下面是小编收集整理的分数乘以整数(共含8篇),供大家参考借鉴,欢迎大家分享。同时,但愿您也能像本文投稿人“晗永奎”一样,积极向本站投稿分享好文章。
整数乘以分数的教学方案
教学内容:
课本第6~8页。
教学目的:
使学生掌握分数乘以分数的计算法则也适用于整数乘以分数。能熟练地运用此法则进行计算。
教学重点:
掌握分数乘以分数的'计算法则也适用于整数乘以分数。
教学难点:
掌握并能熟练运用分数乘以分数的计算法则。使学生能进行灵活的计算,并能根据乘数特点判断积与被乘数的大小。
教学过程:
一、复习。
1.口算。练习二的第9题
2.计算。练习二的第7题
二、新授。
1、统一分数乘法的计算法则。
2、明确:因为整数都可以看成是1的分数,所以分数乘以分数的计算法则也适用于整数乘以分数,因此分数乘法的计算法则只要记住一条,即分子相乘的积做分子,分母相乘的积做分母:具体计算时碰到整数和分数相乘不必把整数化成分母是1的分数,这样既便于学生记忆又表明算法合理。
3、练习
4、指导学生判断积与被乘数、乘数间的关系:一个数(0除外)乘以比1大的数,积比被乘数大;乘以比1小的数,积比被乘数小。
三、巩固练习
1、基本练习:做一做和练习二的第5题。
2、深化练习。练习二的其他题
四、作业布置
教学反馈:
教学目标
1.理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。
2.浸透事物是相互联系、相互转化的辩证唯物主义观点。
教学重点
分数乘以整数的意义及计算方法。
教学难点
分数乘以整数的计算法则的推导。
教具准备
1.自制两套三层复式投影片。
2.投影图片3张。
教学过程设计
(一)复习
(出示投影一)
1.口算:
问:怎样计算?(分母不变分子相加。)
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12+12或12×5
(2)14+14+14或14×3
题中的两个式子哪个简便?(12×5,14×3)
它们各表示什么意思呢?(5个12是多少? 3个14是多少?)
能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗?
(二)讲授新课
1.分数乘以整数的意义。
多少块?(投影)
2份。)
听回答,老师边重复边投影(三层复式投影片)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)
问:为什么?(三个加数相同。)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题)
师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数
练一练(投影片二)
①看图写算式。
②根据意义列式。
③看算式说意义。
2.分数乘以整数的法则。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
①导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)
该怎么办呢?
引导学生讨论得出:
边加上虚线框。)
(2)根据上面方法试算下面各题。
(学生在练习本上做,用投影反馈。)
②归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
③应用法则计算。
有不一样的吗?强调结果化成带分数。
还有不同的做法吗?
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习
1.看图写算式。
第3页的第1题,看图写算式。(填书上)
行间巡视,注意:被乘数和乘数的位置。
2.先说算式意义,再填空。
3.看算式,约分计算。
4.口算:
5.判断:(打手势)
(四)课堂总结
今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)
课堂教学设计说明
1.确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。
2.依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握“分数乘以整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
3.重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。
内江师范学院授课教案
课 题 《分数乘法》
系 别 教育科学学院
专 业 小学教育
班 级 级4班
姓 名 杨舒
学 号 2012124
指导教师 曾 琴
4 月 5日
分数乘法
一、教学内容
人教版小学数学六年级上册第二单元第一课时的内容《分数乘法》的第一课时“分数乘以整数”。
二、教学目标
1、知识与能力:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、情感与态度:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、过程与方法:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
三、教学重点、难点
重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
难点:引导学生总结分数乘整数的计算法则。
四、教学准备
ppt课件
五、教学过程
(一)问题导入
1、故事科普知识导入问题
师:同学们,你们喜欢看《动物世界》吗?
