以下是小编帮大家整理的抛物线的定义课件(共含7篇),仅供参考,欢迎大家阅读。同时,但愿您也能像本文投稿人“spzsz”一样,积极向本站投稿分享好文章。
抛物线的定义课件
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
发展历程
Apollonius所著的八册《圆锥曲线》(Conics)集其大成抛物线问题,可以说是古希腊解析几何学一个登峰造极的精擘之作。今日大家熟知的 ellipse(椭圆)、parabola(抛物线)、hyperbola(双曲线)这些名词,都是 Apollonius 所发明的。当时对于这种既简朴又完美的`曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演着重要的角色。
标准方程
右开口抛物线:y2=2px
左开口抛物线:y2= -2px
上开口抛物线:x2=2py
下开口抛物线:x2=-2py
[p为焦准距(p>0)]
特点
在抛物线y2=2px中,焦点是(p/2,0),准线的方程是x= -p/2,离心率e=1,范围:x≥0;
在抛物线y2= -2px 中,焦点是( -p/2,0),准线的方程是x=p/2,离心率e=1,范围:x≤0;
在抛物线x2=2py 中,焦点是(0,p/2),准线的方程是y= -p/2,离心率e=1,范围:y≥0;
在抛物线x2= -2py中,焦点是(0,-p/2),准线的方程是y=p/2,离心率e=1,范围:y≤0;
共同点:
①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
切线方程
抛物线y2=2px上一点(x0,y0)处的切线方程为:yoy=p(x+x0)
抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)
抛物线的性质
1、抛物线是镜像对称的,并且当定向大致为U形,如果不同的方向,它仍然是抛物线。
2、垂直于准线并通过焦点的线(即通过中间分解抛物线的`线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。
3、抛物线可以向上,向下,向左,向右或向另一个任意方向打开。并且,所有抛物线都是几何相似的。
教学目标
1.抛物线的定义
2.抛物线的四种标准方程形式及其对应焦点和准线
教学重难点
教学重点:1.抛物线的定义和焦点与准线
2.抛物线的四种标准形式,以及p的意义。
教学难点:抛物线的四种图形,标准方程的推导及其焦点坐标和准线方程。
教学过程
一、知识回顾:
二次函数中抛物线的图象特征是什么?(平行于y轴,开口向上或者向下)
如果抛物线不平行于y轴,那么就不能作为二次函数的图象来研究了,今天我们来突破研究中的限制,从一般意义上来研究抛物线。
二、课堂新授:
(讲解抛物线的作图方法)
定义:平面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。
如图建立直角坐标系xOy,使x轴经过点F且垂直于直线l ,垂足为K,并使原点与线段
KF的中点重合。
结合表格完成下列例题:
1. 已知抛物线的标准方程是 y2=6x,求它的焦点坐标和准线方程。
2. 已知抛物线的焦点坐标是F(0,-2),求它的标准方程。
解:1.∵抛物线的方程是 y2=6x,
∴p=3
∴焦点坐标是(,0),
准线方程是x=-
2.∵焦点在y轴的负半轴上,且,
∴p=4
∴所求的抛物线标准方程是 x2=-8y。
三、随堂练习:
1.根据下列条件写出抛物线的标准方程:
四、课堂小结:
由于抛物线的标准方程有四种形式,且每一种形式都只含有一个参数p,因此只要给出确定的p的一个条件就可以求出抛物线的标准方称。当抛物线的焦点坐标或准线方程给定以后,它的标准方程就可以唯一的确定下来。
五、课后作业:P119习题8.5 2、4
[高中数学抛物线课件]
抛物线教学课件
抛物线教学课件
【教学内容解析】
《抛物线及其标准方程》是普通高中课程标准实验教科书(人教版)数学选修2-1第二章第四节第一课时的内容,是学习抛物线这种圆锥曲线的起始课,是在学习了椭圆与双曲线之后的又一重要内容,根据抛物线定义推出的标准方程,也为下一节用代数方法研究抛物线的几何性质和几何性质的应用提供了必要的工具和基础.因此,它是圆锥曲线这章的重要的组成部分.
