长方体物体的包装2(人教版五年级教案设计)

| 收藏本文 下载本文 作者:拉比小新

以下是小编精心整理的长方体物体的包装2(人教版五年级教案设计)(共含17篇),仅供参考,希望能够帮助到大家。同时,但愿您也能像本文投稿人“拉比小新”一样,积极向本站投稿分享好文章。

长方体物体的包装2(人教版五年级教案设计)

篇1:长方体物体的包装2(人教版五年级教案设计)

教学目标

1.联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识.

2.在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念.

3.会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化.

4.能用准确的数学语言描述思考过程.

教学过程

一、引入.

师:生活中,常把几个长方体物体包成一个大长方体.这样就会有各种各样的包装.

学生间相互交流了解的情况.

师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?

生:火柴盒、香烟盒或药盒等.

师:这节课,我们一起来讨论、研究长方体物体的包装问题.(揭题).

二、展开.

1.师:下面我们研究两个相同长方体物体的包装情况.想一想:用两个相同的长方体物体包装,会有几种不同的包法?

2.试一试:要求摆得出,还要说得明白.

交流:有哪几种?为了方便表达,最大面用字母A表示,次大面用字母B表示,最小面用字母C表示.

归纳:三种不同包法:A面重叠(上下叠);B面重叠(前后叠);C面重叠(左右叠).

3.师:现在研究6个相同长方体物体的包装情况.2个有三种不同摆法,6个有几种呢?你能很快猜出有几种吗?

生:6、7、8、9、10、12种等.

师:那么,究竟有几种呢?想试试吗?(生:想!)

师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?

合作学习:

(1)小组摆、交流.教师在巡视时及时向同学们推荐了同学中作记录的学习方法.并问:为什么要记呢?

生:包装方式多,记一记,不会重复.

(2)大组交流、汇报.

两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上.

学生汇报:总共有9种不同的包法.(见下图)

师生归纳:按接触面思考:A、B、C各一种;AB、AC、BC各两种.

师:这种方法怎么样?它是按什么思考的?

生:按接触面来思考;这样思考有序,不容易漏掉.

师:还有其他思考方法吗?能不能将问题简化,比如以两个一组作为一个整体,将两个A面重叠(上下叠)的长方体看作一个大长方体,这样就转化为3个长方体的包装问题了,可以有几种包法?

生:按上下、前后、左右的方向拼摆,有3种包法.

师:大家从中受到什么启发?还可以怎样考虑?.

生:哦,我明白了!还可以将两个B面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法.

生:还可以将两个C面重叠(前后叠)的长方体看作…….

生:(抢着说)对,对!它也有3种包法.因此6个长方体共有3×3=9种不同的包法.

师:这种方法怎么样?

生:这种方式很好,很清楚.

师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体.2个小长方体间的位置不同,就得到了3个不同长方体的包装问题.这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要.

4.师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算.

生:都是C面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的A面重叠、AB、AC面重叠的包装样式表面积较小,因为重叠部分面积较大……

师:哪个表面积更小些呢?

生:可以算一算.

师:假设A面面积为6,B面为3,C面为2.

生:6×2+3×12+2×12=72,6×4+3×6+2×12=66,6×4+3×12+2×6=72.这几个表面积都比较小.

三、讨论现实生活中的各种包装.

教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法.

篇2:数学教案-长方体物体的包装

数学教案-长方体物体的包装

教学目标

1.联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识.

2.在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念.

3.会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化.

4.能用准确的数学语言描述思考过程.

教学过程()

一、引入.

师:生活中,常把几个长方体物体包成一个大长方体.这样就会有各种各样的包装.

学生间相互交流了解的情况.

师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?

生:火柴盒、香烟盒或药盒等.

师:这节课,我们一起来讨论、研究长方体物体的包装问题.(揭题).

二、展开.

1.师:下面我们研究两个相同长方体物体的包装情况.想一想:用两个相同的长方体物体包装,会有几种不同的包法?

2.试一试:要求摆得出,还要说得明白.

交流:有哪几种?为了方便表达,最大面用字母A表示,次大面用字母B表示,最小面用字母C表示.

归纳:三种不同包法:A面重叠(上下叠);B面重叠(前后叠);C面重叠(左右叠).

3.师:现在研究6个相同长方体物体的包装情况.2个有三种不同摆法,6个有几种呢?你能很快猜出有几种吗?

生:6、7、8、9、10、12种等.

师:那么,究竟有几种呢?想试试吗?(生:想!)

师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?

合作学习:

(1)小组摆、交流.教师在巡视时及时向同学们推荐了同学中作记录的学习方法.并问:为什么要记呢?

生:包装方式多,记一记,不会重复.

(2)大组交流、汇报.

两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上.

学生汇报:总共有9种不同的包法.(见下图)

师生归纳:按接触面思考:A、B、C各一种;AB、AC、BC各两种.

师:这种方法怎么样?它是按什么思考的?

生:按接触面来思考;这样思考有序,不容易漏掉.

师:还有其他思考方法吗?能不能将问题简化,比如以两个一组作为一个整体,将两个A面重叠(上下叠)的长方体看作一个大长方体,这样就转化为3个长方体的包装问题了,可以有几种包法?

生:按上下、前后、左右的方向拼摆,有3种包法.

师:大家从中受到什么启发?还可以怎样考虑?.

生:哦,我明白了!还可以将两个B面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法.

生:还可以将两个C面重叠(前后叠)的长方体看作…….

生:(抢着说)对,对!它也有3种包法.因此6个长方体共有3×3=9种不同的包法.

师:这种方法怎么样?

生:这种方式很好,很清楚.

师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体.2个小长方体间的位置不同,就得到了3个不同长方体的包装问题.这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要.

4.师:现在我们来猜猜,哪些样式的.表面积较大、较小?说理由,并算算.

生:都是C面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的A面重叠、AB、AC面重叠的包装样式表面积较小,因为重叠部分面积较大……

师:哪个表面积更小些呢?

生:可以算一算.

师:假设A面面积为6,B面为3,C面为2.

生:6×2+3×12+2×12=72,6×4+3×6+2×12=66,6×4+3×12+2×6=72.这几个表面积都比较小.

三、讨论现实生活中的各种包装.