生:回答。
师:前几天老师看了一种动物,叫袋鼠,说它身高有两米六,一跳可达6-7米,世界上最快的袋鼠一跳可达12米。是不是很快啊,我们人一步可以走多远呢?我们的速度是不是比起袋鼠就要慢很多啊,今天老师这儿就刚好又一个关于人和袋鼠的速度问题,我们一起来看一下。(ppt展示如图)
2、袋鼠问题引入分数乘以整数
(1) 老师引导学生看图
师:我们知道。在做应用题时,要先看题理解题意,那么我们一起来看一下。我们首先理解已知的题意“人跑一步的距离相当于袋鼠跳一下的几分之几?”也就是说可以把袋鼠跳一下的距离看做一整条线段即单位“1”。然后把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(老师板书线段,拿出单位“1”的线段教具,标记其中2线段,作为人跑一步的距离。)
(2) 引导学生根据线段图理解
师:人跑一步是袋鼠跳一下的2╱11 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”应该怎样求呢?
生:就是求3个 2╱11相加是多少?
师:对,也就是列式子表示为: 2/11 + 2/11 + 2/11 =
(同学们计算出答案为6╱11)
师:我们以前学过,几个相同的数相加,还可以怎样表示呢?
生:可以表示为: 2/11×3
师:对,我们还可以表示为2╱11×3,那么像这样的分数乘以一个整数的式子应该怎样计算呢?今天我们就来学习新内容--分数乘法。(PPT播放题目页面,内容为“分数乘法--分数乘以整数”。)
(二)探讨新知
1、分数乘以整数的法则。
(1)导出计算方法。
紧接刚才的袋鼠与人速度问题,回到刚才的计算,老师继续引导解决。
师:(指着板书上的式子“2/11×3”)你们会计算吗?我们一起来看看。我们知道“2/11×3”与“2╱11+2╱11+2╱11”是相等的,所以2╱11×3=2╱11+2╱11+2╱11=2+2+2╱11=2×3╱11=6╱11。(老师板书计算)
师:我们计算出了答案,请大家一起来观察一下。板书如下:
=6╱11
看看你们能不能发现什么,看着黑板上的计算过程及结果,你们能总结出分数乘以整数的计算法则吗?现在前后左右四人为一组,小组讨论一下,时间为一分钟,看看哪个小组总结的又快又准确。
(同学讨论中……,老师走下讲台,询问同学们讨论情况。)
(2)归纳法则。
师:好了,我们的讨论时间到了,同学们得出结论了吗?通过以上计算和讨论,你 们知道了分数乘以整数应该怎样计算吗?
生:同学们分享自己的结论。
师:同学们都说的非常好,现在老师总结一下。展示ppt如下:
分数乘以整数,就是用分数的分子和整数相乘的积作分子,分母不变。
(老师板书,同学们朗读并记忆。)
(3)应用法则意义以及掌握计算。
师:我们通过计算和讨论得出了分数乘以整数的计算法则,那么现在我们来看一看 这两种方法有什么不一样吗?这两种方法哪种简单?为什么?
生:回答。
师:对,用我们今天所学的知识在计算多个分数相加的式子更为简洁和快速。那么你们都掌握了吗?下面我们就来练一练。ppt展示问题如下:
师:同学们自己做一下,然后请同学来回答。
生:做题。
随堂练习讲解:此四道题均为简单分数乘以整数,在刚刚学习了计算法则后,学生很容易计算出结果,最后一道练习题会设计约分,此阶段的学生已经掌握分数的约分与化为最简分数,因此学生会在计算中将计算结果化为最简分数。
师:现在,我们一起来看一下这些题。(老师抽问同学前三题)
生:学生口头回答答案。
师:看来同学们都掌握的很好,最后一道题,我们一起来做一下。
老师板书计算。
2、能约分的分数乘以整数计算
老师板书讲解刚才的练习题“1╱8×6=”,计算出结果,并化最简分数。
师:在分数的计算中,如果能够约分的要先怎样呢?