《抛物线及其标准方程》的重点是抛物线的定义和抛物线标准方程.难点是抛物线标准方程的推导.
抛物线作为点的轨迹,标准方程的推出过程充满了辩证法,处处是数与形之间的对照、翻译和相互转换.抛物线标准方程的结构和形式不仅依赖于坐标系的选择,还依赖于焦点和准线间的相互位置关系.因此,抛物线标准方程的推导是培养学生数形结合思想的好素材.
【教学目标设置】
1.知识与技能
通过“几何特征”的分析,让学生由观察与思考后理解抛物线的定义;
通过类比椭圆和双曲线的标准方程的推导过程,让学生探究出抛物线的标准方程;
在研究方程与抛物线定义的过程中,让学生能够根据已知条件写出抛物线的标准方程,根据所给的抛物线方程写出焦点坐标、准线方程.
2.过程与方法
掌握开口向右的抛物线标准方程的推导过程,进一步理解解析法,培养学生解决数学问题时的观察、类比、分析、计算能力.
3.情感态度与价值观
通过本节课的学习,让学生体验研究解析几何的基本思想,进一步体会数形结合的思想.
【学生学情分析】
1.学生已有认知基础
学生已经学习了椭圆和双曲线,对圆锥曲线有了初步的认识.通过曲线与方程的学习已经对解析法有了一定的了解.
2.达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.
3.难点及突破策略
难点:1.对抛物线的重新认识;
2.抛物线的标准方程的推导;
突破策略:
1.教师通过几何画板来让学生直观的观察抛物线的形成过程,以便加深对抛物线定义的深入理解.
2.组织小组交流活动,展现抛物线标准方程推导的思维过程,相互评价,相互启发,促进反思.
【教学策略分析】
以多媒体课件为依托,以看—画—想—研—用为学生学习的主线,来完成本节课的教学.
用几何画板工具画出抛物线的形成过程,让学生在动态演示过程中理解抛物线的定义,突出教学重点.
通过类比椭圆和双曲线的研究过程,让学生通过自主思考,合作交流,分组展示体验抛物线的标准方程的推导过程,来突破教学难点.
将抛物线标准方程、焦点坐标、准线方程等列表,让学生填充表格,通过表格将它们对比,发现异同点,寻找规律,全面掌握所学知识.
通过当堂检测检验学习效果,达到堂堂清的目的.
【教学过程】
一、新课导入
通过二次函数的图象是抛物线,以及生活中抛物线的`实例让学生了解抛物线,提高学生学习抛物线的学习热情.
二、讲授新课
(一)抛物线的定义
问题一:抛物线到底有怎样的几何特征?
用几何画板展示抛物线的形成过程,引导学生总结出抛物线的定义.
设计意图:让学生直观感受抛物线,培养学生观察总结归纳的能力.
抛物线定义:平面内与一个定点和一条定直线(不经过点)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线
叫做抛物线的准线.
问题二:如果定义中经过点,那么动点的轨迹又是什么呢?
学生思考后回答:如果经过点,那么动点的轨迹是经过点且垂直于直线的直线.设计意图:通过学生画图让学生加深对定义中细节的理解.
(二)抛物线的标准方程
通过类比椭圆与双曲线的学习过程,提出给出抛物线定义后应根据定义得出抛物线的标准方程,让学生回顾求曲线方程的一般步骤是什么?
求轨迹方程的步骤
1.建立适当的直角坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
2.写出适合条件P的点M的集合P={M|P(M)}
3.用坐标表示条件P(M),列出方程f(x,y)=0
4.化方程f(x,y)=0为最简形式
5.说明以化简后的方程的解为坐标的点都在曲线上.
设计意图:通过复习回顾让学生进一步加深对解析法的理解.
问题一:已知定点到定直线的距离为,如何建立适当的坐标系,从而得出抛物线的标准方程?
