下面就是小编给大家分享的老师与分数(共含9篇),希望大家喜欢!同时,但愿您也能像本文投稿人“爱吃辣的小蜜蜂”一样,积极向本站投稿分享好文章。
老师与分数_小学作文
“陈婕,下课你到办公室来一下。”是好事吗?我在心里暗自嘀咕。我跟在那神情恐怖的老师后面,看着老师那拧在一起的面孔,心里就知道不是什么好事。
我站在办公室里,从老师脸上,可以看出她的神情十分复杂。老师从那乱堆堆的试卷里,抽出一张满是扣分的卷子,一直用手按住太阳穴。我仔细看了看上面的名字,名字后的“陈婕”大而悲哀。
不,不,Idon“tbileveit.我真得不相信,分数线上那刺眼的89直映我眼帘。刺得我眼泪涌了上来。但要我哭,也没那么容易。
乐观的我想:我努力过了,下次在更努力就行了。我不哭,老师好象不满意。她用手扶住桌子,刻意大声地指着我说:“你啊,一直都考100分,怎么?那么简单的'试卷就让你一落千丈......”她越骂越起劲,我忍不住了大声地对她反驳:“就一次嘛,下次考个两百分压你死,而且,我成绩很好,我看,重点中学就是为我而开的。”我大骂了以后,心里起了前所为有的紧张,也有了前所为有的复杂:该死的嘴,怎么想着想着就说出来了呢?胆子,什么时候变那么大拉......
“陈婕!”一声怒吼把我从思想中拉了回来。我小心翼翼把头抬了起来,老师在“人”视眈眈看着我。我不知不觉退后了几步,正好退到了门口。一溜烟,逃之夭夭。
终于逃到了教室里,我坐在座位上,不断地想:为什么老师把分看那么重要,这几天期中考完了,只是瞬间的放松,就没想到要连“烤”?
我低着头,背起书包,走过的地方留下了一滴滴的泪水........
教学目标
(一)理解分数与除法的关系。
(二)学会用分数表示两个数的商。
(三)培养学生动手操作的能力。
教学重点和难点
(一)分数与除法的关系。
(二)整数除法的结果用分数表示。
教学用具
教具:投影片,3张同样大小的圆形纸片,剪刀,电脑动画录像。
学具:3张同样大小的圆形纸片,剪刀。
教学过程设计
(一)复习准备
提问:说明下面各分数的意义,它们的分数单位各是多少?各有几个这样的分数单位?
教师:如果请同学口算1÷11,能很快地得出小数商吗?如果商要
教师:上面的这道除法题,它的商可以用分数来表示。今天我们就来学习分数与除法的`关系。板书课题:分数与除法。
(二)学习新课
1.把一个计量单位平均分若干份,求每份是多少。
(1)板书例2,把1米长的钢管平均截成3段,每段长多少?
教师:说一说这道题的条件和问题。
教师板书出图。
教师:如何列式?
学生口答后板书出算式1÷3,问:为什么用除法计算?(已知总数和份数,求每份数。)
(引导学生按分数的意义来想;把1米平均分成3份,其中的一份应是1
(2)直接说出下面各题的商,再说一说怎样想的。
①把1千克平均分5份,每份是多少?
②把1米2平均分8份,每份是多少?
2.把许多个物体平均分若干份,求每份是多少。
(1)例3,把3块饼平均分给4个孩子,每个孩子分得多少?
教师:怎样列式?列式的依据是什么?
学生口答后老师板书出列式:3÷4。
教师:3÷4的计算结果用分数表示是多少呢?请同学取出自己准备的3张圆形纸片,动手分一分看该得多少?
学生动手剪分,教师巡视,巡视中可提示:该把谁拿来平均分?谁是单位“1”?平均分几份?
学生剪分完,汇报答案。(答案不统一。)
(2)教师:照你们说的,把3个饼作为单位“1”,平均分4份。我们看看下面的剪分图。展示电脑动画图像:
教师:请看一看自己的拼法是不是与图像上的相同。
问:取出的这一份是多少?
(3)老师:请观察板书:(前面的)
能看出分数与除法有怎样的关系?
学生口答后,教师说明:除法是一种运算,分数是一个数,所以被除数与分子,除数与分母之间是“相当”的关系,而不说“等于”。所以分数与除法的关系,准确的说法是:被除数相当于分子,除数相当于分母,除号相当于分数线。
教师:能用式子把这种关系表示出来吗?