生:要先约分。
师:对,在我们的分数乘以整数的计算中,能够约分的式子也要先约分。
(老师重新计算“1╱8×6=”,先约分,在计算结果。)
师:在分数乘以整数的计算中,能够约分的式子要先约分再计算,计算出来结果是假分数的一定要化成整数或者带分数。
(三)巩固练习
1、计算题
ppt播放问题页面,如下:
(此四道题分别为一道不涉及约分的简单计算题,一道能够约分的简单计算题,一道约分计算化简后结果为整数的计算题,一道约分计算化简后结果为带分数的计算题。学生做题回答,老师板书讲解并提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2.分数与多个数相乘,简单应用题
ppt播放题目,如下:
师:同学们都知道,在做应用题的时候,首先要读题,理解题意。现在我们请一个同学来说说她对这道题题意的理解。(抽问同学)你来说一下,这道题告诉了我们什么,又让我们求什么呢。
生:这道题告诉了我们一只树袋熊一天吃 桉树叶,让我们求10只树袋熊一星期吃多少?
师:对,我们来计算这道题。
老师板书计算,板书如下:
师:我们今天学习的分数乘以整数的计算法则,对于一个分数与多个整数相乘的式子同样适用。
(四)课堂总结
师:通过今天的学习,我们收获了很多,现在我们一起来小结一下?(ppt播放内容)
生:学习了分数乘以整数的计算法则,分数乘以整数就是用分数的分子和整数相乘的积做分子,分母不变,能约分的要先约分再计算,计算结果为假分数的要化成整数或者带分数。以及掌握了它的作用。
(五)布置作业
预习教材P10分数乘以分数的内容。
(六)板书设计
分数乘法
分数乘以整数
计算法则:用分数的分子和整数相乘的积做分子,分母不变。
(注:能约分的要先约分,再计算。 )
2/11 + 2/11 + 2/11 =
2╱11×3=2╱11+2╱11+2╱11=2+2+2╱11=2×3╱11=6╱11
教学重点和难点
掌握的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。
教学过程 设计
(一)复习准备
1.先说出下列算式的意义,再口算:
17×2 5×16 4×30 126×1
56×10 28×100 15×4 65×0
小结:
(1)整数乘法的意义是什么?
(2)整数乘法的计算方法是什么?
2.口算下列各题,并观察积的变化有什么规律?
观察思考:
(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?
(2)从右往左看,积有什么变化?积的变化有什么规律?
小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)
3.填空:
(1)1.5扩大10倍是;(2)2.25扩大( )倍是225;
(3)1.2扩大()倍是12;(4)38缩小10倍是();
(5)85缩小()倍是0.85;(6)270缩小()倍是27。
(二)学习新课
1.创设情境
同学们,你们经常为家里买东西吗?你会算帐吗?请举例。
一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)
2.引导发现
(1)通过列式,理解的意义。
学生根据题意列式:6.5+6.5+6.5+6.5+6.5。
这个加法算式有什么特点?(加数相同。)
根据这一特点,你还能用别的方法表示吗?
6.5×5。
6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)
你能说出下列算式表示什么?
2.7×5 5.8×4 3.54×2 1.63×11
小结:
的意义是什么?(求几个相同加数的和的简便运算。)
的意义与什么算式的意义相同?(的意义与整数乘法的意义相同。)
说明整数乘法的意义也适用于。
(2)计算:
思考、讨论:6.5×5应如何计算呢?
提示:能不能把6.5转比成整数呢?转化后积会发生什么变化?
学生试做。
用投影打出学生做的过程,并由学生讲解:
①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);
讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用135×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)
学生重点讲解法③的道理,教师板书:
(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)
答:5米要用32.5元。
小结:
计算的思路是什么?(把小数乘法转化成整数乘法计算。)
转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)
(3)填空,并讲出道理。
(4)小结,引导学生得出计算方法。
①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)
②的计算方法是什么?
计算,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈
1.说出下面各算式中积应有几位小数:
25.4×36 2.37×125 0.15×3
1.032×24 3.506×1 0.017×21
2.在积的适当位置上添上小数点:
观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)
3.看谁算得又对又快。
25×4=18×5=2.5×4=1.8×5=
0.25×4=0.18×5=0.025×4=0.018×5=
注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。
4.列出乘法算式,再算出来。
(1)14个9.76是多少?(2)6个3.25是多少?
(3)5.24的5倍是多少?(4)1.6的8倍是多少?
