今天小编就给大家整理了考研数学线性代数主观题分析(共含7篇),希望对大家的工作和学习有所帮助,欢迎阅读!同时,但愿您也能像本文投稿人“newlife”一样,积极向本站投稿分享好文章。
考研数学线性代数主观题分析
考研数学中线性代数部分的两道大题一道考在矩阵方程这一部分,另一道考在二次型这一块,与以往出题方式有点不同。
其中,第20题(数一、数三)表面上考矩阵方程,实质上是线性方程组求解的问题。考查学生的思维能力,需要学生对各知识模块熟练掌握且能灵活应用知识间的联系,这类考法在线性代数里不是很常见,难度虽不大,但是需要学生有思路。因此如果能转化到线性方程组求解,这个题就很容易做了.
第21题(数一、数三),考查的是二次型,第一问是求二次型的矩阵,这个问题没有难度,但是有较大的计算量,需要学生有一定的计算功底,且需要熟练掌握矩阵的乘法,第二问是考查二次型在正交变换下的标准型,这个问题涉及了向量内积、向量正交、实对称矩阵的正交变换、求矩阵的特征值等几个知识点,此题综合性较强,也有一定的技巧性,需要学生能综合灵活应用所学知识,由于只需要求二次型的标准型,而且是在正交变换下,所以只要求得二次型矩阵的特征值即可,这是此题解题的思路和关键,本题集中体现了线性代数命题的特点:涉及的基本概念比较多,不同的概念之间的.联系比较复杂。考生需要具备比较全面的知识储备才能比较顺利地突破考题所设置的所有关卡。
纵观这次的线性代数考题,在掌握基础知识和具备一定的计算功底的基础上,又增加了试题的灵活性和技巧性,需要学生对知识间的联系熟练掌握,这点达到了,在线代拿高分不难。
考研数学:线性代数重点分析
考研数学包括:线性代数、高等数学、概率论与数理统计,高等数学占考研数学的大部分比例,而线性代数所占的分值比例是22%.线性代数知识点多、定理多、概念多、符号多、运算规律多,知识点之间的联系非常紧密。复习线性代数的时候,要对基本概念、基本定理、结论及其应用、各种运算规律及基本题型的计算方法都要掌握。下面针对各章节进行考点的总结,并给出复习重难点。
第一章行列式
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算方法主要有两种,第一种方法是三角化法,即利用行列式的性质把复杂的行列式化为上三角或者下三角来计算,第二种方法是降价法,即利用行列式按行(列)展开定理把高阶行列式降为低阶行列式来计算。
第二章矩阵
首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。矩阵的秩是整个线性代数的核心。要清楚,秩的定义,有关秩的很多结论。针对结论,大家最好能知道他们是怎么来的,自己动手算一遍。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。
第三章向量
向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。
第四章特征值与特征向量
掌握特征值与特征向量的概念与性质;数值型矩阵特征值与特征向量的计算方法;理解掌握矩阵乘法运算与特征向量的.联系;抽象矩阵行列式的计算;特征值重数与无关特征向量的关系。
第五章二次型
二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。要掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题。化二次型为标准形:主要是利用正交变换法化二次型为标准型,这是考研数学线性代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。二次型的正定性问题:对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定性判断可以通过利用标准形,规范形,特征值等得到证明,这时应熟悉二次型正定有关的充分条件和必要条件。
考研数学线性代数难点知识点分析
在考研数学中,线性代数部分所占分值为22%,虽然所占比例不及高数分值高,但同样重要。线性代数部分内容相对容易,考试的时候出题的套路比较固定。但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。这就要求同学们在复习时多注意一下基本概念。
依据2013考研数学新大纲以及历年真题来看,线性代数的重难点如下:
一、行列式
行列式的性质、行列式按行(列)展开定理是重点,但不是难点。在行列式的计算题目中,尤其是抽象行列式的计算,常用到矩阵的相关知识,应提高对知识的综合运用能力。
二、矩阵
逆矩阵、矩阵的初等变换、矩阵的秩是重点。逆矩阵的.计算,以及矩阵是否可逆的判定属于常考内容。矩阵的初等变换常以选择题形式出现。
三、向量
向量组的线性相关与线性无关是一个重点,要求掌握向量组线性相关、线性无关的性质及判别法,常以选择题、解答题形式出现。正交矩阵也可以作为一个重点掌握。考查最多的是施密特正交化法。
四、线性方程组
方程组解的讨论、待定参数的解的讨论问题是重点考查内容。掌握用初等行变换求解线性方程组的方法。
五、矩阵的特征值和特征向量
矩阵的特征值、特征向量的计算以及矩阵的对角化是重点。对于抽象矩阵,要会用定义求解;对于具体矩阵,一般通过特征方程 求特征值,再利用 求特征向量。相似对角化要掌握对角化的条件,注意一般矩阵与实对称矩阵在对角化方面的联系与区别。
六、二次型
这部分需要掌握两点:一是用正交变换和配方法化二次型为标准形,重点是正交变换法。需要注意的是对于有多重特征值时,解方程组所得的对应的特征向量可能不一定正交,这时要正交规范化。二是二次型的正定性,掌握判定正定性的方法。
考研数学 线性代数高频考点
一、行列式
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。所以要熟练掌握行列式常用的计算方法。
1重点内容:行列式计算
(1)降阶法
这是计算行列式的主要方法,即用展开定理将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式
有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2常见题型
(1)数字型行列式的计算
(2)抽象行列式的计算
(3)含参数的行列式的计算。
二、矩阵
矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。有些性质得证明必须能自己推导。这几年还经常出现有关初等变换与初等矩阵的命题。
1重点内容:
(1)矩阵的`运算
(2)伴随矩阵
(3)可逆矩阵
(4)初等变换和初等矩阵
(5)矩阵的秩
2常见题型:
(1)计算方阵的幂
(2)与伴随矩阵相关联的命题
(3)有关初等变换的命题
(4)有关逆矩阵的计算与证明
矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。
(5)解矩阵方程。
三、向量
向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1重点内容:
(1)向量的线性表示
