学目标: (1) 能力目标: ①培养学生的观察能力、分析能力、归纳能力、表达能力; ②培养学生数形结合、类比等思想方法; ③培养学生进行数学交流,获得数学知识的能力。 (2) 情感目标:培养学生勇于探索,勤于思考的精神。 (3) 知识目标: ①使学生正确理解正、余弦函数的定义域、值域的意义; ②会求简单函数的定义域、值域。 3. 教学重、难点: 重点:正弦、余弦函数的定义域和值域。 理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。 难点:有关函数定义域、值域的求解。 解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。 二、教法分析: 根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为: (1) 讨论式教学: 通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。 (2) 讲议结合教学: 教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。 (3) 电脑多媒体辅助教学: 借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。 三、学法分析: 数学教学不但要传授学生课本知识,更要培养学生的数学学习能力。在教学活动中,教师提出疑问,引导学生主动观察、主动思考、主动探究、讨论交流;在积极的双边活动中解决疑难,获得知识;整个过程贯穿“疑问”——“思索”——“发现”——“解惑”四个坏节,注重学生思维的持续性和发展性,促进学生数学思维的形成,提高学生的综合素质,实现教学的终极目标。 四、教学过程: 在整个教学中,我力求发挥学生自我发现的能力,突出学生的.主体地位,以启发、引导为教师的职责。 1. 复习提问,引入新课 (1) 通过复习三角函数的定义,由学生直接回答正、余弦函数的定义域; 教学时注意“类比”函数的定义域(非空的数的集合),使学生进一步理解三角函数中角本身就是实数,明确三角函数的函数本质。 (2) 通过复习三角函数的几何表示,引导学生观察单位圆中的正弦线MP,余弦线OM,在清楚它们所表示几何意义的基础上,组织学生讨论,得到正、余弦函数的值域。 再引导学生观察正弦函数、余弦函数的图象,印证所得结论,同时加深对函数图象的认识。 在这里引导学生多角度观察、思考,开阔学生的思维,培养数形结合的能力。 (进一步提问:当函数取得最值时,x为何值? 组织学生讨论: ① 当 sinx =1 时,是否 x =π/2 ? ② sinx = -1, cosx =±1, 分别对应的x的值的集合? 通常从单位圆上看,学生容易习惯地将x的范围误认作[0,2π],教学时要引起学生重视,在组织讨论的基础上,加深对定义域、值域的认识。 这样设计复旧引新,符合学生的认知水平,让学生清楚新、旧知识之间的联系,使学生的知识结构化、系统化;教学中创设问题情境,引导学生多角度思考、分析,培养学生勇于探索、勤于思考的精神;同时经由学生共同努力解决问题,培养学生合作学习和数学交流的能力。 对于求定义域、值域的一些问题,必须通过具体例题让学生体会。 2. 例题教学,运用新知 例1 求下列函数的定义域: (1) y = 1 / (1+sinx) , x ∈R; (2) y = √cosx , x ∈R . 通过例1,要使学生熟悉有关函数定义域的求解,其中特别要提醒学生注意所得x值的集合。 同时让学生明确三角函数也是函数这一实质,促使学生主动运用函数的研究方法来学习三角函数。 例2 求使下列函数取得最大值的自变量 x 的集合,说出最大值是什么? (1) y = cosx +1, x ∈R ; (2) y = sin2x, x ∈R . 通过例2,要使学生正确理解某些与正、余弦函数有关,定义在实数集R上的简单函数取得最大值的自变量x的集合问题,明白具体解答过程;讲解时要特别强调注意角的范围,这是学生最容易出错的地方;其中第(1)小题由学生自己做,第(2)小题对照正弦函数值域的性质,启发学生用换元法解决。还可延伸求其取得-------------- 通过讲解两道例题,突出重点,突破难点;此时,趁学生对于性质有了一个较深的认识,让学生完成以下课堂练习,巩固新知识。 3. 课堂练习,巩固新知 (1) (口答)下列各等式能否成立?为什么? ①2cosx = 3; ②sin2x = 0.5 (2) 求下列函数的定义域: ①y = 1/ (1-cosx); ②y =√-2sinx . (3) 求下列函数取得最小值的自变量的集合,并写出最小值是什么? ①y = - 2sinx, x ∈ [ 0, 2π] ②y = 2 – cos (x /3), x ∈ [ 0, 2π]. 其中,第(1)题直接考察值域,由学生口答;第(2)、(3)题由学生演板,使学生熟练掌握简单函数定义域、值域的求法。 4. 归纳总结,掌握新知: 在教学终结阶段,引导学生对正弦、余弦函数定义域、值域以及数形结合、类比等数学思想进行归纳总结,使学生理清这一节课的重、难点,将所学知识融会贯通。达到本次课的教学目标。 五、布置作业 : 布置适量、有针对性的课外作业作为课堂教学的补充。 1.让学生做教科书习题4.8 T2、9,通过作业反馈学生掌握知识的效果,以便课后解决学生尚有疑难的地方。 2.布置一道发散性的思考题,进一步深化教学。 思考题:求下列函数的值域: (1) y = sinx + cosx (2) y = sinx +√3 cosx (3) y = 3sinx + 4cosx (4) y = asinx + bcosx 六、板书设计: 4.8.2正弦函数、余弦函数的图象和性质 一、弦、余弦函数的 定义域:R 值域:[-1,1] 二、例题: 例1 解: 例2 解: 三、作业:习题4.8 T 2、9 思考题 函数的图象数学教学设计 一、教学目的 1.使学生进一步理解自变量的取值范围和函数值的意义. 2.使学生会用描点法画出简单函数的图象. 二、教学重点、难点 重点:1.理解与认识函数图象的意义. 2.培养学生的看图、识图能力. 