5.课后作业 :P4:l,2,3,4。
课堂教学设计说明
是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。
在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。
练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。
小数乘以整数
小数乘以整数教学重点和难点
掌握小数乘以整数的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。
教学过程设计
(一)复习准备
1.先说出下列算式的意义,再口算:
17×2 5×16 4×30 126×1
56×10 28×100 15×4 65×0
小结:
(1)整数乘法的意义是什么?
(2)整数乘法的计算方法是什么?
2.口算下列各题,并观察积的变化有什么规律?
观察思考:
(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?
(2)从右往左看,积有什么变化?积的变化有什么规律?
小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)
3.填空:
(1)1.5扩大10倍是();(2)2.25扩大( )倍是225;
(3)1.2扩大()倍是12;(4)38缩小10倍是();
(5)85缩小()倍是0.85;(6)270缩小()倍是27。
(二)学习新课
1.创设情境
同学们,你们经常为家里买东西吗?你会算帐吗?请举例。
一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)
2.引导发现
(1)通过列式,理解小数乘以整数的意义。
学生根据题意列式:6.5+6.5+6.5+6.5+6.5。
这个加法算式有什么特点?(加数相同。)
根据这一特点,你还能用别的方法表示吗?
6.5×5。
6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)
你能说出下列算式表示什么?
2.7×5 5.8×4 3.54×2 1.63×11
小结:
小数乘以整数的意义是什么?(求几个相同加数的和的简便运算。)
小数乘以整数的意义与什么算式的意义相同?(小数乘以整数的意义与整数乘法的意义相同。)
说明整数乘法的意义也适用于小数乘以整数。
(2)计算:
思考、讨论:6.5×5应如何计算呢?
提示:能不能把6.5转比成整数呢?转化后积会发生什么变化?
学生试做。
用投影打出学生做的过程,并由学生讲解:
①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);
讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用135×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)
学生重点讲解法③的道理,教师板书:
(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)
答:5米要用32.5元。
小结:
计算小数乘以整数的思路是什么?(把小数乘法转化成整数乘法计算。)
转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)
(3)填空,并讲出道理。
(4)小结,引导学生得出计算方法。
①观察以上各题,你发现积的'小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)
②小数乘以整数的计算方法是什么?
计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈
1.说出下面各算式中积应有几位小数:
25.4×36 2.37×125 0.15×3
1.032×24 3.506×1 0.017×21
2.在积的适当位置上添上小数点:
观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)
3.看谁算得又对又快。
25×4= 18×5= 2.5×4= 1.8×5=
0.25×4= 0.18×5= 0.025×4= 0.018×5=
注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。
4.列出乘法算式,再算出来。
(1)14个9.76是多少?(2)6个3.25是多少?
(3)5.24的5倍是多少?(4)1.6的8倍是多少?
5.课后作业:P4:l,2,3,4。
课堂教学设计说明
小数乘以整数是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握小数乘以整数的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。
在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。
练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。
教学内容:
课本的例1和“做一做”,练习一的第1~4题。
教学目的:
1.使学生理解小数乘以整数的意义,掌握小数乘以整数的计算法则。
2.培养学生的迁移类推能力。
教具准备:
将课本的“复习”中的表格写在小黑板上。
教学过程:
一、复习。
1.复习整数乘法的意义。
问:整数乘法的意义是什么?(让两个学生说一说整数乘法的意义)
在乘法算式中各部分的名称分别叫什么?(被乘数、乘数、积)
还可以叫什么?(因数)
2.复习整数乘法中因数变化引起积变化的规律。
出示小黑板的复习题。一名学生在黑板上做,其他学生打开教科书,在书上自己独立做。教师巡视,集体订正。
订正后,教师引导学生观察、比较:
第2栏与第1栏比较,因数有什么变化?积有什么变化?
第3栏与第1栏比较,因数有什么变化?积有什么变化?
第4栏与第1栏比较,因数有什么变化?积有什么变化?
反过来比较:
第3栏与第4栏比较,因数有什么变化?积有什么变化?
第2、1栏与第4栏比较呢?
