小编在这里给大家带来考研数学答题技巧之解答题攻略(共含6篇),希望大家喜欢!同时,但愿您也能像本文投稿人“莫礼斯”一样,积极向本站投稿分享好文章。
近几年,考研数学综合能力的考查不但出现在大的计算题中,而且在单选题和填空题中也会出现不少的综合考查点,所以综合题的解题能力能不能提高,关系到考生的数学能不能考高分,这也是考研数学的试题的一贯特点。今年的试题也不例外,综合题考查的是知识之间的有机结合,这就对考生提出了更高层面的要求,它要求我们的复习必须全面。因为数学如果有比较明显的弱项的话后果往往是很严重的,它不但会影响这一部分试题的得分,还会影响到所有与该知识点相关的试题的得分。那对于考研数学中解答题的不同题型,考生应该如何应对呢?
证明题复习攻略:
第一,对题目所给条件敏感。在熟悉基本定理、公式和结论的基础上,从题目条件出发初步确定证明的出发点和思路;第二,善于发掘结论与题目条件之间的关系,
例如利用微分中值定理证明等式或不等式,从结论式出发即可确定构造的辅助函数,从而解决证明的关键问题。
计算题复习攻略:
近年计算题考查重点不在于计算量和运算复杂度,而侧重于思路和方法,例如重积分、曲线曲面积分的计算、求级数的和函数等,除了保证运算的准确率,更重要的就是系统总结各类计算题的解题思路和技巧,以求遇到题目能选择最简便有效的解题思路,快速得出正确结果。现在距离考试还有一个多月,考前冲刺做题贵在“精”,选择命题合乎大纲要求、难度适宜的模拟题进行练习是效果最为立竿见影的。
应用题复习攻略:
重点考查分析、解决问题的能力。首先,从题目条件出发,明确题目要解决的目标;第二,确立题目所给条件与需要解决的目标之间的关系,将这种关系整合到数学模型中(对于图形问题要特别注意原点及坐标系的选取),这也是解题最为重要的环节;第三,根据第二步建立的数学模型的类别,寻找相应的解题方法,则问题可迎刃而解。
考研数学 攻克解答题三大攻略
大家都知道“擒贼先擒王”这句老话,套用到考研数学复习上更是获取高分的一大妙招。想要在数学考试中脱颖而出,取得优异成绩,一定要设法攻克考研数学的重头戏――解答题。
解答题无疑是考研数学的重中之重,数一、数二、数三、农学数学卷面的解答题都占94分,超过全卷总分的60%!从往届考生的成绩来看,考生在解答题部分得分差别很大,直接导致数学成为最能在分数上拉开距离的考试科目。很多同学说,我很想做好解答题,但就是做题无从下笔,或者做了也这错那错。那么,怎样准确把握解答题的复习要领和作答技巧,在这一部分直取高分呢?在此,考研命题研究中心从最利于同学们高效复习、稳步提高的角度提供以下主观题高分攻略:
一、攻略一:立足基础,融会贯通
解答题作答的基本功还是在于对基本概念、基本定理和性质以及基本解题方法的深入理解和熟练掌握。因此首先做好的有两个层面的复习:第一,把基本概念、定理、性质彻底吃透,将重要常用的公式、结论转变为自己的东西,做到不靠死记硬背也可得心应手灵活运用,这是微观方面;第二,从宏观上讲,理清知识脉络,深入把握知识点之间的内在关联,在脑海中形成条理清晰的知识结构,明确纵、横双方向上的联系,方可做到融会贯通,对综合性考查的题目尤为受用。
二、攻略二:分类总结解题方法与技巧
主观题分为三大类:计算题、证明题、应用题。三类题型分别有各自独特的命题特点以及相应的做题技巧。例如计算题要求对各种计算(如未定式极限、重积分等)常用的定理、法则、变换等烂熟于心,同时注意各种计算方法的综合运用;而证明题(如中值定理、不等式证明等)则须对题目信息保持高度敏感,熟练建立题设条件、结论与所学定理、性质之间的链接,从条件和结论双向寻求证明思路;应用题着重考查利用所学知识分析、解决问题的能力,对考生运用知识的综合性、灵活性要求很高。同学们在复习的过程中要注意针对三种不同的题型分别总结解题方法与技巧,及时归纳做题时发掘的小窍门、好方法,不断提高解题的熟练度、技巧性。在做题的过程中,保持与考纲规定的范围、要求一直是首要原则,可以选一本根据最新考试大纲编写的主观题专项训练题集,对三大类解答题进行针对性的训练与深入剖析,在做题的过程中提炼解题要领、解决各类题型的关键环节与作答技巧,做到触类旁通,活学活用,获取知识掌握与解题能力的同步提高。
三、攻略三:抓好两个基本点
这里的.两个基本点指的是对每一位同学解题备战至关重要的两大要素――核心题型及易错题型。核心题型包括近年考试常考的题目类型,如高等数学中的洛必达法则、复合函数求导、二重积分计算,线性代数中的特征值、特征向量、矩阵对角化,概率统计中的随机变量密度函数、独立性、数字特征等问题,都需要同学们熟练掌握题目解法,落实到底。另外很重要的一点就是对自己掌握不太好的题型、经常做错或者感觉无从下手的题型也要多花时间彻底搞懂,弄通,并且通过更多的同类题目的练习加深巩固,直到对此类题目及与此相关的题目都能够轻松破解,变难题为拿手题,长此以往解题能力必可获得显著提高。
上面提到的三点可以帮助同学们把握攻克主观题难关的正确方向,更多的还是需要同学们脚踏实地搞好每一部分的复习,认真做好总结与归纳。祝大家复习顺利!