先由学生思考,然后教师点拨,提出类比椭圆和双曲线在求标准方程时的建系方法,由学生提出相应建系方案,分组合作交流,最后展示结果.
以线段所在直线为轴,以线段的中点为原点建立平面直角坐标系得到的方程形式最简单.其方程是
设计意图:如何建系体现最优化方案,通过严谨细致的分析,展现知识的发生、发展形成的过程,进一步加强过程性教学.
抛物线在坐标平面内的位置不同,同一条抛物线的标准方程还有其他几种形式.让学生自主完成66页的表格,并展示结果.
问题二:观察抛物线的几种不同形式的标准方程,方程有什么特点?
设计意图:通过类比椭圆的标准方程的特点,让学生来自主观察总结抛物线标准方程的特点,培养学生归纳总结能力.
例1.(1)已知抛物线的标准方程是,求它的焦点坐标和准线方程;
(2)已知抛物线的焦点是,求它的标准方程.
由学生口答完成此例题.
设计意图:巩固所学知识,学以致用.
三、当堂检测
1.求下列抛物线的焦点坐标和准线方程;
2.根据下列条件写出抛物线的标准方程;
由学生自主完成,其中第一题第二问要注意学生的易错点的总结;第三题要注意启发学生用多种方法解题.
设计意图:检测本节课学习效果,做到堂堂清.
四、归纳总结
这节课你有哪些收获?学生总结后回答,教师补充归纳.
设计意图:通过问题的形式,师生共同回顾教学过程与内容,系统整理知识点,完善知识结构.
五、布置作业
课后A组1-4题
设计意图:进一步巩固所学知识.
课件的基本定义
课件的基本模式有练习型、指导型、咨询型、模拟型、游戏型、问题求解型、发现学习型等。无论哪种类型的课件,都是教学内容与教学处理策略两大类信息的有机结合。
课件作用
①向学习者提示的各种教学信息;
②用于对学习过程进行诊断、评价、处方和学习引导的各种信息和信息处理;
③为了提高学习积极性,制造学习动机,用于强化学习刺激的学习评价信息;
④用于更新学习数据、实现学习过程控制的.教学策略和学习过程的控制方法。
对于课件理论、技术上都刚起步的老师来说,POWERPOINT是个最佳的选择。因为操作上非常简单,大部分人半天就可以基本掌握。所以,就可以花心思在如何在课件中贯彻案例的设计意图上、如何增强课件的实效性上,既是技术上的进步,也是理论上的深化,通过几个相关案例的制作,课件的概念就会入心入脑了。
多媒体课件
多媒体教学课件是指根据教师的教案,把需要讲述的教学内容通过计算机多媒体(视频、音频、动画)图片、文字来表述并构成的课堂要件。它可以生动、形象地描述各种教学问题,增加课堂教学气氛,提高学生的学习兴趣,拓宽学生的知识视野,来被广泛应用于中小学教学中的手段,是现代教学发展的必然趋势。
电子课件优势
电子课件与传统的教科书相比,它的优势在于资源的丰富性和学习的自主性。电子课件的内容非常丰富,包括课本、教案、练习、自测、参考书籍和相关案例等,就像一个小型图书馆,给学生的学习带来了极大的便利,学生可以根据自己具体情况自由把握学习的进度。
电子教案
教案是描述如何进行一堂课的教学,通常都是教师书面上的文字,课前备课是一线教师进行教学的重要环节,在整个教学活动中占有关键作用,备课的成果表现是形成教案。但传统的教案往往是个人成果,教师按照自己对知识内容的理解和教学设计而形成的教案,主要以word电子文档或书面形式来表现。其缺点是不能及时共享和修改。
电子教案的设计既包括教材分析、教学设计(复习引入、师生交流互动、练习巩固等)、板书、教学反思等传统环节,还包括课件、资料库、友情链接等能够充分发挥信息技术优势的新环节。即在一个教案中,充分整合图、文、声、像等各种媒体的作用,激发学生的学习兴趣。其最大的特点是提供链接,便于调用,生动直观。
课件标准化
SCORM标准是国际通用的在线学习的标准,其中针对课件标准包括,内容聚集模型(CAM)和运行时环境(RTE)。
内容聚集模型(Content Aggregation Model, 简称CAM)中基本的组成是素材(Asset)和共享内容对象(SCO)。这些基本内容安装一定标准组织起来就构成了课件整体内容。这样的课件就可以放在任何一个支撑SCORM标准的学习的平台上播放。
运行时环境(Run-Time Environment)描述了课件在运行时(学员学习课件的过程中)课件与平台之间进行通讯应该遵循的行为规范。
