圆锥的体积2(人教版六年级教案设计)

| 收藏本文 下载本文 作者:两个人

下面是小编为大家整理的圆锥的体积2(人教版六年级教案设计)(共含18篇),仅供参考,喜欢可以收藏与分享哟!同时,但愿您也能像本文投稿人“两个人”一样,积极向本站投稿分享好文章。

圆锥的体积2(人教版六年级教案设计)

篇1:圆锥的体积2(人教版六年级教案设计)

教学目标

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

教学重点

圆锥体体积计算公式的推导过程.

教学难点

正确理解圆锥体积计算公式.

教学步骤

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 下载1 下载2 下载3 下载4 下载5

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

……

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的  .

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是( )

圆锥的底面积是10,高是9,体积是( )

(二)教学例1

1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

学生独立计算,集体订正.

板书:

答:这个零件的体积是76立方厘米.

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

(三)教学例2

1、例2  在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

思考:这道题已知什么?求什么?

要求小麦的重量,必须先求什么?

要求小麦的体积应怎么办?

这道题应先求什么?再求什么?最后求什么?

2、学生独立解答,集体订正.

板书:(1)麦堆底面积:

=3.14×4

=12.56(平方米)

(2)麦堆的体积:

12.56×1.2

=15.072(立方米)

(3)小麦的重量:

735×15.072

=11077.92

≈11078(千克)

答:这堆小麦大约重11078千克.

3、教学如何测量麦堆的底面直径和高.

(1)启发学生根据自己的生活经验来讨论、谈想法.

(2)教师补充介绍.

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.

篇2:圆锥的体积(人教版六年级教案设计)

教学目标

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

教学重点和难点

圆锥体体积公式的推导。

教学过程设计

(一)复习准备

1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。

这是什么体?(圆锥体)

(板书:圆锥)

上节课我们已经认识了圆锥体,这里有几个画好的几何形体。

(出示幻灯)

一起说,几号图形是圆锥体?(2号)

(指着圆锥体的底面)这部分是圆锥体的什么?(底面)

(指着顶点)这呢?

哪是圆锥体的高?(指名回答。)

(用幻灯出示几个图形。)

在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。

(学生举卡片反馈)

你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)

那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。)

看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。

(板书,在“圆锥”二字的后面写“的体积”。)

(复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)

(二)学习新课

(老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?

(再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)

看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。

为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底 等高)

既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)

为什么?(因为圆锥体的体积小)

(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。

(学生分组做实验。)

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?

(学生发言。)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(不是)

是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?

(因为是等底等高的圆柱体和圆锥体。)

呢?(在等底等高的情况下。)

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。

(老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)

(三)巩固反馈

1.口答。

填空:

2.板书例题。

例 一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?

(指名回答,老师板书。)

=20(cm3)

答:它的体积是20cm3。

3.练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。

(幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。

(学生在小黑板上只写结果,举黑板反馈。)

你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。

5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。

(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是(  )(dm3)。

②3a(dm3)

③a3(dm3)

(举卡片反馈,订正。)

(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是(  )cm3。

(学生举卡片反馈,订正。)

6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)

为什么?(因为不知道底面积和高。)

需要测量什么?(底面半径和高。)

怎么测量?(小组讨论。)

(指名发言)

今天回家后,把你们测量的数据写在本子上,再计算出体积。

这节课我们学了什么知识?

出思考题:

现在我们比一比谁的空间想象能力强。

看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。

(四)指导看书,布置作业

(略)

课堂教学设计说明

本节课的主要特点有以下几点:

一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。

三是教学层次清楚,步步深入,重点突出。

四是练习有坡度,形式多,教学反馈及时、准确、全面、有效。

板书设计

篇3:圆锥的认识(人教版六年级教案设计)

教学建议

教材分析

本小节的教学内容包括圆锥的认识和圆锥的体积,它是在学生掌握了圆的周长、面积和圆柱的表面积、体积的基础上进行教学的.它是小学阶段几何知识的最后部分.通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分名称;理解求圆锥体积的计算公式,会运用公式计算圆锥的体积.

圆锥体是人们生产、生活中经常遇到的形体.教学这一部分内容即能发展学生空间观念,为今后的学习打下基础,又可以帮助学生掌握解决实际圆锥问题的方法.

教材通过直观引导学生观察、实验、判断推理得出圆锥体积的计算公式.这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

根据对过去学生试卷的分析,在计算等底等高圆柱、圆锥体积的变形题中,错误率比较高,主要原因是对等底等高的圆柱、圆锥的体积之间的关系不清,因此教学中对于算理的推导要特别注意.