教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法.

学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省.

师:是不是厂商对商品的包装都考虑节省材料呢?

生:不一定.

师:分小组,互相观察带来的其他物品,说说自己的看法.

学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,  有的考虑方便……不同的需要就有不同的标准.

四、小结.

师:这节课对你有什么启示?

生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小;我们可以用一定的标准选择方案……

探究活动

设计包装盒

活动目的

发展学生的空间观念,培养学生用数学知识解决问题的意识.

活动题目

某工厂生产A、B、C、D、E五种产品.厂方要设计师设计一种通用的包装盒子,能包装这五种产品中任一种.设计师按要求设计了如下图中所示的包装盒子.

五种产品:

包装盒子:

厂方负责人看了设计师设计的包装盒后,不满意,认为太浪费了,根本不需要设计成十二格的长方体,只要放得下产品就可以了.于是设计师改进了方案,设计了最少体积的盒子.同学们,你们知道盒子的体积有多大吗?(即由几个小立方体组成)形状是怎样的?

活动方法

学生利用学具分小组拼摆

参考答案

篇3:《长方体物体的包装》教案

《长方体物体的包装》教案

教学目标

1.联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识.

2.在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念.

3.会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化.

4.能用准确的数学语言描述思考过程.

教学过程

一、引入.

师:在日常生活中,人们为了搬运方便需要把物品包装,有时就需要把几个长方体物体包成一个大长方体.出于不同的需要就会有各种各样的包装.

师:这节课,我们一起来讨论、研究有关长方体物体的包装的数学知识(揭题).

二、展开.

1.想一想:师:首先我们研究两个相同长方体物体包装成一个大的长方体情况.想一想:会有几种不同的包法?

2.试一试:

师:到底有几种呢?每一组同学先讨论,动手摆一摆,并想一想如何说才能让大家明白你的摆法。

生汇报。重叠

师:(提示)为了方便表达,最大面用字母A表示,次大面用字母B表示,最小面用字母C表示.

归纳:三种不同包法:A面重叠(上下叠);B面重叠(前后叠);C面重叠(左右叠).

3、猜一猜

师:2个长方体有三种不同包法,下面请大家先猜一猜6个相同的长方体包成一个大长方体可能有几种情况呢?

生:猜

师:那么,究竟有几种呢?我们接下来研究。

4、摆一摆

师:每一组的同学分工合作,边摆边思考,想一想怎样说才能让大家明白你的摆法?

合作学习:

小组摆、交流.教师巡视。

5、说一说

师:请每一组的同学派一个代表说一说你们组摆的'请况,(你们有几种的摆法,你是怎么想的?)

学生汇报:总共有9种不同的包法.(见下图)

生1:

师:你是按照摆的层数的顺序来想、来摆的,这方法很好。

生2:

师:按接触面来思考;这样思考有序,不容易漏掉.不重复

师:还有其他思考方法吗?当然有了,我们课后继续研究。

6、算一算

师:现在我们来猜猜,哪些样式的表面积较大、较小?为什么,

生:都是C面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的A面重叠、AB、AC面重叠的包装样式表面积较小,因为重叠部分面积较大……

师:哪个表面积更小些呢?如何验正呢?

生:可以算一算.

师:假设A面面积为6,B面为3,C面为2.

以第一种的摆法为例让一个同学说说如何计算更简便。

师:每一组的同学合作,计算出这9个大长方体的表面积。

生:6×2+3×12+2×12=72,6×4+3×6+2×12=66,6×4+3×12+2×6=72.这几个表面积都比较小.

师:表面积小所需的材料就省,表面积大所需的材料就多。

三、讨论现实生活中的各种包装.

教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法.

学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省.

师:是不是厂商对商品的包装都考虑节省材料呢?

生:不一定.

师:分小组,互相观察带来的其他物品,说说自己的看法.

学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,有的考虑方便……不同的需要就有不同的标准.不同的选择

四、小结.

师:这节课对你有什么启示?

生:通过学习,我们知道,其实数学就在生活中,数学就在我们的身边,我们可以用学到的数学方法来解决问题。

篇4:小学五年级数学教案:长方体物体的包装

小学五年级数学教案:长方体物体的包装

教学目标

1.联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识.

2.在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念.

3.会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化.

4.能用准确的数学语言描述思考过程.

教学过程

一、引入.

师:生活中,常把几个长方体物体包成一个大长方体.这样就会有各种各样的包装.

学生间相互交流了解的情况.

师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?

生:火柴盒、香烟盒或药盒等.

师:这节课,我们一起来讨论、研究问题.(揭题).

二、展开.

1.师:下面我们研究两个相同情况.想一想:用两个相同的长方体物体包装,会有几种不同的包法?

2.试一试:要求摆得出,还要说得明白.

交流:有哪几种?为了方便表达,最大面用字母A表示,次大面用字母B表示,最小面用字母C表示.

归纳:三种不同包法:A面重叠(上下叠);B面重叠(前后叠);C面重叠(左右叠).

3.师:现在研究6个相同情况.2个有三种不同摆法,6个有几种呢?你能很快猜出有几种吗?

生:6、7、8、9、10、12种等.

师:那么,究竟有几种呢?想试试吗?(生:想!)

师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?

合作学习:

(1)小组摆、交流.教师在巡视时及时向同学们推荐了同学中作记录的学习方法.并问:为什么要记呢?

生:包装方式多,记一记,不会重复.

(2)大组交流、汇报.

两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上.

学生汇报:总共有9种不同的包法.(见下图)

师生归纳:按接触面思考:A、B、C各一种;AB、AC、BC各两种.

师:这种方法怎么样?它是按什么思考的?

生:按接触面来思考;这样思考有序,不容易漏掉.

师:还有其他思考方法吗?能不能将问题简化,比如以两个一组作为一个整体,将两个A面重叠(上下叠)的长方体看作一个大长方体,这样就转化为3个长方体的包装问题了,可以有几种包法?

生:按上下、前后、左右的方向拼摆,有3种包法.

师:大家从中受到什么启发?还可以怎样考虑?.

生:哦,我明白了!还可以将两个B面重叠(前后叠)的'长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法.

生:还可以将两个C面重叠(前后叠)的长方体看作.