全等三角形定义课件
全等三角形定义课件
一、知识点:
1. 全等三角形:
⑴全等形:能够完全重合的两个图形叫全等形。
⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
⑶全等三角形的性质:全等三角形对应边相等,对应角相等。
2.三角形全等的性质:
全等三角形的识别:SAS,ASA,AAS,SSS,HL(直角三角形)
3.角平分线的性质:
⑴角的平分线的性质:角的平分线上的点到角两边的'距离相等。
⑵角平分线的判定:到角两边距离相等的点在角的平分线上。
⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
二、经验与提示
1.寻找全等三角形对应边、对应角的规律:
① 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
② 全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角。
③ 有公共边的,公共边一定是对应边。
④ 有公共角的,公共角一定是对应角。
⑤ 有对顶角的,对顶角是对应角。⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
2.找全等三角形的方法
(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;
(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
3.角的平分线是射线,三角形的角平分线是线段。
4.证明线段相等的方法:
(1)中点定义;
(2)等式的性质;
(3)全等三角形的对应边相等;
(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。
1.目标和目标解析
(1)知识目标:
理解并掌握抛物线的定义及其标准方程;会求抛物线的标准方程。
(2)能力目标:
通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受坐标法及数形结合的思想
2.教学问题诊断
坐标法求抛物线的标准方程是本节课的重点和难点。通过合作交流,探究不同的建系方案,对比所得方程的异同,使学生认识到恰当建立坐标系的重要性,进一步感受坐标法的思想。在推导抛物线四种形式的标准方程的过程中,理解焦参数 的几何意义;能根据条件求出抛物线的标准方程;会根据抛物线的标准方程,求出焦点坐标、准线方程.根据以上教学内容及要求,拟定教学重、难点如下
(1)教学重点:抛物线的定义及其标准方程。
(2)教学难点:抛物线定义的形成过程及抛物线标准方程的推导
3.教学支持条件分析
新课程大力倡导积极主动、勇于探索的学习方式,为的是使学生的学习过程成为在教师引导下的“再创造”过程。通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展学生的创新意识。在本节课中,将通过适当的问题情景,在“实验”、“观察”、“思考”、“探究”与“合作交流”等一系列数学活动中,引导学生自己发现问题、提出问题、解决问题。课堂上真正以学生发展为本,鼓励学生积极参与教学活动,包括思维的参与和行为的参与;鼓励学生发现数学的规律和问题解决的途经,使他们经历知识形成的过程。最大限度地让学生在活动中学习,在主动中发展,在合作中增知,在交流中深入,在探究中创新,并达成教与学的互促互动、相得益彰的良性循环的最优局面。
教学方法:启导探究式
教学用具:多媒体课件
4.教学过程设计
(1)设置情景,引发探究
①课件演示:用几何画板设置一个直观性问题情景,已知F是平面上一个定点, 是平面上不过点F的一条定直线,点M到定点F的距离和到定直线 的距离的比是一个常数e,改变这两个距离大小的关系(即常数e的大小),观察动点M的轨迹。
②学生观察 :两个距离大小的变化;并追踪:动点M得到的轨迹形状。然后记下实验追踪结果。
③学生交流:当o<e<1时动点M得到的轨迹是椭圆;当e>1时是双曲线。
④引发探究:进而引发探究欲望:当e=1时,它又是什么曲线呢?