教法建议

本小节的教学内容包括圆锥的认识和圆锥的体积,它是在学生掌握了圆的周长、面积和圆柱的表面积、体积的基础上进行教学的.通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分名称;理解求圆锥体积的计算公式,会运用公式计算圆锥的体积.

教学圆锥的认识,重点是掌握圆锥的特征及各部分名称.教学时首先需要复习已学的圆柱体的特征,然后结合实物,通过对比,使学生掌握圆锥的特征.教学圆锥的高的测量方法是教学的难点,教师可引导学生猜测、动手实测操作,利用课件演示测量过程,使学生顺利突破难点.教学时要充分的为学生提供自主探索空间.

教学圆锥的体积,重点是体积公式的推导过程.教学时可以按照“演示:利用课件演示圆锥体的形成;猜想:你觉得圆锥的体积和什么立体图形有关系?有什么关系?操作:通过实验(包括等底等高和不具备等底等高条件的多个实验)引导学生推导圆锥体的体积公式;验证:进行基本计算”四个步骤组织学生创造性学习.教学中通过学生大胆的猜想尝试与创新,自主探究,推导圆锥体的体积公式.教学时要充分的为学生提供创造空间.

教学目标

使学生认识圆锥,掌握圆锥的特征及各部分名称.

教学重点

圆锥的特征及各部分名称。

教学难点

圆锥的高的测量方法。

教学步骤

一、铺垫孕伏

1、出示圆柱体,引导学生说出圆柱体的特征.

2、什么叫圆柱的高,并在实物或几何图形中指出.

3、导入,今天我们学习一个新的几何体--圆锥.(板书课题)

二、探究新知

1、大家在生活中见过圆锥体吗?

2、一个长方形通过旋转,可以形成一个圆柱体,那么你们知道圆锥体是怎样形成的吗?(课件演示:圆锥的形成) 下载

3、圆锥的认识(课件演示:圆锥体的认识) 1、圆锥有一个顶点,底面是一个圆

2、圆锥周围的面是一个曲面(侧面).

3、从圆锥的顶点到底面圆心的距离是圆锥的高

4、测量圆锥的高(课件演示:测量圆锥体的高1或2) 下载

(1)引导学生讨论:圆锥有几条高?

(2)用直尺和三角板如何测量圆柱的高.

5、圆锥侧面的展开图(继续演示课件:圆锥体的认识) 下载

(1)想象圆锥体的侧面展开图

三、随堂练习

1、说出圆锥的特征.

2、说出圆锥各部分名称.

3、指出下列各图是由哪些图形构成的?

四、全课小结

今天这节课你学到了哪些知识?圆锥体和圆柱体有什么区别?

五、板书设计

学生明确:

篇4:圆柱的体积(六年级)(人教版六年级教案设计)

教学目标

1.理解圆柱体体积公式的推导过程,掌握计算公式.

2.会运用公式计算圆柱的体积.

教学重点

圆柱体体积的计算.

教学难点

理解圆柱体体积公式的推导过程.

教学过程

一、复习准备

(一)教师提问

1.什么叫体积?怎样求长方体的体积?

2.圆的面积公式是什么?

3.圆的面积公式是怎样推导的?

(二)谈话导入

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)

二、新授教学

(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)

1.教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.

2.学生利用学具操作.

3.启发学生思考、讨论:

(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

(2)通过刚才的实验你发现了什么?

①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.

②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.

③近似长方体的高就是圆柱的高,没有变化.

4.学生根据圆的面积公式推导过程,进行猜想.

(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

5.启发学生说出通过以上的观察,发现了什么?

(1)平均分的份数越多,拼起来的形体越近似于长方体.

(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.

6.推导圆柱的体积公式

(1)学生分组讨论:圆柱体的体积怎样计算?

(2)学生汇报讨论结果,并说明理由.

因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)

(3)用字母表示圆柱的体积公式.(板书:V=Sh)

(二)教学例4.

1.出示例4

例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

2.1米=210厘米

50×210=10500(立方厘米)

答:它的体积是10500立方厘米.

2.反馈练习

(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?

(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?

(三)教学例5.

1.出示例5

例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?

水桶的底面积:

=3.14×

=3.14×100

=314(平方厘米)

水桶的容积:

314×25

=7850(立方厘米)

=7.8(立方分米)

答:这个水桶的容积大约是7.8立方分米.

三、课堂小结

通过本节课的学习,你有什么收获?

1.圆柱体体积公式的推导方法.

2.公式的应用.