线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
(2)向量组的线性相关性
向量组的线性相关性是线性代数的重点,也是考研的重点。同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。
(3) 向量组等价
要注意向量组等价与矩阵等价的区别。
(4)向量组的极大线性无关组和向量组的秩
(5)向量空间
2常见题型:
(1)判定向量组的线性相关性
(2)向量组线性相关性的证明
(3)判定一个向量能否由一向量组线性表出
(4)向量组的秩和极大无关组的求法
(5)有关秩的证明
(6)有关矩阵与向量组等价的命题
(7)与向量空间有关的命题。
四、线性方程组
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。但也不会简单到仅考方程组的计算,还需灵活运用,比如的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。
1重点内容
(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构
(2)齐次线性方程组基础解系的求解与证明
(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。
2常见题型
(1)线性方程组的求解
(2)方程组解向量的判别及解的性质
(3)齐次线性方程组的基础解系
(4)非齐次线性方程组的通解结构
(5)两个方程组的公共解、同解问题。
五、特征值与特征向量
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。
1重点内容
(1)特征值和特征向量的概念及计算
(2)方阵的相似对角化
(3)实对称矩阵的正交相似对角化。
2常见题型
(1)数值矩阵的特征值和特征向量的求法
(2)抽象矩阵特征值和特征向量的求法
(3)判定矩阵的相似对角化
(4)由特征值或特征向量反求A
(5)有关实对称矩阵的问题。
六、二次型
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。
1重点内容:
(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;
(2)了解二次型的规范形和惯性定理;
(3)掌握用正交变换并会用配方法化二次型为标准形;
(4)理解正定二次型和正定矩阵的概念及其判别方法。
2常见题型
(1)二次型表成矩阵形式
(2)化二次型为标准形
(3)二次型正定性的判别。
考研教育网最后提醒大家,做题的时候一定要总结,复习到现在这个阶段了,一定要注意从各个方面来总结。比如说像线性方程组这一章,你应该总结一下,像这一块真题应该怎么考,都有什么花样,有哪些思想和技巧在里边,把这些东西归纳好了,在以后做题的时候应该怎么做就会很清楚了,考试的时候碰到这种题也就手到擒来,轻松搞定!
考研数学:线性代数怎么复习
数学考试大纲和去年相比,线性代数基本没有变化。这是数学学科本身的严谨性和稳定性的体现,对于考研的同学们来说也是一个好消息。线性代数每年考查的题型题量很固定,考查内容也很稳定,以考察计算题为主,相对来说,是同学们复习比较好拿分的科目。下面就线性代数的考查特点给大家做一个分析。
线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的'行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。
线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。
考研数学线性代数复习
考研数学线性代数相比较高等数学和概率论的复习而言,呈现明显的知识点,概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。因此,考研数学线性代数暑期复习重点应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三。为了让考生在暑期复习中能将线性代数提高到一个新的层次,这里数学辅导名师给大家重点说一下历年考研重点及复习思路。
1。行列式的重点是计算,利用性质熟练准确的计算出行列式的值。
2。矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次:
(1)矩阵的符号运算
(2)具体矩阵的数值运算
3。关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的.掌握,并要注意推证过程中逻辑的正确性及反证法的使用。
4。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
5。于特征值、特征向量,要求基本上有三点:
(1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程OλE-AO=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。
(2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。
(3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及An。
6。将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:
(1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。
(2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。
() 中国大学网 ■人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,大家在第一轮全面复习的时候同时就要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。那么,考研数学复习中的“刀刃”都有哪些呢?考研辅导专家认为,高等数学是考研数学的重中之重,所以大家在备考高等数学时要特别注意。
地毯式的反复练习
大家在复习过程中,要对重要定理、重要的公式或者重要的结论应该经常翻一翻,已经有印象的,反复练习可以加深印象,使自己保持一个良好的状态。参加硕士研究生入学考试这种选拔性的考试跟体育竞技有些类似,想要保持一个良好的状态,必须把要考的内容在脑海里面反复强调。很多同学说把代数复习完以后,高等数学忘了,复习这个忘了那个,这个很正常,不要因为这个原因,就认为考不好数学,每个正常的人都会有这样的`感觉。考研辅导专家提醒考生,要解决这个困难,只有通过反复复习,学习英语亦是如此,通过反复使自己能够随时调用数学知识。记忆的关键就在于重复,如果大家能够把学习变成一种习惯,那势必会让你的复习锦上添花,也不会对学习产生抵触情绪,这样一来,效率和效果自然会高上无数倍。
★ 线性代数课件
★ 高校考研分析报告
★ 法律考研题型分析
★ 考研英语句子分析