设计意图:数学教学需要一定问题情景的支撑,恰当的问题情景能
激起学生的情感体验,有利于学生学习兴趣的激发,也有利于学生良好数学观的形成。因此,在教学中,应力求通过恰当问题情景的创设,让学生产生积极的学习心态,在具体的情景中实现知识的学习。上述教学设计通过信息技术设置一个直观性问题情景,激发了学生探究的欲望,这时学生自然地产生了探究当动点到一定点距离与定直线距离相等(即 )时点的轨迹到底是什么的强烈愿望。让学生在“观察”、“思考”、“探究”等活动中,自己发现问题、提出问题。
(2)观察归纳,形成定义
①观察:当e=1时,曲线上的动点满足怎样几何特征?让学生通过独立思考和互相讨论,并交流看法。针对学生的回答进行引导,把学生的思维一步步引入发现规律的最近区域,最终使得学生发现:曲线上的点到定点的距离和到一条定直线的距离相等。
②归纳:抛物线的定义
要求学生用自己的语言描述什么样的曲线是抛物线。规范学生的语言描述,提出抛物线定义的书面文字。
定义:平面内与一个定点F和一条定直线 的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线 叫做抛物线的准线。强调定义的中心句和关键词(让学生自己找出)。并与椭圆、双曲线的定义进行比较。
③反思:在抛物线定义中,要注意定点F不在定直线 上。 若定点F在定直线 上,则动点的轨迹又是什么图形呢?(此时退化为过F点且与直线 垂直的一条直线)。
④欣赏:让同学们说一说生活中有哪些图形是抛物线。然后教师用幻灯片播放一些典型的抛物线型标志性建筑,如中国的赵州桥,世界第一大拱桥——卢浦大桥、北京奥运会主场馆的拱顶、夜色下喷水池喷出的彩色水流等,让学生欣赏审美,陶冶情操,激发兴趣。
设计意图:由上述直观性问题情景引出了抛物线定义,顺理成章。教学中处处注重师生之间的互动,注重学生观察、比较、分析、概括能力的培养,注重反思环节的落实。通过学生亲身实践、主动思维,让学生在实践中得到体验,在反思中产生感悟,使学生学会思考并养成自主学习、勇于探索的良好习惯。通过让学生动口参与教学活动,培养了学生自然观察的能力和数学语言的表达能力;同时通过欣赏生活中一些抛物线型建筑,不但加强了学生对抛物线的感性认识,而且使学生受到美的享受,陶冶了情操。
(3)合作交流,导出方程
①类比:类比椭圆、双曲线标准方程的建立过程(用屏幕显示图形),让学生认真捉摸坐标系的位置特点,感悟求抛物线的方程应建立怎样的直角坐标系最好(力求使其方程形式最简单)。也可以帮助学生回顾初中二次函数图象的平移变化,从而感悟到要得到抛物线的最简方程,必须使图象过坐标原点(可使常数项为零);使图象的对称轴为x轴(或y轴)(可使方程中不含y(或x)的一次项)。
②合作:师生合作共同推导抛物线的标准方程
请学生将自己的感悟画在纸板上。学生分两人一组互相讨论,老师展示几组学生的建系方案,一一作出评价。
选择正确的一个建系方案师生一起探究抛物线方程的建立。
如推导焦点F在x轴正半轴上的抛物线标准方程。
设焦点F在x轴的正半轴上,焦点F到准线L的垂线段FN的垂直平分线为y轴,设|FN|=p。
请学生口头叙述焦点F的坐标和准线L的方程。
师生共同推导出抛物线方程:y2=2px(p>0)
指出这个方程叫做抛物线的标准方程。它表示焦点F 在x轴正半
轴上,顶点在原点的抛物线, 其准线为
③反思:建系方案的合理性。
在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系。这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用。
④探究:抛物线的标准方程的其它形式
在建立椭圆、双曲线的标准方程时,选取不同的坐标系我们得到了不同形式的标准方程。那么抛物线的标准方程还有哪些不同形式?