大学网考研频道。考研数学 攻克解答题三大攻略
大家都知道“擒贼先擒王”这句老话,套用到 数学复习上更是获取高分的一大妙招。想要在数学考试中脱颖而出,取得优异成绩,一定要设法攻克考研数学的重头戏――解答题。解答题无疑是考研数学的重中之重,数一、数二、数三、农学数学卷面的解答题都占94分,超过全卷总分的60%!从往届考生的成绩来看,考生在解答题部分得分差别很大,直接导致数学成为最能在分数上拉开距离的考试科目。很多同学说,我很想做好解答题,但就是做题无从下笔,或者做了也这错那错。那么,怎样准确把握解答题的复习要领和作答技巧,在这一部分直取高分呢?在此,考研命题研究中心从最利于同学们高效复习、稳步提高的角度提供以下主观题高分攻略:
一、攻略一:立足基础,融会贯通
解答题作答的基本功还是在于对基本概念、基本定理和性质以及基本解题方法的深入理解和熟练掌握。因此首先做好的有两个层面的复习:第一,把基本概念、定理、性质彻底吃透,将重要常用的公式、结论转变为自己的东西,做到不靠死记硬背也可得心应手灵活运用,这是微观方面;第二,从宏观上讲,理清知识脉络,深入把握知识点之间的内在关联,在脑海中形成条理清晰的知识结构,明确纵、横双方向上的联系,方可做到融会贯通,对综合性考查的题目尤为受用。
二、攻略二:分类总结解题方法与技巧
主观题分为三大类:计算题、证明题、应用题。三类题型分别有各自独特的命题特点以及相应的做题技巧。例如计算题要求对各种计算(如未定式极限、重积分等)常用的定理、法则、变换等烂熟于心,同时注意各种计算方法的综合运用;而证明题(如中值定理、不等式证明等)则须对题目信息保持高度敏感,熟练建立题设条件、结论与所学定理、性质之间的链接,从条件和结论双向寻求证明思路;应用题着重考查利用所学知识分析、解决问题的能力,对考生运用知识的综合性、灵活性要求很高。同学们在复习的`过程中要注意针对三种不同的题型分别总结解题方法与技巧,及时归纳做题时发掘的小窍门、好方法,不断提高解题的熟练度、技巧性。在做题的过程中,保持与考纲规定的范围、要求一直是首要原则,可以选一本根据最新考试大纲编写的主观题专项训练题集,对三大类解答题进行针对性的训练与深入剖析,在做题的过程中提炼解题要领、解决各类题型的关键环节与作答技巧,做到触类旁通,活学活用,获取知识掌握与解题能力的同步提高。
三、攻略三:抓好两个基本点
这里的两个基本点指的是对每一位同学解题备战至关重要的两大要素――核心题型及易错题型。核心题型包括近年考试常考的题目类型,如高等数学中的洛必达法则、复合函数求导、二重积分计算,线性代数中的特征值、特征向量、矩阵对角化,概率统计中的随机变量密度函数、独立性、数字特征等问题,都需要同学们熟练掌握题目解法,落实到底。另外很重要的一点就是对自己掌握不太好的题型、经常做错或者感觉无从下手的题型也要多花时间彻底搞懂,弄通,并且通过更多的同类题目的练习加深巩固,直到对此类题目及与此相关的题目都能够轻松破解,变难题为拿手题,长此以往解题能力必可获得显著提高。
上面提到的三点可以帮助同学们把握攻克主观题难关的正确方向,更多的还是需要同学们脚踏实地搞好每一部分的复习,认真做好总结与归纳。祝大家复习顺利!
考研数学复习指导:解答题攻略
近几年,考研数学综合能力的考查不但出现在大的计算题中,而且在单选题和填空题中也会出现不少的综合考查点,所以综合题的解题能力能不能提高,关系到考生的数学能不能考高分。这也是考研数学的试题的一贯特点。今年的试题也不例外,综合题考查的是知识之间的有机结合,这就对考生提出了更高层面的要求,它要求我们的复习必须全面。因为数学如果有比较明显的弱项的话后果往往是很严重的,它不但会影响这一部分试题的得分,还会影响到所有与该知识点相关的试题的得分。那对于考研数学中解答题的不同题型,考生应该如何应对呢?