四、课堂练习

(一)填表

底面积S(平方米)

高h(米)

圆柱的体积V(立方米)

15

3

6.4

4

篇5:圆柱的体积(人教版六年级教案设计)

教学目标

1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。

2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。

教学重点和难点

圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教学过程设计

我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)

(一)复习准备

1.什么叫体积?(指名回答)

生:物体所占空间的大小叫做体积。

师:你学过哪些体积的计算公式?(指名回答)

根据学生的回答,板书:

长方体体积=底面积×高

2.圆面积公式是怎样推导出来的?

生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式S=πr2。

(二)学习新课

1.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?

2.看书自学。

(1)圆柱体是怎样变成近似长方体的?

(2)切拼成的长方体与圆柱体有什么关系?

(3)怎样计算切拼成的长方体体积?

3.推导圆柱体积公式。

(1)讨论自学题(1)。圆柱体是怎样变成长方体的?(指名叙述)再看看书和你叙述的一样吗?

把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)

(2)动手操作切拼,将圆柱体转化成长方体。

出示两个等底等高圆柱体,让学生比一比,底面积大小一样,高相等,使学生确信,两个圆柱体的体积相等。

请两名同学按照你们的叙述,把圆柱体切拼成长方体。(如有条件,每四人一个学具,人人动手切拼,充分展示切拼过程和公式推导过程。)

现在讨论自学题(2)。

师:这个长方体与圆柱体比较一下,什么变了?什么没变?

生:形状变了,体积大小没变。

(3)推导圆柱体积公式。

讨论:切拼成的长方体与圆柱体有什么关系?(引导学生有顺序的进行叙述,分小组讨论,让学生充分发言。)

小结:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书: V=Sh

(4)利用公式进行计算。

例1 一根圆柱形钢材,底面积是50平方厘米,高2.1米,它的体积是多少?

引导学生审题,说出题目中的已知条件和问题。做这道题还要注意什么?

生:已知圆柱体底面积和高,求圆柱的体积,注意统一单位名称。

2.1米=210厘米 (①用字母表示已知条件)

S=50  h=210  (②写出字母公式)

V=Sh (③列式计算)

=50×210  (④写出答题)

=10500

答:它的体积是10500立方厘米。

引导学生总结出做题步骤。

小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,会求出底面积)和高。注意统一单位名称。

(三)巩固反馈

1.圆柱体的底面积3.14平方分米,高40厘米。它的体积是多少?

2.求下面圆柱体的体积。(单位:厘米)

3.填表:

4.一个圆柱形容器,底面半径是25厘米,高8分米。它的容积是多少立方分米?

5.一个圆柱形粮囤,从里面量,底面周长是6.28米,高20分米。它的容积是多少立方米?

(四)课堂总结

这节课,你学会了什么?还有什么问题?

生:学会了圆柱体的体积计算公式,并会用公式解答实际问题。

思考题:

一张长方形的纸长6.28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。

课堂教学设计说明

本节教案分三个层次。

第一层次是复习。

第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析和归纳能力。

第二层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。

本节教案特点:充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于玩中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。

板书设计

篇6:长方体和正方体的体积2(人教版五年级教案设计)

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位--

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习   棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=aaa或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

篇7:比和比例2(人教版六年级教案设计)

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷  100×1%

0.25×40   2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

比 前项 ∶(比号) 后项 比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :2

4.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

(3)解比例:  ∶  =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法 结果

求比值 根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数

化简比 根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外) 是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72    ∶3

(2)化简比.

∶    0.7∶0.25

(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是  )

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成  ,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成反比例.

(3)如果  =8  ,  和  成( )比例.

如果  =  ,  和  成( )比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

篇8:分数应用题2(人教版六年级教案设计)

教学目的

1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

2.通过复习,培养学生的分析能力以及综合能力.

3.通过复习,培养学生认真、仔细的学习习惯.

教学重点

通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

教学难点

通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.

教学过程

一、复习准备.

老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?

学生回答:

(1)3是6的几分之几?

(2)6是3的几倍?

(3)3比6少几分之几?

(4)6比3多几分之几?

(5)6占6与3总和的几分之几?

(6)3是6与3差的几倍?……

谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)

二、复习探讨.

(一)教学例4.

学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?

1.教师提问:根据已知条件,你都可以提出什么问题?并解答.

2.反馈:

(1)水彩画和蜡笔画共多少幅?

(2)水彩画比笔画少多少幅?

(3)蜡笔画比水彩画多几分之几?

(4)水彩画比蜡笔画少几分之几?

(5)水彩画是蜡笔画的几分之几?

(6)蜡笔画是水彩画的几分之几?