学生口答,老师板书:
用字母a表示被除数,b表示除数,分数与除法的关系可以如何表示?
教师:在整数除法中除数不能为零,那么在分数中,分母有什么限制没有?
学生口答后,老师板书补充:(b≠0)
口答练习:(投影片)
(三)巩固反馈
1.(口答)用分数表示下面各题的商:
3÷7 9÷14 42÷75
m÷n (n≠0) B÷A(A≠0)
2.口答填空。(投影片)
3.口答下列各题:(口述题目)
(1)把5米的铁丝平均分7份,每份长多少米?
(2)小王骑自行车5分行了1千米,平均每分行多少千米?
(四)课堂总结与课后作业
2.作业:课本92页练习十九,1,2,3。
课堂教学设计说明
在分数的初步认识和分数的意义的教学中,已经渗透了分数与除法的关系。本节课的教学中,设计安排了学生动手操作,和电脑动画图的演示,这样可以帮助学生从具体到抽象地理解把多个物体作为整体平均分若干份时,得出的分数商,也使学生对分数与除法的关系有明晰、全面的认识,同时也加深了对分数意义的理解。图形的剪拼,既调动了学生的学习积极性、又可以培养学生的动手能力。
本节新课教学分为两部分。
第一部分从把一个计量单位平均分若干份,求每份是多少的问题入手,研究分数与除法的关系。共分两层,从平均分问题求商和按分数意义找结果两方面来解答问题;练习利用分数意义直接求商。
第二部分从把若干个物体平均分的问题入手,研究除法与分数的关系。共分三层,根据数量关系列出算式;通过学生自己动手剪拼,观看电脑录像和教具演示,找出用分数表示的商;引导学生概括出除法与分数的关系。
板书设计
分数与交通规则作文
太好了!我考了92分!”“唉!我才考了75分。”几乎每次考试后都有这种声音。N次考试后,我用交通规则总结了考试后要面临的`风险。
90分以上:在安全岛上。
“安全岛”从字面就可以理解有多安全了吧。表示自身已安全,不用担心可能会发生的事了。
80分以上:在人行横道线上。
在人行横道线上也很安全,但是有些司机对你“不客气”的话,那就不安全了。表示百分之九十的人很安全,百分之十的人不安全。主要看家长对孩子的要求。
70分以上:红灯穿马路。
红灯穿马路,可见有多危险。表示如果运气好的话可以过关,运气不好的话就要去医院度假。
60分以上:被气车撞了。
如果被气车撞了,不死也会终身残疾。表示回家后不死也要少层皮。
在第一单元语文考试中,我得了第一名。听到这个好消息后,我高兴得一蹦三尺高,回家后便立即告诉了妈妈。
妈妈听到我考了第一名,脸上也绽放开了满意的笑容,给我做了我最喜欢的炸土豆丝。然而,晚上签名的时候,妈妈发现我试卷里有一道题做错了,但老师却给我打了勾。妈妈让我去向老师说明,并让老师扣除掉那两分。“可扣除后我就变成第二名了!”我不高兴地说。妈妈笑了笑,问我:“如果所有人都不诚实,老师批改也不诚实,岂不是所有人都得第一名?”我独自一个人在阳台想了一下,的确,没有一个人诚实的世界很可怕,想要世界诚实,就该从自己做起。于是,我下定决心明天去找老师扣除掉两分。
当老师扣除那两分时,我的'心里不知为何,那层紧张的隔膜消失了,那颗压在心头的巨石放下了,感觉像是在阴暗潮湿的地牢里回归到了明媚灿烂的阳光中,整个人舒畅极了。
在分数与诚实中,我选择了诚实。因为诚实是比分数重要百倍甚至千倍的东西。一个人有了诚实,才会被别人尊重。诚实,是一个人的根本!
教学过程:
一、复习旧知识,引进新课
1、把8个饼平均分给4个人,每人分得几个?谁能列式?
2、把4个饼平均分给4个人,每人分得几个?
这两道题,是我们以前学过的,把一个数平均分成几份,求每一份是多少,
什么方法来计算?
二、激思讨论,探讨新知识
1、教学例1。
(1)把1个饼平均分给3个人,每人分得几个?怎样列式?