说明:这个规律非常重要,对我们以后的学习会有很大的帮助,同学们一定要好好地掌握。
二、新课。
1.教学小数乘以整数的意义(例1的前半部分)
教师出示例1。
想一想:这道题可以怎样解答,该怎样列算式?(多让几名学生回答,教师把学生的列式写在黑板上。)
6.5×5表示什么意思?(5个6.5。)用加法算是:6.5+6.5+6.5+6.5+6.5
还表示什么?(求6.5的5倍是多少。)
讲解:过去我们学习的是整数乘以整数,今天我们列的乘法算式是小数乘以整数。同学们想一想,小数乘以整数的意义同整数乘法的意义比较相同不相同?(相同)
让两名学生说一说小数乘以整数的意义。教师板书:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.教学小数乘以整数的计算法则(例1的后半部分)
问:我们已经知道了小数乘以整数的意义与整数乘法的意义相同,那么该怎样计算呢?想一想,能不能把这些小数乘法转化成整数乘法呢?
先复习一下小数点位置移动引起小数大小变化的规律,让两个学生说一说。
讲解算法:小数乘法可以依照整数乘法用竖式进行计算。
板书:
如果把这个式子变成整数乘法,就要去掉小数点,那么这个式子就变成了什么?(65×5)教师在小数乘法的竖式右边写出整数乘法的竖式。
引导学生讨论:
“6.5变成65相当于小数点怎样移动?因数扩大了多少倍?”(小数点向右移动一位,因数扩大了10倍。)板书:
“另一个因数变化了没有?(没有)
“一个因数扩大了10倍,另一个因数没有变化,那么新的积与原来的积比较发生了什么变化?(积比原来扩大了10倍。)
“那么要得到原来的积就要把新的积怎么样?(缩小10倍)。板书:
“要把325缩小10倍,就要把小数点怎样移动?”(小数点向左移动一位。)
板书:
“所以6.5×5的积应该是多少?(32.5)。
讲解:“买5米花布要用多少元?(32.5元)。在横式上写出得数,注明单位史称,板书答案。
引导学生回顾一下小数乘以整数的计算方法,使学生明确:先把被乘数看作整数,被乘数扩大10倍,这样乘出来的积也扩大10倍,要求原来的积,就要把乘出来的积再缩小10倍。
3.基本练习。
做教科书下的”做一做“。
学生独立计算,教师巡视了解全班学生掌握的情况,以及存在问题。
集体订正时,让两名学习好的学生说一说是怎样想。特别要让学生比较一下这道题与例题的异同。(这道题被乘数有两位小数,都是小数乘以整数。)使学生认识到积的小数位数与被乘数的小数位数应该一样。
三、巩固练习。
1.做练习一的第1题。
指名学生说一说每个乘法算式的意义。可有意识地让中差生说,并按照下面的问题顺序回答:读算式;说出是什么数乘以什么数;算式的意义是什么。
2.做练习一的第2题。
让学生再说一说小数乘以整数的意义。
3.做练习一第3题的前两道小题。
学生独立计算,对学习有困难的学生进行个别辅导。集体订正时,可让计算有错误的学生说一说是怎样算,使他们知道自己错在哪里。
教学目标
(一)理解小数乘以整数的意义,掌握小数乘以整数的计算方法。
(二)理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”的计算方法的道理。
(三)培养抽象、概括的能力。
教学重点和难点
掌握小数乘以整数的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。
教学过程设计
(一)复习准备
1.先说出下列算式的意义,再口算:
17×2 5×16 4×30 126×1
56×10 28×100 15×4 65×0
小结:
(1)整数乘法的意义是什么?
(2)整数乘法的计算方法是什么?
2.口算下列各题,并观察积的变化有什么规律?
观察思考:
(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?
(2)从右往左看,积有什么变化?积的变化有什么规律?
小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)3.填空:
(1)1.5扩大10倍是( );
(2)2.25扩大( )倍是225;
(3)1.2扩大( )倍是12;
(4)38缩小10倍是( );
(5)85缩小( )倍是0.85;
(6)270缩小( )倍是27。
(二)学习新课
1.创设情境
同学们,你们经常为家里买东西吗?你会算帐吗?请举例。
一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6.5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)
2.引导发现
(1)通过列式,理解小数乘以整数的意义。
学生根据题意列式:6.5+6.5+6.5+6.5+6.5。
这个加法算式有什么特点?(加数相同。)
根据这一特点,你还能用别的方法表示吗?