(7)……

3.教师质疑.

(1)5问和6问为什么解答方法不同?(单位1不同)

(2)3问和4问的问题有什么不同?(单位1不同)

(二)例题变式.

1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多  ,蜡笔画有多少幅?

2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多  ,水彩画和蜡笔画一共有多少幅?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.

(三)深化.

如果题目中的分数发生了变化,我们还会解答吗?

1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的  ,还剩下多少吨钢材?

2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的  ,还剩下15吨,仓库里有多少吨钢材?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.

三、巩固反馈.

1.分析下面每个题的含义,然后列出文字表达式.

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)的电视机价格比降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)十一月份比十二月份超额完成了百分之几?

2.列式不计算.

(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?

(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

3.判断并且说明理由.

男生比女生多20%,女生就比男生少20%.         (       )

4.一辆汽车从甲地开往乙地,第一小时行了全程的  ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?

四、课堂总结.

通过今天这堂课,你有什么收获吗?

篇9:工程问题2(人教版六年级教案设计)

教学目标

1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.

2.能正确熟练地解答这类应用题.

3.培养学生运用所学到知识解决生活中的实际问题.

教学重点

理解工程问题的数量关系和题目特点,掌握分析、解答方法.

教学难点

理解工程问题的数量关系.

教学过程

一、复习  旧知.

(一)解答下面应用题

1.挖一条水渠100米,用5天挖完,平均每天挖多少米?

列式:100÷5=20(米)

2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?

列式:

教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?

学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.

3.挖一条水渠100米,平均每天挖20米,几天可以挖完?

列式:100÷20=5(天)

4.挖一条水渠,每天挖全长的  ,几天可以挖完?

列式:  (天)

师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.

二、探索新知.

(一)教学例9.

例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

1.教师提问:

(1)用我们学过的方法怎样分析?怎样解答?

30÷(30÷10+30÷15)=6(天)

(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?

60÷(60÷10+60÷15)=6(天)

90÷(90÷10+90÷15)=6(天)

24÷(24÷10+24÷15)=6(天)

(3)通过计算,你发现了什么?(结果都相同)

(4)为什么结果都相同呢?

工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)

(5)去掉具体的数量,你还能解答吗?

把这段公路的长看作单位“1”,甲队每天修这段公路的  ,乙队每天修这段公路的  .两队合修,每天可以修这段公路的(  )

列式:

2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)

3.归纳总结.

4.小组讨论:工程问题有什么特点?

工作总量用单位“1”表示,工作效率用  来表示数量关系:工作总量÷工作效率(和)=工作时间

5.练习.

(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?

(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?

三、巩固练习.

(一)选择正确的算式.

一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的  ,需要多少小时?正确列式是(   ).

1.

2.

3.

四、归纳总结.

今天我们这节课学习了新的分数应用题-工程应用题.其解答特点是什么?(工作总量÷工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位“1”,工作效率用“  ”表示.)工程应用题还有很多变化,以后我们继续学习.

五、板书设计

工程问题

例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

30÷(30÷10+30÷15)=6(天)

一段公路,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

(天)

特点:  工作总量:“

篇10:圆锥体积教学的导入与推导 (人教版六年级上册)

“圆锥体积”教学的导入与推导

安徽省太湖县小池镇中心学校 唐公卿

在教学“圆锥体积”一课时,我是这样导入的:

师:同学们都知道大发明家爱迪生吧。今天给大家讲个真实的故事:有一次,爱迪生让他的助手测量一下灯泡的体积,这位助手花了好长时间也没有做出来。后来,爱迪生来了,他想了想,拿来一个带有刻度的量筒,把灯泡装满水,然后倒入量筒。你们猜一猜,这时就可以知道什么呢?

生:可以知道灯泡的体积了。

师:为什么呢?你们知道吗?

生:因为灯泡里的水倒入量筒后体积不变,量筒里的水的体积是多少,灯泡的体积就是多少。

师:对。但还要说明一点,因为灯泡壁很薄,可忽略不计,所以才能用水的体积代替灯泡的体积。今天,我们就要用“量”的方法(实验法)来推导圆锥体积(板书课题:圆锥体积)

在这一课中,又是这样推导的:

师:圆锥体积,我们用什么方法来计算呢?

生:可不可以用爱迪生测量灯泡体积的方法来试一试?

师:好主意!那么怎样做呢?

