以下是小编整理的小学六年级数学日记:求体积(共含6篇),欢迎阅读分享。同时,但愿您也能像本文投稿人“clf0206”一样,积极向本站投稿分享好文章。
小学六年级数学日记:求体积
有趣的数学题可以锻炼小朋友的大脑,为大家提供了小学六年级数学日记,希望对大家的学习有所帮助!
今天中午,我正在做数学寒假作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然后。这道题是这样的:有一个长方体,正面和上面的两个面积的`积为209平方厘米,并且长、宽、高都是质数。求它的体积。
我见了,心想:这道题还真是难啊!已知的只有两个面的面积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊!
正当我急得抓耳挠腮之际,妈妈来了。妈妈先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,妈妈又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以另外一条棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。
最后我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米)
解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
做什么事多会有困难,但是我们坚持下来成功就会属于我们。从一项手工作业中,我知道了,坚持就会有新发现。
上周焦老师给我们留了一项制作圆柱的手工作业,一听有手工作业,我们便高兴起来,刚一放学就飞奔回家里。
回到家我迫不及待的开始做圆柱了,我东翻翻西找找,拿出一叠彩纸,找出我最喜欢的緑色,准备好剪刀和胶水,可是,麻烦来了:“圆柱的两个圆怎么做呢?”于是,我拿出数学书,根据上课学到的知识,拿出一个圆规,量好距离后在纸上轻轻地画了两个圈,又拿起棕色的剪刀,仔细的剪起来,生怕有一点点偏,我用胶水在另一张彩纸的边缘处抹了几下,把纸卷成一个空桶,并将两条相对边粘实,这个圆柱桶就做好了,该粘刚剪下来的圆了,可每粘好一次,不一会儿就自己掉下来,我渐渐没了耐心,生气起来,心想:“这个圆柱桶太软了,根本就沾不上!”天渐渐黑了,我非常着急。
正当我准备放弃时,一抬头,无意中手纸卷中间的空桶,突然想到了老师说过的一句话:“可以再生活中找”。这个纸筒正好也是圆柱体on,还很硬,我激动的说不出话来,我一把拿起圆柱飞奔回去,继续做起了,如果我再给你这个圆柱做两个圆不就是圆柱体了,真是得来全不费工夫呀!可问题又来了,怎么做这两个圆呢?我手足无措,只好上网查一些资料,才恍然大悟,原来要粘这个圆,就要做两个比圆桶大点的圆,我又从新做起了,在坚持下我终于做好了圆柱体。
从这项作业中,我知道了,世上无难事只怕有心人呀!只要坚持就一定会有新的发现。
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
圆柱大家可能不陌生吧?可是做一个圆柱可就成为难题了。数学课上,舒老师要求我们回家做一个圆柱,并且进一步探究它的体积。
一回到家,我就冥思苦想:怎样才能做出一个圆柱呢?我翻了翻数学书,发现原来圆柱是由一个长方形和两个圆组成的。那么长方形的长就相当于圆柱的底面周长,而宽就等于圆柱的高。
我找到一张卡纸,首先得剪出两个直径是10厘米的圆和一个长方形。可是因为圆柱的底面直径和高都是10厘米,为了能让卷成后的长方形圆桶和两个圆的大小吻合,我得先算出长方形的长。我皱了皱眉,仔细思考,因为长方形的长等于直径是10厘米圆的周长,那么长应该是314厘米了。我小心翼翼地剪出这3个 图形。
接下来该是把这三个图形粘在一起的时候了,这一步不仅很难,而且也很关键。我起先决定用透明胶把它们固定,但想了想,觉得如果用透明胶粘的话可能会不太坚固,我决定用双面胶粘。
接着我又用卡纸剪出一些锯齿状的纸片当被粘掉的部分,并将它们贴在圆形纸片上,粘上双面胶。
然后我沿着长方形的长将两个圆形纸片贴上,并在连接口用胶带固定。现在,呈现在我眼前的是一个既坚固又美观的圆柱。
通过这次实践活动,我悟出了一个道理:在学习数学中要多动手,这样才能探索出数学王国中的更多奥秘。不仅在数学中是这样的,凡事也如此,只有敢于动手实践的人,才能收获成功的喜悦!