生:(抢着说)对,对!它也有3种包法.因此6个长方体共有33=9种不同的包法.

师:这种方法怎么样?

生:这种方式很好,很清楚.

师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体.2个小长方体间的位置不同,就得到了3个不同长方体的包装问题.这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要.

4.师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算.

生:都是C面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的A面重叠、AB、AC面重叠的包装样式表面积较小,因为重叠部分面积较大

师:哪个表面积更小些呢?

生:可以算一算.

师:假设A面面积为6,B面为3,C面为2.

生:62+312+212=72,64+36+212=66,64+312+26=72.这几个表面积都比较小.

三、讨论现实生活中的各种包装.

教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法.

学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省.

师:是不是厂商对商品的包装都考虑节省材料呢?

生:不一定.

师:分小组,互相观察带来的其他物品,说说自己的看法.

学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方, 有的考虑方便不同的需要就有不同的标准.

四、小结.

师:这节课对你有什么启示?

生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小;我们可以用一定的标准选择方案

探究活动

设计包装盒

活动目的

发展学生的空间观念,培养学生用数学知识解决问题的意识.

活动题目

某工厂生产A、B、C、D、E五种产品.厂方要设计师设计一种通用的包装盒子,能包装这五种产品中任一种.设计师按要求设计了如下图中所示的包装盒子.

五种产品:

包装盒子:

厂方负责人看了设计师设计的包装盒后,不满意,认为太浪费了,根本不需要设计成十二格的长方体,只要放得下产品就可以了.于是设计师改进了方案,设计了最少体积的盒子.同学们,你们知道盒子的体积有多大吗?(即由几个小立方体组成)形状是怎样的?

活动方法

学生利用学具分小组拼摆

篇5:长方体和正方体的表面积2(人教版五年级教案设计)

教学目标

1.理解长方体和正方体表面积的意义.

2.理解并掌握长方体和正方体表面积的计算方法.

3.培养和发展学生的空间观念.

教学重点

1.长方体、正方体表面积的意义和计算方法.

2.确定长方体每一个面的长和宽.

教学难点

1.长方体、正方体表面积的意义和计算方法.

2.确定长方体每一个面的长和宽.

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件.

学具:长方体、正方体纸盒、剪刀.

教学过程

一、复习准备.

(一)口答填空.

1.长方体有( )个面,一般都是( ),相对的面的( )相等;

2.正方体有( )个面,它们都是( ),正方形各面的( )相等;

3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米.

(二)说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小.(板书课题:长方体和正方体的表面积)

二、学习新课.

(一)长方体和正方体表面积的意义.

1.教师提问:什么叫做面积?

长方体有几个面? 正方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2.教师明确:这六个面的总面积叫做它的表面积.

3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积.

4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积.

(二)长方体表面积的计算方法【演示课件“长方体的表面积”】

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.

2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)

老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

3.练习解答例1.

例1.做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

4.巩固练习.

一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面.

列式:4×3+4×2.5×2+3×2.5×2

(三)正方体表面积的计算方法【演示课件“正方体的表面积”】

1.教师提问:正方体的表面积如何求吗?

学生:棱长×棱长×6

2.试解例2.

一个正方体纸盒,棱长3厘米,求它的表面积.

=9×6

=54(平方厘米)

答:它的表面积是54平方厘米.

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面.列式:

教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,

审题时要分清求的是哪几个面的和.

3.巩固练习:一个正方体的面积是1.2分米,求它的表面积.

三、巩固反馈.

1.一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?

2.一个正方体的棱长是5厘米,它的表面积是多少平方厘米?

3.判断正误,并说明理由.

(1)长方体的三条棱分别叫它的长、宽、高.( )

(2)一个棱长4分米的正方体,它的表面积是: =48(平方分米)( )

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小.( )

篇6:长方体和正方体的体积2(人教版五年级教案设计)

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位--

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习   棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=aaa或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

篇7:长方体的表面积(人教版五年级教案设计)

教学目标

1.通过操作观察,使学生知道长方体和正方体表面积的含义.

2.初步学会长方体和正方体表面积的计算方法.

3.培养学生的动手操作能力和空间观念.

教学重点

建立表面积概念,初步学会计算长方体和正方体的表面积.

教学难点

正确建立表面积的概念.

教学步骤

一、铺垫孕伏.

1.长方体的特征是什么?

2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知.

导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.

(一)建立长方体表面积的概念.

1、教师提问:什么叫做面积?

长方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2、教师明确:这六个面的总面积叫做它的表面积.

3、学生两人一组相互说一说什么是长方体的表面积.

4、教师板书:长方体6个面的总面积,叫做它的表面积.

(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.

2.教学例1.

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.

第一种解法:

长方体表面积=6个面积的和

6×4+6×4+4×5+4×5+6×5+6×5

=24+24+20+20+30+30

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

第二种解法:

长方体表面积=上下面面积+前后面面积+左右面面积

6×5×2+6×4×2+4×5×2

=60+48+40

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

第三解法:

长方体表面积=(下面面积+前面面积+右面面积)×2

(6×5+6×4+5×4)×2

篇8:最小公倍数2(人教版五年级教案设计)

教学目标

1.掌握公倍数、最小公倍数两个概念.

2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

教学重点

建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

教学难点

理解求两个数最小公倍数的算理.

教学步骤

一、铺垫孕伏.

1.导入:这节课我们开始学习有关最小公倍数的知识.

(板书:最小公倍数)

2.复习倍数的概念.

二、探究新知.

教学例1【演示课件“最小公倍数”】

例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

4的倍数有:4、8、12、16、20、24、28、32、36……

6的倍数有:6、12、18、24、30、36……

4和6的公倍数有:12、24、36……

其中最小的一个是12.

1、学生分组讨论总结公倍数、最小公倍数的意义.

2、用集合图表示4和6的公倍数.

3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

4、反馈练习.

把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

(二)教学例2【演示课件“最小公倍数”】

引入:我们用分解质因数的方法求两个数的最小公倍数.

例2:求18和30的最小公倍数.

1、用短除式分别把18和30分解质因数.

板书: 18=2×3×3

30=2×3×5

教师提问:18的倍数必须包含哪些质因数?

(18的倍数包含18的所有质因数)

30的倍数必须包含哪些质因数?