生:先用圆锥装满水,再倒入量筒,就可以测出圆锥体积。

师:正确。不过,假如每一个圆锥都这么做的话,就太不方便了。还有,有的圆锥是实心的,根本无法装水。我想最好能找一个象圆柱体积那样的计算公式。想一想,圆锥体积会与什么有关呢?不妨和圆柱作个比较。老师这儿有一个纸圆柱和一个纸圆锥,哪个同学上来测量一下它们有什么相同点?

(学生测量、比较、操作。)

生:这个纸圆柱和这个纸圆锥是等底等高的。

师:可惜这个纸圆柱和这个纸圆锥不能装水,能不能换种东西?

生:沙子、大米都可以。

师:就换成沙子吧。这里有几组等底等高的圆柱和圆锥,我们就分组实验吧。

(学生做实验,让他们从中有所发现、感悟)

师:同学们,刚才的实验,大家发现了什么?

生:三个圆锥装的沙子和一个圆柱装的一样多。

师:那又说明什么呢?

生:说明圆柱体积是圆锥体积的三倍。

师:这样说准确吗?

生:不够准确。应该说,圆柱的体积是等底等高的圆锥体积的三倍。

师:还可以怎样说?

生:圆锥的体积是等底等高的圆柱体积的三分之一。

师:具体来说,一个底面积为S,高为H的圆锥体积V,该怎样计算呢?能不能用一个公式表示?

生:因为底面积为S,高为H的圆柱体积是S.H,而与它等底等高的圆锥体积是它的三分之一,所以V=1/3SH。(板书)

师:很好,现在我们就得出了圆锥体积的计算公式。希望大家认真体会体会。

由此可知,故事性导入,激活了课堂气氛,又为新的学习提供了基础,激发了学生学习的积极性和主动性,提高了学生的学习兴趣。实验法的推导,启发学生经过类比和一定的合理推理,找到了解决新知的办法,使学生形成了解决问题的思路和方案;引导学生在实验中主动探求发现规律,有利于培养学生思维的广阔性,提高学生应用数学的意识和能力。

篇11:分数除法应用题2(人教版六年级教案设计)

教学目标

1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位“1”,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位“1”

1.铅笔的支数是钢笔的  倍. 2.杨树的棵数是柳树的  .

3.白兔只数的  是黑兔. 4.红花朵数的  相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占  .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的  ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的  ,谁是单位“1”?

(2)如果要求全村耕地面积的  是多少,应该怎样列式?(全村耕地面积×  ).

(3)全村耕地面积的  就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是  公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把  代入原方程,左边  ,右边是45,左边=右边,所以  是原方程的解.)

(公顷)

(根据棉田面积和  是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的  .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量关系

3.列式解答

解1:设一共有果树  棵.

答:一共有果树640棵.

解1:  (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的  .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位“1”?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的  就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价×  =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣  元.

答:一件上衣  元.

5.怎样直接用算术方法求出上衣的单价?

(元)

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的关系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长

篇12:比的意义2(人教版六年级教案设计)

教学目标

1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.

2.掌握求比值的方法,并能正确求出比的比值.

3.培养学生抽象、概括能力.

教学重点

理解比的意义,掌握求比值的方法.

教学难点

理解比的意义,建立比的概念.

教学过程

一、谈话引入

在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)

二、讲授新课

(一)教学例1

例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?

板书:3÷2=  =       2÷3=

1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

3.小结

(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.

(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.

4.练习

有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

(二)教学例2

例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

1.求的是什么?谁除以谁?也就是谁和谁进行比较?

2.汽车行驶路程和时间的比是100比2表示什么?

3.思考:单价可以说成是谁和谁的比?

工作效率可以说成是谁和谁的比?

商可以说成是谁和谁的比?

4.小结

通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.

(三)归纳总结

引导学生观察板书  ,什么叫比?

教师板书:两个数相除又叫做两个数的比.

(四)练习

1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是(   ),柳树和杨树棵树的比是(   )

2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是(    ).

3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是(   ),青菜和萝卜单价的比是(    ).

(五)比的各部分名称和求比值的方法(演示课件“比的意义”)

1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

例如:  3比2        记作:3∶2

2比3        记作:2∶3

100比2      记作:100∶2

2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

板书:

3.提问:比的前项和后项能随便交换位置吗?为什么 ?

4.练习:求比值

教师说明:求比值不写单位名称.

(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)

1.教师提问

(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

(2)为什么要用“相当于”这个词?能不能用“是”?

(3)在除法中,除数不能是零,那比的后项呢

篇13:圆柱的表面积2(人教版六年级教案设计)

教学目标

1.理解圆柱的侧面积和表面积的含义.

2.掌握圆柱侧面积和表面积的计算方法.

3.会正确计算圆柱的侧面积和表面积.

教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算.