难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题. 三、教学过程 复习提问 1.函数有哪三种表示法?(答:解析法、列表法、图象法.) 2.结合函数y=x的图象,说明什么是函数的图象? 3.说出下列各点所在象限或坐标轴: 新课 1.画函数图象的方法是描点法.其步骤: (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了. 一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来. (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点. (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线. 一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线). 2.讲解画函数图象的'三个步骤和例.画出函数y=x+0.5的图象. 小结 本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图. 练习:①选用课本练习(前一节已作:列表、描点,本节要求连线) ②补充题:画出函数y=5x-2的图象. 作业:选用课本习题. 四、教学注意问题 1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征. 2.注意充分调动学生自己动手画图的积极性. 3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力. 解:列表 x -6 -5 -4 -3 1 2 3 4 5 6 -1 -1.2 -1.5 -2 6 3 2 1.5 1.2 1 1 1.2 1.5 2 -6 -3 -2 -1.5 -1.2 1 说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图 一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线. 3、观察图象,归纳、总结出反比例函数的性质 前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习. 显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考) (1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限. 的讨论与此类似. 抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程. (2)函数 的图象,在每一个象限内,y随x的增大而减小; 从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小. 同样可以推出 的图象的性质. (3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质. 函数 的图象性质的讨论与次类似. 4、小结: 本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的`数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中. 5、布置作业 习题13.8 1-4 教学设计示例2 一、素质教育目标 (一)知识教学点 1.使学生了解反比例函数的概念; 2.使学生能够根据问题中的条件确定反比例函数的解析式; 3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况; 4.会用待定系数法确定反比例函数的解析式. (二)能力训练点 1.培养学生的作图、观察、分析、总结的能力; 2.向学生渗透数形结合的教学思想方法. (三)德育渗透点 1.向学生渗透数学来源于实践又反过来作用于实践的观点; 2.使学生体会事物是有规律地变化着的观点. (四)美育渗透点 通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力. 二、学法引导 教师采用类比法、观察法、练习法 学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号. 三、重点・难点・疑点及解决办法 1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题. 2.教学难点 :画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难. 3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内). 4.解决办法:(1) 中隐含条件是 或 ;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论. 四、教学步骤 (一)教学过程 提问:小学是否学过反比例关系?是如何叙述的? 由学生先考虑及讨论一下. 答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系. 看下面的实例:(出示幻灯) 1. 当路程s一定时,时间t与速度v成反比例; 2.当矩形面积S一定时,长a与宽b成反比例; 它们分别可以写成 (s是常数), (S是常数)写在黑板上,用以得出反比例函数的概念:(板书) 一般地,函数 (k是常数, )叫做反比例函数. 即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢? 通过这个问题,使学生进一步理解反比例函数的概念,只要满足 (k是常数, )就可以.因此可以说速度v是时间t的反比例函数,因为 (s是常量).对第2个实例也一样. 练习一:教材P129中1 口答.P130 1 根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么? 