(30的倍数包含30的所有质因数)

18和30的公倍数必须包含哪些质因数?

(既要包含18的所有质因数,又要包含30的所有质因数)

2、观察集合图:18和30的最小公倍数应包含哪些质因数?

教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

3、小组讨论:如果少一个或多一个质因数行不行?

教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

板书:

18和30的最小公倍数是2×3×3×5=90

4、反馈练习.

(1)先把下面两个数分解质因数,再求出它们的最小公倍数.

30=( )×( )×( )

42=( )×( )×( )

30和42的最小公倍数是( )×( )×( )×( )=( )

(2)A=2×2 B=2×2×3

A和B的最小公倍数是( )×( )×( )=( )

(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

可能错在哪里?

5、求最小公倍数的一般书写格式.

①引导学生把两个短除式合并成一个.

板书:

②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

③反馈练习:求30和45的最小公倍数.

④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

⑤反馈练习:求下面每组数的最小公倍数

6和8 24和20 28和21 16和72

篇9:长方体的认识(三)(人教版五年级教案设计)

教学目标

1.通过观察实物和动手操作等教学活动,使学生掌握长方体特征,形成长方体的概念.

2.发展学生的空间观念.

教学重点

掌握长方体的特征,认识长方体的长、宽、高.

教学难点

初步建立“立体图形”的概念,形成表象.

教学过程

一、复习准备.

1、观察后回答:

①我们已经学过这些图形,你能说出它们的名称吗?

②根据学生的回答有意归类并板书.

③指着左边问:这些都是什么图形?(板书:平面图形)

④指着右边问:这又都是什么图形?(板书:立体图形)

2、出示第19页图中的各个实物,观察后回答下面的问题:

①这些物体的形状都是什么图形?(这些物体的形状都是立体图形)

②这些立体图形的特点是都占有一定的什么?

(空间,占有一定空间的图形叫做立体图形.)

③你知道这里面有哪些物体的形状是长方体?(肥皂、牙膏盒、墨水盒)

④你还见到过哪些物体的形状是长方体?(让学生说)

二、揭示课题.

从今天开始,我们的数学课主要研究长方体和正方体,这节课我们首先学习长方体的认识,并板书课题.

三、教学新课.

(一)教学例1,拿出一个长方体的纸盒来观察它们的特征.

1、认识长方体的面.

①用手摸一摸它有几个面?(注意培养学生有顺序地观察)

②每个面是什么形状?(注意出示也有两个相对的面是正方形)

③哪些面完全相等?(演示给学生看)

归纳:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同.

2、认识长方体的棱.

在长方体上两个面相交的边叫做棱.

①数:长方体有多少条棱?(要说出数的方法)

②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)

归纳:长方体有12条棱,相对的4条棱的长度相等.

3、认识长方体的顶点.

三条棱相交的点叫做顶点.

长方体有几个顶点?(8个)

4、拿一个长方体放在讲台上让学生观察.

最多能看到几个面?(3个面)

讲解:所以我们通常把长方体画成这样.

5、用填空的形式小结长方体的特征.

长方体是由_____个长方形(特殊情况有两个相对的面是_____形)围成的____图形.在一个长方体中,相对的两个面_____,相对的棱的长度______.

(二)教学长方体的长、宽、高.

出示长方体框架

提问:

1、它的12 条棱可以分为几组?怎样分?

12条棱可以分为3组,把长度相等的棱分为一组.

2、相交于同一个顶点的三条棱长度相等吗?

想一想:

1、你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)

2、长方体的长、宽、高的长短与这个长方体有没有关系?

结论:长方体的大小和形状是由它的长、宽、高决定的.

四、巩固练习.

1、让学生拿出准备好的长方体展开图,按要求做一个长方体,然后让学生说出自己度量的结果,并指出它的长、宽、高.(注意不同放置法的长、宽、高)

2、看图说出下面每个长方体的长、宽、高是多少?

3、说出下图表示的物体是什么形状,并且说明:

(1)它的上面是什么形,长和宽各是多少?

(2)它的右侧面是什么形,长和宽各是多少?

(3)它的前面是什么形,长和宽各是多少?

(4)它的下面和后面各是什么形,长和宽各是多少?

(注意搞清楚长方体的长、宽、高与它的每个面的长、宽之间的关系.)

五、课堂小结.

今天我们学习了哪些知识?你还有什么问题吗?

六、课后作业.

自己设计一个长方体模型,量一量长、宽、高,然后与同学交流.

篇10:长方体的认识(一)(人教版五年级教案设计)

教学目标

1.初步建立“立体图形”的概念.

2.基本掌握长方体的特征.

3.认识长方体的长、宽、高.

教学重点

掌握长方体的特征,认识长方体的长、宽、高.

教学难点

初步建立“立体图形”的概念,形成表象.

教学步骤

一、铺垫孕伏.

导入:讲新课之前,我们先回忆一下,以前学过哪些几何图形?

(长方形、正方形、三角形、梯形、平行四边形)

这些都是什么图形?(板书:平面图形)

教师:平面图形我们已经认识了,今天我们来学习一下立体图形.

二、探究新知.

(一)初步建立“立体图形”的概念.

1.出示墨水盒、粉笔盒等实物.

教师提问:谁说说这些物体与平面图形比较有什么不同?(占有一定的空间)

2.教师明确:这些物体都占有一定的空间,我们把它们的形状叫做立体图形.

(板书“立体图形”)

3.在生活中你还见到哪些立体图形?

4.引出课题:这节课,我们先来认识一下立体图形中的长方体.

(板书课题:长方体的认识)

(二)认识长方体的特征,教学例1.

1.面

①长方体有几个面? 长方体有6个面

②每个面是什么形状? 每个面都是长方形(也可能有两面相对的面是正方形)

③哪些面是完全相同的? 相对的面的形状大小完全相同

2.棱

学生实际操作:

①动手摸一摸长方体的每两个面相交的地方

(教师明确:在长方体上两个面相交的边叫做长方体的棱)

②数一数,长方体有几条棱?(12条棱)

③量一量每条棱的长度,你发现了什么?(相对的棱的长度是相等的)

3.顶点

教师:请同学们拿起长方体的盒子或实物,用手摸一模三条棱相交的地方.