教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题.

教学过程

一、复习准备

(一)口答下列各题(只列式不计算).

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.

二、探究新知

(一)圆柱的侧面积.

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

(二)教学例1.

1.出示例1

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)

2.学生独立解答

教师板书: 3.14×0.5×1.8

=1.75×l.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米.

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

(三)圆柱的表面积.

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.

2.比较圆柱体的表面积和侧面积的区别.

圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

(四)教学例2.

1.出示例2

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答

侧面积:2×3.14×5×15=471(平方厘米)

底面积:3.14×  =78.5(平方厘米)

表面积:471+78.5×2=628(平方厘米)

答:它的表面积是628平方厘米.

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

(五)教学例3.

1.出示例3

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

2.教师提问:解答这道题应注意什么?

这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.

3.学生解答,教师板书.

水桶的侧面积:3.14×20×24=1507.2(平方厘米)

水桶的底面积:3.14×

=3.14×

=3.14×100

=314(平方厘米)

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

答:做这个水桶要用1900平方厘米.

4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

5.“四舍五入”法与“进一法”有什么不同.

(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

三、课堂小结

这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.圆柱的表面积在实际应用时要注意什么呢?

篇14:量的计量2(人教版六年级教案设计)

教学目标

1.进一步理解采用法定计量单位的重要意义.

2.复习长度、面积、体积、质量、时间单位.

3.复习各种计量单位间的进率.

教学重点

指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.

教学难点

掌握各种计量单位的实际大小及进率,正确使用计量单位.

教学步骤

一、直接导入.

提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)

教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习“量的计量”.(教师板书课题)

二、归纳整理.

(一)启发学生回忆:我们学过了哪些量的计量?

教师板书:

长度   质量   时间

面积

体积(容积)

(二)复习长度、面积、体积单位及进率.

1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?

2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间

的进率是多少?

学生讨论:相邻面积单位之间的进率为什么都是100?

师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.

3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?

学生思考:相邻体积单位之间的进率为什么是1000?

教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.

4.练习.

(1)在(   )里填上适当的计量单位名称.

一枝铅笔长176(  ) 一个篮球场占地420( )

一张课桌宽52(  )  一个火柴盒的体积是21(  )

一间教师的面积是48(   ) 一种保温瓶的容量是2( )

(2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?

(3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?

(三)复习质量单位.

1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)

2.练习.

①10麻袋大米约1( )

②l个鸡蛋约6.5( )

③1棵白菜约2.5( )

④1名六年级学生体重是40( )

(四)复习时间单位.

1.启发学生回忆:学过的时间单位有哪些?它们之间的进率是多少?(并填写下表)

名称

世纪

年 月

时 分

进率

( )年

( )月

31日(各月)

30日(各月)

29日( 年二月)

28日( 年二月)

( )时

( )分

(  )秒

2.教师强调:

①时间单位间的进率不像前两种计量单位间的进率那么有规律,要记牢、用准.

②“小时”的单位名称按规定应记作“时”.

3.思考.

①怎样判断某一年是闰年还是平年?

②21世纪从什么时间开始?

4.练习.

(1)一年有( )个月,分成( )个季度.

(2)一个月分成( )旬、( )旬和( )旬.一月的下旬是( )天,平年二月的下旬是(  )天.

(3)采用24时计时法,下午1时就是(  )时,夜里12时就是( )时,也就是第二天的(

篇15:按比例分配2(人教版六年级教案设计)

教学目标

1.使学生理解按比例分配的意义.

2.掌握按比例分配应用题的特征及解题方法.

3.培养学生应用所学知识解决实际问题的能力.

教学重点

掌握按比例分配应用题的特征及解题方法.

教学难点

按比例分配应用题的实际应用.

教学过程

一、复习引入

(一)填空

已知六年级1班男生人数和女生人数的比是3∶2.

1.男生人数是女生人数的(  )

2.女生人数是男生人数的(  ),女生人数和男生人数的比是(   ).

3.男生人数占全班人数的(  ),男生人数和全班人数的比是(   ).

4.全班人数是男生人数的(  ),全班人数和男生人数的比是(   ).

5.女生人数占全班人数的(  ),女生人数和全班人数的比是(   ).

6.全班人数是女生人数的(  ),全班人数和女生人数的比是(   ).

(二)口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

1.学生口答:100÷2=50(平方米)

2.教师提问

这是一道分配问题,分谁?(100平方米)怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?

这样分还是平均分吗?

3.谈话引入

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)

二、讲授新课

(一)把复习题2增加条件“如果按3∶2分配,两个班的保洁区各是多少平方米?”