(2)求每人分得几个?用除法来列式。那每人到底分得多少个饼呢?你是怎么想的?(课件演示:一张饼的1/3就是1/3张饼。)
2、揭示课题:这节课我们就来研究“分数与除法”。让学生提出学习这一节课想知道的问题。
【设计意图:运用学生对已有知识“分数的意义”和“除法的意义”的理解,沟通分数与除法的关系,让学生明确在计算除法的时候,往往得不到整数的结果,可以用分数来表示。】
三、实际操作,寻找规律
教学例2。
1、把3张饼平均分给4人该怎么计算呢? “3 ÷ 4”表示什么意思?现在每
人能分得一张饼吗?
2、指导学法,让学生动手操作:利用3个圆形纸片,动手折一折、剪一剪、
分一分,看看平均每人能分到多少块?
3、各组汇报分法及分的结果。
组1:我们是把这3张饼,每个都平均分成4块,一共分成12块,每人得3块。
组2:一个饼一个饼地分。先将第一个饼平均分成4份,每人分得其中的一份;
将第二个饼也平均分成4份,每人也分得其中的一份;将第三个饼同样平均分成4份,每人又分得其中的一份。将每个人得到的饼拼在一起,也是3/4张饼。
组3:三个饼叠在一起,平均分成4份,每人分得其中的一份。每人分得3张饼的1/4,也是3/4张饼。
4、电脑屏幕显示三种分法,让学生尝试说出推理过程。
(1)把3个饼平均分成4份,我们可以吧什么看作单位“1”?
一份是多少个饼?一份是三个饼的几分之几?
(2)从屏幕显示和操作,我们可以看出:1个饼的3/4就是3个饼的1/4。
(3)3/4就是哪一算式计算的结果?
(4)3/4个饼表示什么意义?
【设计意图:通过分析“把3张饼平均分成4份”,完成了从观察到想象,从个别到其他的思维过渡,同时为充分发现分数和除法的关系创造了条件。】
四、比较分析,分析规律
1、观察等式1÷4=1/4,3÷4=3/4,,3÷5=3/5发现除法和分数有怎样的关系?
2、你发现分数与除法有什么联系?为什么用相当于?
【设计意图:这个环节重点要引导学生发现:分数恰好是相应除法算式的结果,发现除法算式各部份与分数各部份的关系,并指导学生用准确的语言进行表述,比如“被除数相当于分数的分子”中的“相当于”而不是“就是”,便于学生认识到分数与除法既相联系又相区别。】
板书:被除数÷除数=被除数/除数这个等式还有注意什么?在分数中分母能是零吗?为什么?
3、如果用字母a、b分别表示被除数、除数这个等式该怎样写?这里哪个字母不能是零?
4、联系复习时3÷5=3/5,现在你能运用分数和除法的关系来说明吗?
5、小结:一个分数不仅可以表示一个得数,也可以看作一个除法算式。
五、多层练评,反馈总结
1、75页自主练习1,生独立完成。
7÷12=( )/( ) 4÷3=( )/( )
9/5=( )÷( ) 3/8=( )÷( )
2、单位之间的互化。
7分米=( )/( )米 3克=( )/( )千克
23分=( )/( )时 59秒=( )/( )分
3、解决生活中的问题。
4、课堂总结:通过这节课学习你有什么收获?