教师明确:3条棱相交的点叫做长方体的顶点.

提问:一个长方体一共有多少个顶点?(8个)

4.特征

长方体是由6个长方形围成的立体图形,也可能其中有两个相对的面是正方形.它有12条棱,8个顶点.在一个长方体中,相对的面完全相同,相对的棱长度相等.

5.画法

把一个长方体放在桌面上观察一下,最多能看到它的几个面?(三个面)

那么怎样把长方体画在纸上或黑板上呢?(看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形)

(三)认识长方体的长、宽、高,教学例2.

1.出示长方体框架,提问:

长方体的12条棱可以怎样分组?(按照相对的棱进行分组)

分成几组?(3组)

相交于同一顶点的三条棱长度相等吗?(不等)

2.教师小结:在一个长方体中,有3组棱,每组棱互相平行,并且长度相等.我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.

3.实际测量:分不同角度测量自己手中的长方体的长、宽、高的长度

(测量数据应该不同)

教师强调:长方体的长、宽、高的位置不是固定不变的.一般情况下把底面中较长的一条棱叫做长,较短的一条棱叫做宽,垂直于底面的棱叫做高.

三、全课小结.

今天这节课我们学习了哪些知识?长方体有什么特征?什么叫做长方体的长、宽、高?还有什么问题吗?

四、随堂练习.

1.说说日常生活中哪些物体的形状是长方体的.

2.填表.

面 棱 顶点

长方体 有( )个面

都是( )形

相对的面(   ) 有( )条棱

相对的棱长度( ) 有( )个

顶点

3.判断对错,并说明为什么.

(1)有6个面、12条棱、8个顶点的物体形状都是长方体.………( )

(2)在长方体中,不是相对的棱长度都不相等.……………………( )

篇11:长方体的认识(二)(人教版五年级教案设计)

教学目标

1.认识和掌握长方体的特征,理解长、宽、高的概念.

2.培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展空间观念.

教学重点

掌握长方体的特征,认识长方体的长、宽、高.

教学难点

初步建立“立体图形”的概念,形成表象.

教学过程

一、复习引入.

1、教师谈话:我们已学过一些几何图形,你们还记得是哪些吗?

(长方形、正方形、三角形、平行四边形和梯形)

2、出示下面的实物.

教师提问:这些物体是什么形状的呢?

老师明确:以前学习的长方形、正方形、三角形、平行四边形和梯形等都是平面上的图形,叫做平面图形.现在看到的这些图形都占有一定的空间,我们把它们叫做立体图形.

教师提问:在低年级时我们曾认识过长方体和正方体,谁能找出这些物体中的长方体和正方体?

引入:这一单元我们要继续深入研究长方体和正方体,今天先学习对长方体的认识.

(板书课题:长方体的认识)

二、学习新课.

在日常生活中,你还见过哪些物体的形状是长方体的?(学生举例)

(一)认识长方体的面.

1、教师演示告诉学生什么是长方体的面,并让学生摸一摸.

2、让学生按照前、后、上、下、左、右的顺序,数一数长方体共有几个面.再观察每个面都是什么形状的.(板书:长方体有6个面,6个面都是长方形.)

3、提问:6个面中有没有不都是长方形的情况呢?

(板书:也可能有两个相对的面是正方形)

4、提问:长方体的6个面还有什么特征呢?(板书:相对的面完全相同)

5、总结特征:长方体有6个面,6个面都是长方形(也可能有两个相对的面是正方形),相对的面完全相同.

(二)认识长方体的棱.

1、让学生摸一摸长方体两个面相交的地方,说明这叫长方体的棱.

2、让学生把直尺放在棱上,发现直尺平平的.说明棱是直的,是线段,可以度量.

3、提问:长方体有多少条棱?想一想,怎样数才能做到不重复,不遗漏?

引导学生把棱分成三组,也可用同一颜色把每组互相平行的棱标出来.数出每组各有4条棱,有3组,一共有12条棱.(板书:有12条棱)

4、让学生量一量每组中棱的长度,说一说发现了什么?

(板书:互相平行的4条棱的长度相等)

5、总结特征:有12条棱,互相平行的4条棱的长度相等

(三)认识长方体的顶点.

1、让学生摸一摸长方体三个面相交的地方,说明这叫长方体的顶点.

2、数一数长方体有几个顶点.(按照一定的顺序数)

(板书:有8个顶点)

(四)总结长方体的特征.

长方体是由6个长方形围成的立体图形(也可能有两个相对的面是正方形),它有12条棱,8个顶点.在一个长方体中,相对的面完全相同,相对的棱长度相等.

(五)认识长、宽、高.

出示长方体框架,引导学生观察并回答:

1、长方体的12条棱可以怎样分组?每组棱的长度有什么关系?

(分3组,每组4条棱长度相等)

2、相交于一个顶点的棱有几条?它们的长度有什么特点?

(3条棱,3条棱的长度不相等.)

3、教师小结:由于有三组互相平行的棱,每组棱的长度相等,我们可以取相交于一个顶点的3条棱作代表,把相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高.

4、指导学生理解长、宽、高的概念.

可让学生把长方体横放、竖放、侧放,分别说出长、宽、高,使学生认识到长方体的形状和大小是由它的长、宽、高决定的.

(六)教学识图,发展空间观念.

1、让学生把长方体学具放在课桌左上角,引导学生观察,并提问:你们能看到几个面?

2、教师启发提问:怎样用图表示出来呢?可同时板书画图.

篇12:长方体和正方体的体积(人教版五年级教案设计)

教学目标

(一)理解并掌握长方体和正方体体积的计算方法。

(二)能运用长、正方体的体积计算解决一些简单的实际问题。

(三)培养学生归纳推理,抽象概括的能力。

教学重点和难点

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学用具

教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

学具:1厘米3的立方体20块。

教学过程设计

(一)复习准备

1.提问:什么是体积?

2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)学习新课

1.长方体的体积。

(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:

教师:这些长方体有什么共同点?不同点?

