以下是小编整理的常数函数是周期函数吗(共含4篇),欢迎阅读分享。同时,但愿您也能像本文投稿人“嘉丽轩”一样,积极向本站投稿分享好文章。
周期函数的性质
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的`周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
周期函数的性质共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的.周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。
周期函数的'性质共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
证明过程:
狄利克雷函数即f(x)=1(当x为有理数);f(x)=0(当x为无理数);而周期函数的定义是对任意x,若f(x)=f(x+T),则f(x)是周期为T的周期函数。
显然,取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数,其周期可以是任意个有理数,所以没有最小正周期。
★ 升学率是一个常数
★ 征文是演讲稿吗
★ 行色匆匆是成语吗