答:图像和性质. 通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后 学生要研究其他函数,也可以按照这种方式来研究. 下面,我们就来看桓隼?猓海ǔ鍪净玫疲?/P> 例1 画出反比例函数 与 的图像. 提问:1.画函数图像的关键问题是什么? 答:合理、正确地选值列表. 2.在选值时,你认为要注意什么问题? 答:(1)由于函数图像的特点还不清楚,多选几个点较好; (2)不能选 ,因为 时函数无意义; (3)选整数较好计算和描点. 这个问题中最核心的一点是关于 的问题,提醒学生注意. 3.你能不能自己完成这道题呢? 学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结: 注意:(1)一般地,反比例函数 的图像由两条曲线组成,叫做双曲线; (2)这两条曲线不相交; (3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交. 关于注意(3)可问学生:为什么图像与x和y轴不相交? 通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性. 再让学生观察黑板上的图,提问: 1.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化? 2.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化? 这两个问题由学生讨论总结之后回答,教师板书: 对于双曲线(1)当 :(1)当 时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当 时,双曲线的两分支位于二、四象限,y随x的增大而增大. 3.反比例函数的这一性质与正比例函数的性质有何异同? 通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用. 练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上 上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯) 例2已知y与 成反比例,并且当 时, ,求 时,y的值. 用提问的方式对此题加以分析: (1)y与 成反比例是什么含义? 由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: . (2)根据这个式子,能否求出当 时,y的值? (3)要想求出y的值,必须先知道哪个量呢? (4)怎样才能确定k的值?用什么条件? 答:用待定系数法,把 时 代入 ,求出k的值. (5)你能否自己完成这道例题: 由一名同学板演,其他同学在练习本上完成. 例3 已知: , 与x成正比例, 与x成反比例,当 时, 时, ,求y与x的解析式. 分析:一定要先写出y与x的函数表达式 , 要用x分别把 , 表示出来得 , 要注意 不能写成k,∴ 解:设 , . 由题意得 ∴ . (二)总结、扩展 教师提问,学生思考回答: 1.什么是反比例函数? 2.反比例函数的图像是什么样的? 3.反比例函数 的性质是什么? 4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容. 五、布置作业 1.教材P130中4,5,6 2.选做:P130中B1,2 六、板书设计 引例:(1)例1: 例2: 例3: (2) 1.反比例函数: 2.反比例函数的性质 探究活动 已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。 。 (1)求反比例函数的解析式; (2)设点A的横坐标为m, 的面积为S,求S与m的函数关系式,并写出自变量m的取值范围; (3)当 的面积等于 时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。 解:(1)过点B作 轴于点H。 在Rt 中, 由勾股定理,得 又 , ∴ 点B(-3,-1)。 设反比例函数的解析式为 。 ∵ 点B在反比例函数的图像上, 。 ∴ 反比例函数的解析式为 。 (2)设直线AB的解析式为 。 由点A在第一象限,得 。 又由点A在函数 的图像上,可求得点A的纵坐标为 。 ∵ 点B(-3,-1),点 , ∴ 解关于 、的方程组,得 ∴ 直线AB的解析式为 。 令 。 求得点D的横坐标为 。 过点A作 轴于点G 由已知,直线经过第一、二、三象限, ∴ ,即 。 由此得 ∴ 。 即 。 (3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。 证明如下: 。 由 , 得 解得 。 经检验, 都是这个方程的根。 , ∴ 不合题意,舍去。 ∴ 点A(1,3)。 设过A(1,3)、B(-3,-1)两点的抛物线的解析式为 。 ∴ 由此得 即 。 设抛物线与x轴两交点的横坐标为 。 则 令 则 。 即 。 整理,得 。 , ∴ 方程 无实数根。 因此过A、B两点的抛物线在x轴上截得的线段长不能等于3。 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力,及数学地发现问题,解决问题的能力. 教学重点: 结合图象分析总结出反比例函数的性质; 教学难点 :描点画出反比例函数的图象 教学用具:直尺 教学方法:小组合作、探究式 教学过程 : 1、从实际引出反比例函数的概念 我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例 即vt=S(S是常数); 当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数) 从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成: (S是常数) (S是常数) 一般地,函数 (k是常数, )叫做反比例函数. 