问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

(因为它们都含有同样多的体积单位--12个1厘米3。)

教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

学生讨论后,师生共同归纳:

表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

学生说出摆法和体积后。请看电脑动画图像:

一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。

教师板书:

同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

学生操作,看电脑动画图像。教师板书:

3(厘米)  3(厘米)  2(厘米)  18(厘米3)

教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

学生口答后,老师用电脑图演示。然后板书:

5(厘米)  4(厘米)  3(厘米)  60(厘米3)

教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书:V=abh。

出示投影图:

(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。

答:它的体积是84厘米3。

练习:(投影出题,学生口答。)

一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

2.正方体体积。(1)请学生看电脑动画录像:

长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?

问:这个正方体的体积可以求出来吗?

学生口答,老师板书: 3×3×3=27(厘米3)。

投影出一个正方体图。(可以用翻页变换它的棱长。)

问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。

用V表体积,a表示棱长,公式可写成:V=aaa或者V=a3。

(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

学生口答,老师板书:53=5×5×5=125(分米3)。

答:体积是125分米3。

做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。

教师:请讨论长方体和正方体的体积计算方法相同还是不相同。

学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

(三)巩固反馈

1.口答填空。课本P35练习七:2,3。

2.口答填表:

3.判断正误并说明理由。

①0.23= 0.2×0.2×0.2;    (  )

②5x2=10x;    (  )

③一个正方体棱长4分米,它的体积是:43=12(分米3);  (  )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。(  )

(四)课堂总结及课后作业

1.长方体的体积计算方法及公式。

正方体的体积计算方法及公式。

2.作业:课本P35练习七:4,6。

课堂教学设计说明

本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。

新课教学共分两个部分:

第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。

第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。

板书设计

篇13:长方体和正方体的表面积(人教版五年级教案设计)

教学目标

(一)理解长方体和正方体表面积的意义。

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点

(一)长方体、正方体表面积的意义和计算方法。

(二)确定长方体每一个面的长和宽。

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计

(一)复习准备

1.口答填空。

(1)长方体有(  )个面,一般都是(  ),相对的面的(  )相等;

(2)正方体有(  )个面,它们都是(  ),正方形各面的(  )相等;

(3)这是一个(  ),它的长(  )厘米,宽(  )厘米,高(  )厘米,它的棱长之和是(  )厘米;

(4)这是一个(  ),它的校长是(  )厘米,它的棱长之和是(  )厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)

(二)学习新课

1.长方体和正方体表面积的意义。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?

学生讨论。(把六个面展开放在一个平面上。)

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。(学生口答。)

教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

2.长方体表面积的计算方法。

(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?

学生四人一组边操作边讨论后归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的。  教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)

(图像要验证相对的面相等,展示每个面对应的长和宽。)

教师:想一想,长方体的表面积如何计算?

学生讨论后归纳,老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?

学生口答老师板书:(或学生板书,同时其余同学填书上。)

解法1:6×5×2+6×4×2+5×4×2

=60+48+40

=148(厘米2)

解法2:(6×5+6×4+5×4)×2

=(30+24+20)×2

=74×2

=148(厘米2)

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高2.5米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

4×3+4×2.5×2+3×2.5×2

3.正方体表面积的计算方法。

(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?

学生:一个面的面积乘以6。

教师:用棱长来表示它的表面积。

学生:棱长×棱长×6

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6

=9×6

=54(厘米2)

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本P26做一做。(请两位同学写投影片,其余同学做本上。)

用学生投影片集体订正。

(三)巩固反馈

1.口答课本 P27:1。

2.计算课本P27:2。(各请两位同学用投影片写,集体订正。)

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。  (  )

(2)一个棱长 4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。 (  )

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。  (  )

(四)课堂总结及课后作业

1.什么是长、正方体的表面积。长、正方体的表面积如何计算。

2.作业:课本P27:3,4,5。

课堂教学设计说明

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

第一部分教学长、正方体表面积的意义。

第二部分教学长方体表面积的计算方法。

第三部分教学正方体表面积的计算方法。

板书设计

篇14:长方体和正方体的认识(人教版五年级教案设计)

教学目标

(一)掌握长方体和正方体的特征,认识它们之间的关系。

(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

(三)渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点和难点

(一)长方体和正方体的特征。

(二)立体图形的识图。

教具准备

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

学具:长方体和正方体纸盒。

教学过程设计

(一)复习准备

请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;然后老师说明这些图形都在一个平面上,叫做平面图形。

教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。请学生先观察,再请两三位来摸一摸,然后问:这些物体的各部分都在一个面上吗?学生:它们的各部分不在一个面上。

教师:我们看到的这些物体,它们的各部分不在一个面上,它们的形状都是立体图形。

教师:这些物体在原来的位置不动,我们还能在它们所占的位置上放别的物体吗?(请一位同学演示。)

学生:不能。

教师:可见立体图形都占有一定的空间。

教师请学生从教具中挑出长方体后,说明本节课要进一步认识长方体有什么特征,并板书课题:长方体的认识(留出写“正方体”的空)。

(二)学习新课

1.长方体的特征。

(1)请同学取出自己准备的长方体。

教师:请用手摸一摸长方体是由什么围成的?

学生:面。(教师板书:面)

教师:请用手摸一摸两个面相交处有什么?

学生:有一条边。

教师:这条边称为棱。(板书:棱)

教师:请摸一摸三条棱相交处有什么?

学生:尖。

教师:相交的这点称为顶。(板书:顶。)

(2)教师:请同学们用自己的长方体,参考讨论提纲来研究长方体的特征。

投影片出示讨论提纲:

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?校的位置、长短有什么关系?

③长方体有多少个顶?

学生讨论并归纳后,教师板书:长方体:

面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

棱:12条,相对的4条棱长度相等。

顶:8个。

请学生观看动画图(用电脑软件或实物展示)

出示有一组对面是正方形的长方体,展示同上,要表示有四个面相等;

第三步:出示8个顶点。

教师:请完整地说一说长方体的特征?(先请同桌两人互相说,然后请一两位同学拿着学具给全班同学说。)

(3)老师:长方体是立体图形,画在纸上如何与平面图形区别呢?

教师:(拿一个长方体正对学生)请观察,你能看到几个面?哪几个面?

请几位观察角度不同的同学回答。

教师:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。(介绍的同时用动画图像展示。)

教师:出示长方体框架请观察,再出示框架的投影图。(如图)请指出框架上的12条棱分几组?并指出哪几条棱是一组的?