证明题复习攻略:
第一,对题目所给条件敏感。在熟悉基本定理、公式和结论的基础上,从题目条件出发初步确定证明的出发点和思路;第二,善于发掘结论与题目条件之间的关系。例如利用微分中值定理证明等式或不等式,从结论式出发即可确定构造的辅助函数,从而解决证明的关键问题。
计算题复习攻略:
近年计算题考查重点不在于计算量和运算复杂度,而侧重于思路和方法,例如重积分、曲线曲面积分的计算、求级数的和函数等,除了保证运算的准确率,更重要的就是系统总结各类计算题的解题思路和技巧,以求遇到题目能选择最简便有效的解题思路,快速得出正确结果。现在距离考试还有一个多月,考前冲刺做题贵在“精”,选择命题合乎大纲要求、难度适宜的'模拟题进行练习是效果最为立竿见影的。
应用题复习攻略:
重点考查分析、解决问题的能力。首先,从题目条件出发,明确题目要解决的目标;第二,确立题目所给条件与需要解决的目标之间的关系,将这种关系整合到数学模型中(对于图形问题要特别注意原点及坐标系的选取),这也是解题最为重要的环节;第三,根据第二步建立的数学模型的类别,寻找相应的解题方法,则问题可迎刃而解。
考研历史学答题技巧之名词解释
1.答题公式
①时间;②地点;③人物;④内容;⑤作用、意义、影响。
2.表现形式
一般包括概括句、分述部分、影响与作用句(结尾句),其特点是:总、分、总。概括句一般包括时间、地点、人物。分述与内容对应,结尾与作用、意义、影响对应。例如:
A.推恩令:“①汉武帝为削弱诸侯王势力而采取的一项措施。②汉武帝采纳主父偃的建议,允许诸侯王在本封国内分封子弟为列侯,达到了”众建诸侯而少其力“的效果,③有利于中央集权的加强。”
B.青苗法():①王安石新法之一。又称“常平法”或“常平新法”。②每年青黄不接时,官府将各地常平仓的钱谷借给请贷的农户收获后加息归还。③意在抑制民间高利贷,政府也因此获得利息收入。
可以看出,三段论不是三个段落,而是指由上述三部分构成的完整答案。
概括句:它是用准确而简洁的.语言概括某个名词的主要特性的句子,在整个答案中,起到提纲挈领的作用,可以直接而准确地告诉阅卷老师,这个名词解释是什么,从而使其了解自己对该名词的掌握程度,是最能体现考生水平的部分,也是获得高分的关键。考生容易忽略这一项,应予以注意。一个完整的概括句应包括以下几个内容:时间、地点、施动者、行为、原因、目的、性质。当然,也不可过分拘泥,因为有的名词是不具备这些要素的,如文化方面,就没有“行为”一项。又如“推恩令”,也不具备地点一项,有时原因与目的又可以合并说明。但时间一项一定要有,主要应指出朝代。
分述部分:此部分是详细解释名词的具体内容。一般而言战争类应写明交战双方、原因、经过、结果;改革应主要写明改革内容。该部分要尽量简洁地多写些要点,而不是就一点深入论述,因为名词解释按点给分的特点十分突出。就其与概括句的关系而言,尽管两者有着明显的不同,但还是有一定联系的,即有些内容可放在概括句中,也可放到分述部分,如战争的原因。
结尾句:这部分较为简单。应指出该名词对历史最主要的影响与作用。
2014考研数学:证明题答题技巧解析
纵观近十年考研数学真题会发现:几乎每一年的试题中都会有一个证明题,而且基本上都是应用中值定理来解决问题的,但是要参加硕士入学数学统一考试的考生所学专业要么是理工要么是经管,考生们在大学学习数学的时候对于逻辑推理方面的训练大多是不够的,这就导致数学考试中遇到证明推理题就发怵,以致于简单的证明题得分率却极低。为此,给大家简单介绍一些解决数学证明题的入手点,希望对有此隐患的考生有所帮助。
1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
2.借助几何意义寻求证明思路
一个证明题,厦门大学研究生院大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义,
如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
3.逆推法
从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设 F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。
最后提醒大家:强化阶段大家应把复习过的知识系统化综合化,注意搞细搞透搞活,也可适当做几套模拟题。数学题目千变万化,有各种延伸或变式,考生们要在考试中取得好成绩,一定要脚踏实地地复习,华而不实靠押题碰运气是行不通的,多思多议,不断地总结经验与教训,做到融会贯通。
★ 高考物理答题攻略