如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数. 在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供 2、列表、描点画出反比例函数的图象 教学目标: 1、培养学生看图识图的能力. 2、在识图过程中,渗透数形结合的数学思想. 3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性. 4、激发学生学习数学的兴趣,培养学生的探索精神 教学重点:培养学生看图识图的能力 教学难点:渗透数形结合的数学思想 教学用具:计算机、投影机 教学方法:谈话法、分组讨论 教学过程: 1、阅读习题13.3的第四题 学生阅读后,老师可以提问学生,分别回答: 下图是北京春季某一天的 2、提出看图说图的重要性 随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子. 3、为学生提供相对丰富的素材,体会以图识性. 例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是 .如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液? (读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律). 从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法. 如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小. 而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了. 第 1 2 页 教学目标 : 1、培养学生看图识图的能力. 2、在识图过程中,渗透数形结合的数学思想. 3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性. 4、激发学生学习数学的兴趣,培养学生的探索精神 教学重点:培养学生看图识图的能力 教学难点 :渗透数形结合的数学思想 教学用具:计算机、投影机 教学方法:谈话法、分组讨论 教学过程 : 1、阅读习题13.3的第四题 学生阅读后,老师可以提问学生,分别回答: 下图是北京春季某一天的 2、提出看图说图的重要性 随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的`应用性,其它学科和日常生活都可以找到应用数学解决问题的例子. 3、为学生提供相对丰富的素材,体会以图识性. 例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是 .如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液? (读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律). 从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法. 如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小. 而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了. 例2、如图,是各月气温的分配图 能从图中找出气温最低的月份,气温最高的月份. 并判断出该地所处的气温带. 分析:最高气温在7月,最低在2月.气温曲线的 下限也在 以上,即 ~ 之间,因此可判断出 该地位于亚热带. (从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律. 例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法. 参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少. 以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业 提前下发,也可以在上课时,由老师进行通俗的解释. 右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图. (1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线 (2)男女生曲线基本相似,波峰与波谷基本出现在同一点上. (3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势. (注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度. 4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题. 5、作业 :从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法. 二次函数的图象和性质教学设计 教学目标: 1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。 2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。 3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。 重点难点: 重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。 难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。 教学过程: 一、提出问题 1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗? (函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。 