请指出相交于一个顶点的三条棱。

教师:请量一量自己的长方体上相交于一个顶点的三条棱,看一看长度是否相等?

教师:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

练习:请分别说出下面两个长方体的长、宽、高各是多少?第二个长方体与第一个长方体有什么区别?(投影片)

2.正方体特征。

(1)展示动画图像:(或抽拉投影图)

第一步:长方体中的长边缩短,使长、宽、高相等;

第二步:长方体中的短边伸长,使长、宽、高相等。

教师:看一看新得到的长方体与原来长方体比较有什么变化?

学生:长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。

教师:请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。(把课题补充完整--加上“正方体”。)

学生讨论、归纳后,教师板书:正方体:

面:6个完全相同的正方形。

棱:12条棱长度都相等。

顶:8个。

请看动画图像。

(2)教师:请对比长方体和正方体的特征,说一说它们的相同点与不同点。

学生讨论后归纳:长方体和正方体在面、棱、顶点的数量上都相同;在面的形状、面积、棱的长度方面不相同。

教师:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

学生:正方体是特殊的长方体。

教师板书集合图:

(三)巩固反馈

1.量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

2.根据图中数据口答填空。(投影片)

(1)长方体的长是(  )厘米,宽(  )厘米,高(  )厘米。12条棱长的和是(  )厘米。

(2)这幅图中的几何体是(  )体,12条棱长的和是(  )分米。

(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米。它上面的面长是(  )厘米,宽(  )厘米,左边的面长(   )厘米,宽(  )厘米,相交于一个顶点的三条棱长和是(  )厘米。

3.判断。正确的在括号里画√,错误的画×。(投影片)

(1)长方体的六个面一定是长方形; (  )

(2)正方体的六个面面积一定相等; (  )

(3)一个长方体(非正方体)最多有四个面面积相等; (  )

(4)相交于一个顶点的三条棱相等的长方体一定是正方体。 (  )

(四)课堂总结及课后作业

1.说一说长方体和正方体的特征和它们之间的关系。如何看图纸上的立体图。

2.作业:教材P22练习五:1,2,3。

课堂教学设计说明

学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。

本节新课教学分为两大部分。

第一部分教学长方体的特征。共分三个层次进行:让学生通过感官了解长方体的面、棱和顶;利用教具学具和讨论提纲,帮助学生自己去认识并概括出长方体的特征;通过图像和练习,学生会看平面上的立体图,掌握长、宽、高。

第二部分教学正方体的特征。共分两个层次进行:利用长方体长、宽、高的变化来认识正方体的特征,会看立体图;对比长方体和正方体的相同点和不同点,认识它们之间的关系。

扳书设计

篇15:小数乘法2(人教版五年级教案设计)

教学目标

1.进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题.

2.提高学生计算能力和估算能力.

3.培养学生认真计算、自觉检验的好习惯.

教学重点

正确、熟练地计算较复杂的小数乘法.

教学难点

根据小数乘法的意义正确判断积与被乘数的大小关系.

教学过程

一、检查复习

(一)口算

0.9×6       7×0.08      1.87×0        0.3×0.6

0.24×2      1.4×0.3      1.6×5        4×0.25

60×0.5      7.8×1

(二)说出下面各算式表示的意义

2.4×0.8      1.36×4       2.58×0.2

二、指导探索

(一)教学例3  0.056×0.15

1.学生独立计算,指名板演.

2.指名说一说计算过程.

教师提问:乘得的积的小数位数不够时,该怎么办?

3.指导学生验算方法

教师提问:怎样检验小数乘法计算是否正确?

(运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

(二)教学例4

一个奶牛场八月份产奶18.5吨.九月份的产量是八月份的2.4倍.九月份产奶多少吨?

1.独立解答.

2.教师提问:

(1)你是根据什么列式的?(一倍数×倍数=几倍数)

(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

3.比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

4.练习:不计算,说明下面各算式中积与被乘数的关系.

10.8×0.9        2.4×1.8         50×0.36           0.48×0.75

讨论:在什么情况下,积小于第一个因数?

在什么情况下,积等于第一个因数?

在什么情况下,积大于第一个因数?

5.小结:当第二个因数比1小时,积比第一个因数(零除外)小;

当第二个因数等于1时,积等于第一个因数(零除外);

当第二个因数比1大时,积比第一个因数(零除外)大;

6.练习:不计算,判断下面各题的结果是否正确.

0.72×0.15=1.08         0.36×1.8=0.648

三、质疑小结

(一)今天你都有什么收获?

(二)对于今天的学习还有什么问题?

四、反馈调节

(一)计算

0.37×2.9      0.56×0.08      0.072×0.15

0.18×8.45     4.5×0.002      3.7×0.016

(二)判断对错.

1.0.6时等于6分.(    )

2.一个数的1.02倍比原来的数要大.(    )

3.两个因数的小数位数的和是4,积的小数位数也一定是4.(    )

(三)工地有水泥24.5吨,沙子的重量是水泥的2.5倍,石子的重量是沙子的4倍,石子有多少吨?

五、课后作业

(一)计算

82×0.9      3.4×1.26      0.039+1.75

2.07×53     20.14-6.87    10-5.29

篇16:最大公约数2(人教版五年级教案设计)

教学目标

1.使学生掌握公约数、最大公约数、互质数的概念.

2.使学生初步掌握求两个数的最大公约数的一般方法.

教学重点

理解公约数、最大公约数、互质数的概念.

教学难点

掌握求两个数的最大公约数的一般方法.

教学步骤

一、铺垫孕伏.

1.说出什么是约数、质因数、分解质因数.

2.求18、20、27的约数

3.把18、20、27分解质因数

二、探究新知.

教师引入:我们已经会求一个数的约数了,这节课我们学习怎样求两个数公有的约数.

(一)教学例1【演示课件 “最大公约数”】

8和12各有哪些约数,它们公有的约数有哪几个?最大的公有的约数是多少?

板书:8的全部约数:1、2、4、8

12的全部约数:1、2、3、4、6、12

学生交流:发现了什么?