说课内容:
九年义务教育六年制小学数学人教版第十册第65页。
教学地位:
分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的.关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。
教学目标:
1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。
2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。
3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。
教材分析:
首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。
其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。
第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。
教学学法:
教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。
在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。
这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。
分数与除法说课稿
一、指导思想
数学教学,要让学生在一种积极的思维状态下,亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过尝试活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。
因此,在教学中我始终以学生发展为立足点,以自我尝试、讨论探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。
二、教材分析
《分数与除法》是人教版义务教育课程标准实验教科书五年级下册第四单元第二课时的内容。本节课,是在分数意义的基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商,这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。
三、教学目标
根据对教材的分析和学生的实际,依据数学课程标准的理念结合教材自身的特点和学生的认知规律,我确定教学目标如下:
(1)知识目标:
理解和掌握分数与除法的关系。
(2)能力目标:
通过动手操作,在学生充分感知的基础上,理解并形成分数与除法的关系。培养学生的实践、观察及创新能力,促进思维的发展。通过同学间的合作,进而促进学生的倾听、质疑等良好学习惯的养成
(3)情感与态度目标:
结合学生认知规律,激发学生的.求知欲望,在具体的探究过程中培养学生的数学素养以及培养学生自我探索的意识和创新精神。
3、教学重点
经历探究过程,理解和掌握分数与除法的关系。
4教学难点
理解用分数可以表示两个数相除的商
四、说教法、学法
学生认识事物是由易到难,由浅入深循序渐进的,由“感性认识上升到理性认识”的认知规律,学生虽然知道了分数的意义,但要使学生真正理解分数与除法的关系,必须遵循他们的认知规律。因此,本节课采取的教学方法是尝试教学法,利用学具让学生在具体的情境中大胆尝试,通过动手操作,观察发现,引导归纳出分数与除法的关系。学生的学法与教师的教法是一个有机的整体所以尝试探究、动手操作、发现问题、整理归纳贯穿于整节课。
总之,力途为学生营造一个宽松、民主的学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们在积极的数学思维状态下,真正感受到“我能行”。
五、说教学程序
针对以上思想,我说一下教学流程中的每一步设计意图:
(一)、复习导入 点明课题
因为本节课是在分数意义的基础上进行的,所以让学生加深对分数的意义理解,明确本节课要干什么。开门见山出示课题。
(二)、 探究新知
1、唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法的意义顺势引导1张饼平均分成2份、3份、4份怎样列式,然后多媒体给学生以直观形象的演示,让学生理解分数可以写成除法。给学生以表象的认识。
2、尝试探究,
首先提出问题:3张饼平均分给4个人,每人分几张?然后让学生利用学具动手操作分一分,讨论交流,并让学生展示分的过程,把课堂还给学生。同时根据学生的汇报多媒体展示分的过程。使学生明确三张的四分之一就是一张的四分之三,所以每人分四分之三张。
这时,当学生对知识的理解由感性上升到理性,所以马上进行补充事实,举一反三
2张饼平均分给4个人,每人分几张?3张饼平均分给5个人,每人分几张?这样学生就比较容易的迁移知识,得出2/4与3/5.
3、归纳概括
通过以上的动手尝试探究,学生经历了知识的形成过程,所以放手让学生观察发现分数与除法有什么关系,得出结论。同时使学生初步知道两个整数相除,只要除数不为0,不论能否除尽,都可以用分数来表示商。
(三)尝试练习
接着,就是学生进入当堂练习中,设计有层次的、题型多样的练习,及时的巩固新知,达到当堂学,当堂清的效果。使学生更进一步理解本节课所学内容。
六、说教学反思
本节课,是在分数意义的基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。
从总体来看,本节课学生能在具体的情境中动手操作,大胆尝试,兴趣比较浓厚,而且学生动手分的情况也比较好,也能大胆的展示,基本上掌握了分数与除法的关系。使我感受到数学的动手操作是课堂教学的一个重要途经。但还存在许多细节问题:
1. 在课堂结构安排上有点前松后紧。
2. 学生展示分的过程时没有点到位,有点乱,不太突出。
3. 总结归纳时没有充分放手学生,而且比较急匆匆而过。
4. 学生语言表达能力比较欠缺。
在以后的教学过程中要尽量克服这些困难,提高自己的课堂教学质量
教学目标
1.使学生理解两个整数相除的商可以用分数来表示。
2.明确分数与除法的关系,加深学生对分数意义的理解。
教学重点
理解、归纳分数与除法的关系。
教学难点
用除法的意义理解分数的意义。
教学步骤
一、铺垫孕伏。
1.读题说得数。
3.2+1.68 0.8×0.5 14-7.4 0.3÷1.5 4.8×0.02
7.8+0.9 1.53-0.7 0.35÷15 0.4×0.8 0.8-0.37
2.口述 表示的意义。
3.列式计算。
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知。
1.新课导入。
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书: 1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)
2.教学例2。
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的. 就是 米.(板书 米)
(2)学生完整叙述自己想的过程。
(3)反馈练习。
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3.教学例3.
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式: 3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流.
甲生:先把每个圆剪成4个 块,然后把12个平均分成4份,再把3个 拼在一起,每份是 块.
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块、(在3÷4后板书 块)
(4)看图根据乙生分饼的过程说出 表示的意义。
①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是 。
(5)都是 ,意义有何不同?(结合算式说出 的两种意义)
明确: 表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份.
(6)反馈练习:说说下面分数的两种意义
★ 分数与除法说课稿
★ 分数与除法教案
★ 我与老师