2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系? (函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的) 3.函数y=-4(x-2)2+1具有哪些性质? (当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1) 4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗? [因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)] 5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗? 二、解决问题 由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。 解:(1)列表:在x的取值范围内列出函数对应值表; x … -2 -1 0 1 2 3 4 … y … -6 -4 -2 -2 -2 -4 -6 … (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。 (3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。 说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。 (2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的.图象美观。 让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质; 当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小; 当x=1时,函数取得最大值,最大值y=-2 三、做一做 1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗? 教学要点 (1)在学生画函数图象的同时,教师巡视、指导; (2)叫一位或两位同学板演,学生自纠,教师点评。 2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 教学要点 (1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系? 以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗? 教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识; y=ax2+bx+c =a(x2+x)+c =a[x2+x+ 2-()2]+c =a[x2+x+()2]+c- =a(x+)2+ 当a>0时,开口向上,当a<0时,开口向下。 对称轴是x=-b/ 2a ,顶点坐标是(-,) 四、课堂练习 课本练习第1、2、3题。 五、小结 通过本节课的学习,你学到了什么知识?有何体会? 《二次函数的图象和性质》教学设计 教学目标: 1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质. 2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同. 3.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验. 4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质. 教学重点: 1.利用描点法作出函数y=x2的图象,根据图象认识和理解二次函数y=x2的性质. 2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同. 教学难点: 经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现探索经验运用的思维过程. 教学过程: 一、学前准备 我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是_______________,一般的一次函数的图象是____________,反比例函数的图象是_________________.上节课我们学习了二次函数的一般形式为_________________________,那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题. 二、探究活动 (一)、作函数y=x2的图象. 回忆画函数图象的一般步骤吗?(列表,描点,连线.) 下面就请大家按上面的步骤作出y=x2的图象. (1)列表: x -3 -2 -1 0 1 2 3 y 9 4 1 0 1 4 9 (2)在直角坐标系中描点. (3)用光滑的,曲线连接各点,便得到函数y=x2的图象. (二)、议一议 对于二次函数y=x2的.图象, (1)你能描述图象的形状吗?与同伴进行交流. (2)图象与x轴有交点吗?如果有,交点坐标是什么? (3)当x0时,随着x值的增大,y的值如何变化?当x0时呢? (4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的? (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并交流. 下面我们系统地总结: (三)y=x2的图象的性质. 二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流. 大家讨论之后系统地总结出y=x2的图象的所有性质. 