学生汇报:8和12公有的约数是:1、2、4

最大的公有的约数是:4.(教师板书)

1.总结概念:8和12公有的约数,叫做8和12的公约数.

1、2、4是8和12的公约数.公约数中最大的一个叫做最大公约数,4是8和12的最大公约数.

2.阅读教材,理解公约数、最大公约数的意义.

3.反馈练习:把15和18的约数、公约数分别填在下面的圈里再找出它们的最大公约数.

(二)教学互质数【演示课件“互质数”】

1.5和7的公约数和最大公约数各是多少?7和9呢?

5的约数:1、57的约数:1、7

7的约数:1、79的约数:1、3、9

5和7的公约数:1 7和9的公约数:1

5和7的最大公约数:1 7和9的最大公约数:1

教师提问:有什么共同点?(公约数和最大公约数都是1)

教师点明:公约数只有1的两个数,叫做互质数.

2.学生讨论:8和9是不是互质数,为什么?

强调:判断两个数是不是互质数,只要看这两个数的公约数是不是只有1.

3.分析:质数和互质数有什么不同?

(意义不同,质数是对一个数说的,互质数是对两个数的关系说的.)

4.反馈练习:学生举例说明互质的数.

(三)教学例2.

求18和30的最大公约数.

1.用短除法把18和30分解质因数.

2.教师提问:根据结果能否知道18和30的约数各有哪些?怎么想的?

明确:根据分解质因数的方法可以求一个数的约数.

3.师生归纳:18和30的约数,要能整除18,又能整除30,就必须包含18和30公有的质因数.最大公约数是公约数中最大的,它就必须包含18和30全部公有的质因数2和3.2×3=6,所以18和30的最大公约数是6.

4.教学求最大公约数的一般书写格式.

启发:为了简便能不能边分解质因数边找公有的质因数?

(把两个短除式合并)

18和30的最大公约数是2×3=6

5.反馈练习:求12和20的最大公约数.

6.小结求两个数的最大公约数的方法.

①学生讨论.

②师生归纳:求两个数的最大公约数,一般先用这两个数公有的质因数去除,一直除到所得的商是互质数为止,然后把所有的除数乘起来.

③教师说明:做短除法时,除数通常是这两个数公有的质因数,并从最小的开始除起;也可以用一个合数去除,只要能够整除这两个数就行.

④反馈练习:求36和54的最大公约数.

三、全课小结.

今天这节课我们主要研究了用什么方法求两个数的最大公约数及相应概念,(板书:最大公约数)它是为以后学习约分做准备的,希望同学们知道知识间是有必然联系的.

四、随堂练习.【演示课件“练习”】

1.填空.

(1)(     )叫做这几个数的公约数,其中(      )叫做这几个数的最大公约数.

篇17:真分数和假分数2(人教版五年级教案设计)

教学目标

1.认识真分数和假分数,掌握它们的特征.

2.学会把分子是分母倍数的分数化成整数.

教学重点

理解真分数、假分数的概念和特征.

教学难点

理解假分数的两种实际意义.

教学步骤

一、铺垫孕伏.

1.  表示的意义是什么?

2.说出  的分数单位及有几个这样的分数单位.

二、探究新知.

我们理解了分数的意义,知道了分数也有大小之分,今天我们继续学习有关分数的知识.

(板书:真分数和假分数)

(一)教学例1:用分数表示每个图形的阴影部分.

1.学生分组讨论:这三个分数有什么特点?

(板书:这三个分数的分子比分母小,这三个分数比“1”小)

2.教师明确:我们把这样的分数就叫做真分数.

3.交流总结:分子比分母小的分数叫真分数,真分数小于1.

4.学生举例:说出几个真分数.

(二)教学例2:用分数表示每个图形的阴影部分.

1.教师提问:这三个数也是分数,观察这些分数的分子与分母你发现了什么?

(板书:分子比分母大或分子和分母相等)

教师明确:分子比分母大或分子和分母相等的分数叫假分数,假分数等于1或大于1.

2.学生举例:说出几个假分数.

(三)反馈练习.

1.下面的分数哪些是真分数,哪些是假分数?

2.归纳总结:分数可分为哪两类?是根据什么划分的?

(四)教学例3.

1.导语:有些假分数的分子恰好是分母的倍数,请同学们从例2的三个分数中找出分子是分母倍数的假分数.

2.出示例3:把  化成整数.

(1)根据分数的意义,  是3个  ,正好是一个圆,所以  ;

根据分数与除法的关系,  =3÷3=1,所以  化成整数是1.

(2)根据分数的意义,  是8个  ,正好是两个圆,所以  =2;

根据分数与除法的关系,  =8÷4=2,所以  =2

3、练习:把下面的假分数化成整数并说说是怎样化的.

三、课堂小结.

通过这节课的学习你懂得了什么?

四、随堂练习.

1.分数可分为哪几类?是怎样划分的?

2.读下面的分数,判断哪些是真分数,哪些是假分数.

3.用真分数或假分数表示图中阴影部分.

4.指出下表中哪些是真分数,哪些是假分数.再指出哪些假分数小于1,哪些假分数大于1.

思考:分母是2、3、4、5的真分数分别有几个?真分数的个数与它的分母有什

么关系?分母是6的真分数有几个?分母是10的呢?

五、布置作业.

把下面的假分数化成真分数.

六、板书设计.

真分数和假分数

例1.观察下面每个图形所表示的分数,比较每个分数中分子和分母的大小.

分子比分母小的分数叫做真分数.真分数小于1. 例2.观察下面每组图形所表示的分数,比较每个分数中分子和分母的大小.

分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1. 例3.把  化成整数

长方体表面积说课(人教新课标五年级说课)

《求不规则物体的体积》教案设计

五年级月饼的包装作文

长方体的认识 教案教学设计(人教新课标五年级上册)

《长方体和正方体的特征》课堂教学实录 (冀教版五年级下册)

《包装的学问》五年级下学期数学教案

教三年级英语的教案设计

西师大版五年下《设计长方体的包装方案》教学设计

五年级数学《长方体的体积》教学设计

五年级上册长方体的认识教学设计

长方体物体的包装2(人教版五年级教案设计)(集锦17篇)

欢迎下载DOC格式的长方体物体的包装2(人教版五年级教案设计),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档