让学生分组求出其它三种形式的标准方程,师生协作,填充抛物线标准方程的分类表格
再反思:抛物线四种形式的标准方程与图形间的对应关系及它们之间的内在联系。从前面求椭圆、双曲线、抛物线标准方程的过程中,你是否深刻感悟到:求轨迹方程时,如何才能建立适当的坐标系?
设计意图:教学过程是师生互相交流、共同参与的过程。数学通过交流,才能得以深入发展,数学思想才能变得更加清晰;通过多边合作,又可以增强学生的合作能力与群体创造意识。教学中,只有在师生密切合作、共同探索的氛围中数学交流才能得以真正实施。上述设计在探究抛物线标准方程时,通过师生的对话交流、密切合作和信息的互动,让学生体验合作交流探究的学习过程,并自觉地建构起抛物线标准方程的知识系统。
(4)练习反馈,巩固提高
①会根据抛物线的标准方程,求出焦点坐标、准线方程
例1 已知抛物线的.标准方程是 , 求它的焦点坐标和准线方程(教材例1之(1))。
变式:求下列抛物线的焦点坐标和准线方程:
⑴; ⑵ ;
感悟:你能说明二次函数 的图象为什么是抛物线吗?如何才能正确地求出它的焦点坐标、准线方程?
②能根据条件求出抛物线的标准方程
例2 已知抛物线的焦点是F ,求它的标准方程(教材例1之(2)) 。
变式:已知抛物线的焦点F到准线L的距离为4。根据下列条件求此抛物线的标准方程。
(1)若焦点F在y轴正半轴上;
(2)若焦点F在y轴上;
(3)若焦点F在x轴上;
(4)若焦点F在坐标轴上。
(5)焦点在直线 上(均由学生口答)
感悟:
①求给定抛物线的标准方程的基本方法是:待定系数法。关键是
定轴向——求p值——写方程。(若开口方向不定,则要注意分类讨论的思想。)
②在认识事物的过程中,我们不仅要善于从一些不同的事物中去发现它们的共同点,还要善于从一些相似的事物中去发现它们的不同点。
设计意图:以课本例题为本,通过变式训练这一环节,既让学生巩固和加深对抛物线及其标准方程的理解,又使学生在“练”的过程中通过反思、感悟,不断调整自己的认识结构和经验结构,完成人的经验自主建构的过程。
(5)自我总结,提炼升华
让学生回忆并小结、提炼本节课学习内容:
①抛物线的定义(其本质属性);
②抛物线的标准方程(注意四种形式的异同);
③求抛物线标准方程的基本方法:待定系数法。关键是:定轴向——求p值——写方程。
设计意图:引导学生自我反馈、自我总结,并对所学知识进行提炼升华。让学生学会学习,学会内化知识的方法与经验,促进目标达成。
5.目标检测设计
(1)书面作业:A组1(2)、(4);4(1)(2)(必做)
补充:求经过点p(4,-2)的抛物线的标准方程。(选做)
(2)课后探究:
① 的几何意义是焦点到准线的距离,其实也是抛物线的定形条件。你能说出焦参数 对抛物线的开口大小有什么影响吗?
②同学们在初中学习过二次函数,为什么二次函数 的图象是抛物线?
设计意图:为体现以学生发展为本的理念,使不同学生在数学上获得不同的发展,本作业依一定梯度进行设计,并抛出两个课后探究性问题,既是对本节课有关内容的延伸、拓展,回应了本节课内容,又是为下继内容作些铺垫、畜势,让学生有“意尤未尽”之感。同时形成开放性学习环境,满足了不同学生的需要,体现了个性化的学习,目的是努力使每一位学生都能得到成功的体验。
★ 抛物线知识点总结
★ 抛物线的说课稿
★ 议案定义
★ 定义青春
★ 爱国定义演讲稿
★ 雇佣合同定义
★ 自我评价定义
★ 成语的定义