当堂练习:按照画图象的步骤作出函数y=-x2的图象. y=-x2的图象如右图,并让学生总结: 形状是___________,只是它的开口方向____________,它 与y=x2的图象形状________,方向________,这两个图形可 以看成是__________对称. 试着让学生讨论y=-x2的图象的性质. 并尝试比较y=x2与y=-x2的图象,比较异同点. 不同点: 相同点: 联系: (四)课堂练习: 随堂练习(P47) 三.学习体会 1.本节课你有哪些收获?你还有哪些疑问? 2.你认为老师上课过程中还有哪些须改进的地方? 3.预习时的疑问解决了吗? 四.自我测试 1.在同一直角坐标系中画出函数y=x2与y=-x2的图象. 2.下列函数中是二次函数的是 ( ) A. y=2+5x2 B.y= C.y=3x(x+5)2 D. y= 3.分别说出抛物线y=4x2与y=- x2的开口方向,对称轴与顶点坐标 4、已知函数y=mxm2+m. (1)m取何值时,它的图象开口向上. (2)当x取何值时,y随x的增大而增大. (3)当x取何值时,y随x的增大而减小. (4)x取何值时,函数有最小值. 3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2)。 (1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围; (2) 列表、描点、连线画出此函数的图象 4.(1)画出函数y=-x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图); (2)判断下列各有序实数对是不是函数。Y=-x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上: (-2,2), (-,2), (-1,3), (,1) 5.画出下列函数的图象: (1)y=4x-1; (2)y=4x+1 6。图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天: (1)8时,12时,20时的气温各是多少; (2)最高气温与最低气温各是多少; (3)什么时间气温最高,什么时间气温最低。 7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点): X -2 -1。5 -1 -0。5 0 0。5 1 1。5 2 y 8。画出函数y=图象(先填下表,再描点,然后用平滑曲线顺次连结各点): X -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 y 作业的答案或提示 1. 选(C),因为对应于x的一个值的y值不是唯一的。 2. 选(D)当x<0时,=-x,所以y===-1,当x>0时,=x,所以y===1 3. (1)y=x(6-x)其中0 (2) X 0 1 2 3 4 5 6 y 0 5 8 9 8 5 0 4。 Y=-x+2 x -4 -3 -2 -1 0 1 2 3 4 y 3 3 2 2 2 1 1 1 经过检验,点(-,2)及点(,1)在所画的函数图象上。 5. Y=4x-1 X -2 -1 0 1 2 y -9 -5 -1 3 7 Y=4x+1 x -2 -1 0 1 2 y -7 -3 1 5 9 6。(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。 7. Y=x2 X -2 -1。5 -1 -0。5 0 0。5 1 1。5 2 y 4 2。25 1 0。25 0 0。25 1 2。25 4 8。 Y= X -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 y -1 - - -2 -3 -6 6 3 2 1 课堂教学设计说明 1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。 2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。 3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。 4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。 5.作业中的第1-3题,对训练函数图象很有帮助。 第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。 第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。 第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。 反比例函数及其图象教学教案 教学目标: 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力,及数学地发现问题,解决问题的能力. 教学重点: 结合图象分析总结出反比例函数的性质; 教学难点:描点画出反比例函数的图象 教学用具:直尺 教学方法:小组合作、探究式 教学过程: 1、从实际引出反比例函数的概念 我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例 即vt=S(S是常数); 当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数) 从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成: (S是常数) (S是常数) 一般地,函数 (k是常数, )叫做反比例函数. 如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数. 在现实生活中,也有许多反比例关系的`例子.可以组织学生进行讨论.下面的例子仅供 2、列表、描点画出反比例函数的图象 说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图 一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线. 3、观察图象,归纳、总结出反比例函数的性质 前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习. 