(二)教师提问

1.分谁?(100平方米)

2.怎么分?(按3∶2分)

3.求的是什么?(两个班的保洁区各是多少平方米?)

(三)思考:由“如果按3∶2分配”这句话你可以联想到什么?

1.六年级的保洁区面积是二年级的  倍

2.二年级的保洁区面积是六年级的

3.六年级的保洁区面积占总面积的

4.二年级的保洁区面积占总面积的

… …

(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?

方法一:

3+2=5    100÷5=20(平方米)    20×3=60(平方米)    20×2=40(平方米)

方法二:

3+2=5     100×  =60(平方米)100×  =40(平方米)

方法三:

100÷(1+  )=60(平方米)    60×  =40(平方米)或100-60=40(平方米)

方法四:

100÷(1+  )=40(平方米)     40×  =60(平方米)或100-40=60(平方米)

(五)比较思路:这几种方法中,你认为哪种方法好?为什么?

(第二种,思路简捷,计算简便)

1.说说第二种方法的思路?

(1)求出总份数

(2)各部分数量占总量的几分之几?

(3)按照求一个数的几分之几是多少的方法解答.

(六)这道题做得对不对呢?我们怎么检验?

1.两个班级的面积相加,是否等于原来的总面积.

2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.

(七)练习

一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?

(八)教学例3

学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?

篇16:分数混合运算2(人教版六年级教案设计)

教学目标

使学生掌握分数乘加、乘减混合运算.

教学重点

1.掌握分数混合运算的顺序

2.会用乘法的运算定律在分数乘法中进行简算

教学难点

分数乘法的简算

教学过程

一、复习

(一)说说你是怎样算的?

(二)看看下面每组算式,它们有什么样的关系.

○        ○       ○

(三)那么分数混合运算如何计算呢?能否应用运算定律简算呢?这节课我们来一起研究.

板书课题:分数混合运算

二、探索、悟理

(一)出示例题

(二)读题之后请同学试做(板演在黑板上)

教师:这道题应该先算哪一步,再算哪一步?(强调运算顺序)

(三)做一做

教师提问:你按怎样的运算顺序计算的?

(四)小结

教师提问:谁能说一说分数乘加、乘减这样的混合运算按怎样的运算顺序计算呢?

分数混合运算顺序:

在一个分数混合算式中,既有一级运算,又有二级运算,先做第二级运算,后做一级运算;在有括号的算式里,先做括号里边的,再做括号外边的.

(五)仔细观察下面两题,计算中有没有好方法使它们算得又快又准.

小组汇报结果.

=  ×  ×

教师提问:说一说为什么这样算,依据什么?(乘法交换律、结合律、分配律)

教师说明:由这两题可以看出,乘法运算定律同样可以应用在分数中.

(七)做一做

三、归纳、质疑

(一)这节课学习了什么知识?(学生自己小结)

混合运算、分数乘法中的简算.

(二)你在学习中遇到了什么没有得到解决的问题吗?

四、训练、深化

(一)巩固混合运算

1.判断

(×)                (×)

(√)             (√)

2.计算

(二)巩固简算

1.填空

2.简算

(三)提高练习

五、课后作业

(一)用简便方法计算下面各题

篇17:数的意义2(人教版六年级教案设计)

教学目标

1.使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识.

2.进一步弄清概念间的联系与区别.

教学重点

使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识.

教学难点

弄清概念间的联系和区别.

教学步骤

一、铺垫孕伏.

1.填空【演示课件“数的意义”】

0、1、79、  、0.25、0.6、100、  、  、  、85%、30、90%、7、8、2.35……

学生分类填数:

2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数.这节课我们就把这几种数的意义和有关知识进行一下整理和复习.(板书课题:数的意义)

二、探究新知【继续演示课件“数的意义”】

(一)整数

1.小组讨论.

2.师生总结.

自然数:0、1、2、3、……

自然数是整数.

教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数.

想一想:自然数有什么特征?

总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的.

(二)分数.

1.引导学生思考:

①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)

表示其中一份的数是这个分数的什么?(分数单位)

②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?

2.填空练习.

①把单位“1”平均分成4份,表示这样的3份是  ;把3平均分成4份,每一份是  .

②  的分数单位是( ),它至少再添上( )个这样的单位就成了整数.

3.教师说明:两个数相除,它们的商可以用分数表示.

即:

4.教师提问:同学们想一想,分数可以分为哪几类?

教师板书:

谁能说出真、假分数的意义及有关知识?(举例说明)

①分子比分母小的分数叫做真分数.真分数小于1.