6.5×5。
6.5×5表示什么?(6.5×5表示5个6.5的和或6.5的5倍。)
你能说出下列算式表示什么?
2.7×5 5.8×4 3.54×2 1.63×11
小结:
小数乘以整数的意义是什么?(求几个相同加数的和的简便运算。)
小数乘以整数的意义与什么算式的意义相同?(小数乘以整数的意义与整数乘法的意义相同。)
说明整数乘法的意义也适用于小数乘以整数。
(2)计算:
思考、讨论:6.5×5应如何计算呢?
提示:能不能把6.5转化成整数呢?转化后积会发生什么变化?
学生试做。
用投影打出学生做的过程,并由学生讲解:
①6.5×5=6.5+6.5+6.5+6.5+6.5=32.5(元);
讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6.5×5的积;③对,把6.5扩大10倍是65,用65×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6.5×5的积。)
学生重点讲解法③的道理,教师板书:
(先把6.5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32.5。)
答:5米要用32.5元。
小结:
计算小数乘以整数的思路是什么?(把小数乘法转化成整数乘法计算。)
转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)
(3)填空,并讲出道理。
(4)小结,引导学生得出计算方法。
①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)
②小数乘以整数的计算方法是什么?
计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈
1.说出下面各算式中积应有几位小数:
25.4×36 2.37×125 0.15×3
1.032×24 3.506×1 0.017×21
2.在积的适当位置上添上小数点:
观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)
3.看谁算得又对又快。
25×4= 18×5= 2.5×4= 1.8×5=
0.25×4= 0.18×5= 0.025×4= 0.018×5=
注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。
4.列出乘法算式,再算出来。
(1)14个9.76是多少?
(2)6个3.25是多少?
(3)5.24的5倍是多少?
(4)1.6的8倍是多少?
5.课后作业 :P4:1,2,3,4。
教学内容:
教科书第1页例1和做一做,练习一第1~4题
教学目的:
理解小数乘以整数的意义,掌握小数乘以整数的计算方法;培养学生的迁移类推能力,渗透转化的数学思想。
教学重点:
理解小数乘以整数的意义,掌握小数乘以整数的计算方法。
教学难点:
小数点位置的处理。
教学过程:
一、复习导入
1、65×5表示什么?(两种意义)
2、填表并观察比较
(1)P1复习,填在书上
(2)指名口答
(3)观察比较:
第2、3、4栏分别与第1栏比较,因数有什么变化?积有什么变化?
第3、2、1栏分别与第4栏比较,因数有什么变化,积又有什么变化?
(4)引导学生说出一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍......积也扩大(或缩小)10倍、100倍、1000倍......
3、小结导入
刚才复习的整数乘法的意义以及整数乘法中因数变化引起积变化的规律,对我们今天学习的知识很有帮助的。
板书:小数乘以整数
二、进行新课
1、教学例1
(1)出示例1,并读题
(2)列出算式
想一想,这道题怎样解答?有几种方法?
板书:用加法算:6.5+6.5+6.5+6.5+6.5
用乘法算:6.5×5为什么?
(3)理解意义
联系加法算式想6.5×5表示什么意思?
还表示什么?
小数乘以整数的意义同整数乘法的意义相同吗?(结合复习题1想想)
出示:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
说明:以前说的求几个相同加数和的简便运算叫乘法只限于整数,现在也包括了小数乘以整数。
(4)探究解法
用加法算6.5+6.5+6.5+6.5+6.5=32.5(元)
讨论乘法计算方法:
能不能把小数乘法转化成整数乘法呢?
汇报交流说说怎样想的?
重点思考:为什么要把325缩小10倍才是原来的积?
指出:在具体计算中,把6.5看作65即可,不必另写算式
2、P1做一做
(1)列出算式
(2)你能根据例题的方法计算出这道题的得数吗?
(3)指名板演,其余自练
(4)集体订正,请板演学生说说怎样想的?
★ 分数乘整数练习题