显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考) (1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限. 的讨论与此类似. 抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程. (2)函数 的图象,在每一个象限内,y随x的增大而减小; 从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小. 同样可以推出 的图象的性质. (3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质. 函数 的图象性质的讨论与次类似. 4、小结: 本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中. 函数的图象(一) 一、教学目的 1.使学生初步认识函数的图象. 2.使学生了解函数的列表表示法. 3.使学生了解函数的图象表示法. 4.使学生会用描点法画出简单函数的图象. 二、教学重点、难点 重点:介绍函数图象的初步知识. 难点:对于函数图象的认识. 三、教学过程 复习提问 1.一种豆子每千克售2元,写出买豆子的总金额y(元)与所买豆子的数量x(千克)之间的函数关系.(答:y=2x.) 2.在第一题的函数式中,谁是自变量?谁是函数?说出自变量的取值范围.(答:x是自变量,y是x的函数,x可取所有非负实数.) 3.由函数y=2x,填出下表: (答:下一行:0,1,2,3,4,5,6.) 4.平面直角坐标系是怎样组成的?(答:在平面内画两条互相垂直的数轴,组成平面直角坐标系.) 5.什么是点的横坐标、纵坐标、坐标?(答:平面直角坐标系中一个点A在x轴上的坐标叫横坐标a,点A在y轴上的坐标叫纵坐标b,把a,b合起来,且a在前、b在后:(a,b)就是点A的坐标.) 6.点A的坐标如(5,4),又可以称作什么?(答:一对有序实数.) 7.坐标平面内的点与有序实数对的关系是什么?(答:一一对应关系.) 新课 1.函数的表示法――列表法. 通过上述1~3个问题的提问及学生的回答,由y=2x及表格,按照函数定义,对于x的每一个值,y都有唯一的值和它对应.这就告诉我们,上面的表格本身也表示了y与x之间的函数关系.于是我们把这种通过列表表示函数的方法叫列表法.列表法的优点:容易由自变量的值求出对应的函数的值.列表法的缺点:不能把一个函数在自变量取值范围内的所有值都列出来,所以有局部性;或所求的函数值是近似值. 2.通过上述复习提问第3~7题及学生的回答,我们把第3题的表中的x,y值对应地写出来,就得出了一列有序实数对:(0,0),(0.5,1),(1,2),(1.5,3),….这里强调学生要进一步明确“有序”的意义,(1.5,3),(3,1.5)是不相同的有序实数对.再联系到平面内的点与有序实数对的一一对应关系,于是我们借助平面直角坐标系,就可以把这些有序实数对转化为坐标平面内的点.这样就可以用平面内的图形来表示函数关系. 3.从最简单的函数y=x入手来分析及画出其图象. (1)让学生完成x与y的对应值表. (2)在有坐标格的小黑板上,把表中给出的'7个有序实数对作为点的坐标,师生一道描出这7个点. (3)分析函数y=x的特点:自变量与函数的值相等.它的任意一对对应值都可以表示成(m,m)的形式(m可取全体实数).借助坐标平面可知,表示(m,m)的点就是到x轴的距离与到y轴的距离相等的点.我们把x轴与y轴所划分的坐标平面的四个角叫象限角,依次有第一象限角,第二象限角,第三象限角,第四象限角.由平面几何知识可知,到一个角的两边的距离相等的点,它的轨迹是这个角的平分线.换一句话说,到这个角两边距离相等的点,都在这个角的平分线上;反之,在这个角的平分线上的所有的点,到这个角的两边距离都相等.于是函数y=x的整个图象就可以画出了.它是第一象限角和第三象限角的两个角的平分线,是一条直线. 4.对于函数图象要辩证地双向分析:图象上每一个点的坐标,都是这个函数的一对对应值;反之,每个坐标是这个函数的一对有序的对应值的点,都在这个函数的图象上. 5.函数的表示法――图象法.我们用图象来表示一个函数的方法,叫图象法.函数的图象法优点:形象、直观.缺点:求得的函数值是近似的. 小结 1.画函数图象的方法步骤: (1)根据函数的解析式列出函数对应值表. (2)用这些对应值作为点的坐标,在坐标平面内描点. (3)把这些点用平滑曲线连结起来,可得函数图象. 2.函数的三种表示法:(1)解析法,(2)列表法,(3)图象法. 练习;选用课本练习(只要求列表、描点.) 补充例题 1.解答课本本章题图中的两个问题. 2.画出函数y=3x的图象.(只要求列表、描点.) 作业:选用课本习题(只填表、描点,不要求连线.) 四、教学注意问题 1.注意双向思维的渗透与训练.比如,由函数的关系式可得函数图象;反之,由函数的图象也可表示函数关系,等等. 2.注意渗透转化思想方法.比如,把有序实数对转化为坐标平面内的点等等. 3.注意精微,要善于区分邻近概念,比如“实数对”与“有序实数对”虽两字之差,但意义不同. ★ 二次函数教学设计篇3:正弦函数、余弦函数的图象教案
篇4:正弦函数、余弦函数的图象教案
篇5:正弦函数、余弦函数的图象教案
篇6:函数的图象教学设计
篇7:函数的图象教学设计
篇8:正弦函数、余弦函数的图象和性质的说课稿
篇9:函数的图象数学教学设计
篇10:反比例函数及其图象
篇11:反比例函数及其图象
篇12:反比例函数及其图象
篇13:反比例函数及其图象
篇14:函数的图象
篇15:函数的图象
篇16:二次函数的图象和性质教学设计
篇17:《二次函数的图象和性质》教学设计
篇18:函数的图象教学方案
篇19:反比例函数及其图象教学教案
篇20:函数的图象(一)
余弦函数图象教学设计(合集20篇)
相关文章
热门推荐
HOT