②分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1.

③分子是分母的倍数的假分数可以化成整数.

④分子不是分母倍数的假分数可以化成带分数.

⑤反之,整数和带分数也可以化成假分数.

教师板书:假分数

教师说明:假分数、带分数、整数可以相互转化.带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式.

(三)小数.

教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?

教师板书:

教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之-……都是计数单位.各个计数单位所占的位置,叫做数位.数位是按一定的顺序排列的.

(四)百分数.

教师提问:你们还记得百分数的意义吗?

教师板书:百分数(百分率或百分比):用%表示.

三、全课小结.

这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识.

四、随堂练习【继续演示课件“数的意义”】

1.填空.

(1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的  ,每段长米  .

(2)分数单位是  的最大真分数是  ,它至少再添上( )个这样的分数单位就成了假分数.

(3)10个0.001是( ),10个0.01是( ),10个0.1是( ),10   1是( ),10个10是( ).

(4)最高位是百万位的整数是( )位数;最低位是百分位的小数有( )位小数.

(5)最小的四位数是( ),最大的三位数是( ),它们相差( ).

2.判断下面的说法是不是正确,并说明理由.

(1)自然数既可表示有“多少个”,又可以表示是“第几个”.

篇18:分数乘法应用题2(人教版六年级教案设计)

教学目标

1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.

2.渗透对应思想.

教学重点

理解应用题中的单位“1”和问题的关系.

教学难点

1.理解“求一个数的几分之几是多少”的应用题的解题方法.

2.正确灵活的判断单位“1”.

教学过程

一、复习、质疑、引新

1.说出  、  、  米  的意义.

2.列式计算

20的  是多少?6的  是多少?

学生完成后,可请同学说一说这两个题为什么用乘法计算?

3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘

法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)

二、探索、质疑、悟理

(一)教学例1(也可以结合学生的实际自编)

学校买来100千克白菜,吃了  ,吃了多少千克?

1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.

2.分析.

教师提问:重点分析哪句话呢?“吃了  ”这句话是分率句.是什么意思呢?

(就是把100千克白菜平均分成5份,吃了这样的4份).

3.画图.(演示课件:分数乘法应用题1)

画图说明:a.量在下,率在上,先画单位“1”

b.十份以里分份,十份以上画示意图.

c.画图用尺子,用铅笔.

4.尝试解答.

解法一:用自己学过的整数乘法做

(千克)

解法二:

5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.

(二)巩固练习

六年级一班有学生44人,参加合唱队的占全班学生的  ,参加合唱队有多少人?

1.把哪个数量看作单位“1”?

2.为什么用乘法计算?

(三)教学例2

例2.小林身高  米,小强身高是小林的  ,小强身高多少米?

1.演示课件:分数乘法应用题2

2.求参加合唱队有多少人实际上就是求  米的  是多少。

3.列式:  (米)

答:小强身高  米.

(四)变式练习

小强身高  米,小林身高是小强的  倍,小林身高多少米?

三、归纳、总结

1.今天所学题目为什么用乘法计算

2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?

共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。

从分率可入手分析

四、训练、深化

(一)先分析数量关系,再列式解答

1.一只鸭重  千克,一只鸡的重量是鸭的  ,这只鸡重多少千克?

2.一个排球定价36元,一个篮球的价格是一个排球的  ,一个蓝球多少元?

(二)提高题

1.一桶油400千克,用去  ,用去多少千克?还剩多少千克?

2.一桶油400千克,用去  吨,用去多少千克?还剩多少千克?

五、课后作业

(一)修路队计划修路4千米,已经修了  。修了多少千米?

(二)一头鲸长7米,头部长占  。这头鲸的头部长多少米?

(三)成昆铁路全长1100千米,桥梁和隧道约占全长的  。桥梁和隧道约长多少千米?

六、板书设计

教案点评:

本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

探究活动

活动目的

1.使学生掌握求一个数的几分之几是多少的应用题的数量关系和解答方法.

2.熟练判断单位“1”,并能根据实际情况灵活选择单位“1”的量.

活动题目

《圆锥体积》说课稿

六年级数学《圆锥的体积》的说课稿

圆柱的体积(人教新课标六年级教案设计)

《圆锥体积》教学反思

小学六年级数学《圆锥的体积》教案

圆锥的体积怎么算

圆锥的体积怎么求

《圆锥体积》的教学反思

《圆锥的体积》教学反思

《圆锥体积》评课稿

圆锥的体积2(人教版六年级教案设计)(共18篇)

欢迎下载DOC格式的圆锥的体积2(人教版六年级教案设计),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档