小学日记作文关于体积的数学日记
我们学完了第二单元长方体和正方体的表面积和体积,数学老师为了让我们更深的理解体积的概念,就给我们布置了一篇数学日记,让我们测量不规则物体的体积。
想来想去,最后我选择了求土豆的体积。妈妈给我拿了一个土豆,说:“土豆没有一点形状,怎么量体积呀?”我胸有成竹的回答:“没事儿,我知道咋办。”
我先找来了一个长方体的水槽,测量了一下它的长和宽,长是24㎝,宽是17cm。接着我倒入水槽一些水,测量了水槽内水的高度,水高5cm。
下一步把洗净的一个土豆轻轻放入水槽,等水面平稳了后,我又一次测量了水槽内水的高度,水高5.5cm。最后一步就是求土豆的体积了。
我列出了求土豆体积的公式:
24×17×(5.5-5)
=24×17×5
=204(立方厘米)
答:土豆的体积是204立方厘米。
当我列出公式时,妈妈也恍然大悟了。真没想到数学在日常生活中有这么大的用途。这也使我想起来了曹冲称象的典故。那么大的一头大象怎么称它的重量呢?聪明的曹冲想到了把大象赶到一只大船上,在船上记下刻度,然后把大大小小的石块一块一块地往船上装,船就一点一点的往下沉,等船沉到刚才的刻度时,就停止再装石块,然后测量石块的重量,而石块的重量和就是大象的重量。曹冲真的很聪明,是我学习的榜样。
学数学真有意思,亲自动手做数学实验真好,用数学日记的方法记录自己思考数学问题的过程真真好。我要坚持写数学日记。
教学内容
教科书第39~40页例1,课堂活动及练习九第1题,第2题。
教学目标
1、在操作和探究中理解并掌握圆锥的体积计算公式。
2、引导学生探究、发现,培养学生的观察、归纳等能力。
3、在实验中,培养学生的数学兴趣,发展学生的空间观念。
教学重点
圆锥体积的计算公式的推导过程。
教学难点
圆锥体积计算公式的理解。
教学过程
一、情景铺垫,引入课题
教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16cm2,高60cm,单价:40元/个。
出示问题:到底选哪种蛋糕划算呢?
教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?
学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。板书课题:圆锥的体积
二、自主探究,感悟新知
1、提出猜想,大胆质疑
教师:谁来猜猜圆锥的体积怎么算?
2、分组合作,动手实验
教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3、教师用展示实验报告单
教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?
方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积高,所以圆锥的体积=1/3圆柱的体积。
方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。
教师:二个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。
教师把学生们的实验过程演示一遍,让学生再经历一次圆锥体积的探究过程。
4、公式推导
教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?
教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。
板书:圆柱的体积=底面积高
V=sh
↓〖4〗↓〖6〗↓
圆锥的体积=1/3底面积高
V=1/3sh
教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?
抽学生回答,教师板书:V=1/3sh
教师引导学生理解公式,弄清公式中的s表示什么,h表示什么。
要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。
5、运用所学知识解决问题
教学例1。
一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?
学生读题,找出题中的条件和问题。
引导学生弄清铅锤的形状是圆锥形。
学生独立解答。抽学生上台展示解答情况并说出思考过程。
三、拓展应用,巩固新知
1、教科书第42页第1题
学生独立解答,集体订正。
2、填一填
(1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。
(2)等底等高的圆柱的体积是圆锥体积的()倍。
抽生回答,熟悉圆锥的体积计算公式。
3、把下列表格补充完整
形状底面积s(m2)高h(m)体积V(m3)
圆锥159
圆柱160.6
学生在解答时,教师巡视指导。
4、教科书第42页练习九第2题
分组解答,抽生板算。教师带领学生集体订正。
5、应用公式解决实际问题
教师:现在我们再来帮助这两个同学解决他们的难题。
要求学生独立解答新课前买蛋糕的问题。
抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。
四、课堂总结
教师:这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?
★ 圆锥的体积怎么求
★ 六年级数学日记