下面就是小编给大家分享的混合逻辑电平的接口技术(共含8篇),希望大家喜欢!同时,但愿您也能像本文投稿人“墨子渔”一样,积极向本站投稿分享好文章。
混合逻辑电平的接口技术
摘要:介绍了3.3V和5.0V逻辑电平、RS-232C逻辑电平、LVDS信号的电特性,讨论了它们相互间的接口技术。关键词:接口 逻辑电平电源变换
在功耗低、体积小的便携式设备(蜂窝电话、PDA、笔记本电脑、数字相机等)的应用需求驱动下,越来越多的半导体器件采用低电压设计技术,很多半导体器件制造厂家纷纷推出3.3V和2.5V等一系列超低功耗集成电路。这样使很多低电压逻辑标准得以广泛应用。在新一代的银行终端、教育终端等产品的设计过程中,为了降低成本、保持与终端外设的兼容性,还需要在同一系统中采用许多不同逻辑标准的器件,因此在同一系统中不可避免地存在不同供电电压的模块。如何解决不同的逻辑电平信号间的接口问题,就成了硬件工程师面临的关键技术。本文结合TFT彩色液晶网络终端的设计,详细介绍了几种逻辑电平信号的接口特性,并讨论了它们之间的接口技术。
1 DC/DC电源变换
传统的线性稳压器,如LM117系列都要求输入电压比输出电压高3V以上,否则不能正常工作,同时传统的线性稳压器转换效率低,发热量大,所以LM117系列已经不能满足低功耗小体积的应用系统的电源设计要求。电池供电的便携式设备,对于电源转换效率和散热要求更高,所以必须寻求其他的解决方案。
TFT彩色液晶网络终端主板涉及大量的5.0V和3.3V逻辑信号,必须有5.0V和3.3V两个供电模块。为了与其它系列终端的外置电源兼容,这里采用国家半导体公司的LM2576从12V变换到5V,再采用MICREL公司的MIC5207(或Linear公司的LT1086)从5V变换到3.3V。
LM2576是基于开关电源技术的低电压输出单片集成电路,内置52kHz的振荡电路,仅仅需要4个外围器件,电源转换效率高达77%,输出电流最大可达3A,发热量小,电磁辐射小,可靠性高。
面对低电压电源的需求,许多电源芯片公司推出了低压差线性稳压器LDO(Low Dropout Regulator)。这种电源芯片的压差可以低至0.2V~1.3V,可以实现5V转3.3V/2.5V、3.3V转2.5V/1.8V等要求。生产LDO的公司很多,如ALPHA、 LT(Linear Technology)、NI(National semiconductor)、TI等。低压差线性稳压器MIC5207特别适合手持的电池供电设备,它有一个与COMS、TTL电平兼容的使能控制引脚,便于关断电源降低功耗,其外围电路也特别简单。
2 各种逻辑电平信号的电特性
在TFT彩色液晶网络终端系统中,中央处理器Intel PXA255的I/O端口是3.3V的CMOS结构;USB Host控制器SL811HS的I/O端口是3.3V的CMOS结构?熏兼容TTL电平;超级I/O控制器W83977ATF具有5.0V CMOS和5.0V TTL两种 I/O端口。它们的电平特性如表1所示。遵守同一逻辑电平标准的不同器件,端口的电特性可能略有不同,即使是同一器件,在不同环境下表现出的电特性也是不同的,所以在设计电路时,一定要具体情况具体分析。
表1中,VOH表示输出高电平的最小值;VOL表示输出低电平的最大值。表1VIH表示输入高电平的最小值;VIL表示输入低电平的最大值。表1列出了器件的常见电特性,有些集成电路略有差别。
表1 PXA255、SL811HS与W83977ATF I/O端口的电平特性
逻辑标准GNDVCCVOH(最小值)VOL(最大值)VIH(最小值)VIL(最大值)3.3V COMS0.0V3.3VVcc-0.1V(3.2V)0.4V0.8Vcc(2.64V)0.2Vcc(0.66V)3.3V TTL0.0V3.3V2.4V0.4V2.0V0.8V5.0V CMOS0.0V5.0V3.5V0.4V0.7Vcc(3.5V)0.3Voc(1.5V)5.0V TTL0.0V5.0V2.4V0.4V2.0V0.8V银行终端需要外接的串口设备多达8个以上,所以解决RS-232C串口与3.3V和5.0V逻辑电平接口也是TFT彩色液晶网络终端系统的一项重要技术(实达电脑公司有些终端的串口是TTL电平)。
RS-232C标准是美国EIA(电子工业联合会)与BELL等公司一起开发的、于1969年公布的通信协议,全称是EIA-RS-232C。它适于数据传输速率在0~20000bps的通信。这个标准对串行通信接口的有关问题,如信号线功能、电特性都作了明确规定。由于通信设备厂商都生产与RS-232C制式兼容的通信设备,因此,它作为一种标准,目前已在微机通信接口中广泛采用。
RS-232C采用负逻辑,规定+3V~+15V任意电压表示逻辑0(或信号有效),-3V~-15V任意电压表示逻辑1(或信号无效)。
目前生产TFT液晶显示屏的厂家主要有LG.PHILIPS、SAMSUNG、SHARP、NEC等。这些显示屏,有的是TTL电平接口,有的是LVDS接口。使用TTL电平接口,其有效距离仅为50cm?鸦如果是3.3V电平,传输距离更短。在终端应用中,一般是显示屏与主机结合为一体,但是也有显示屏远离主机的情况,所以这里简要介绍一下LVDS信号。目前LVDS技术在传输距离上有其局限性,一般应用在20m以下。
LVDS(Low Voltage Differential Signaling)是一种小振幅差分信号技术,使用非常低的幅度信号(约350mV)通过一对差分PCB走线或平衡电缆传输数据。LVDS在两个标准中定义:IEEE P1596.3(1996年3月通过),主要面向SCI(Scalable Coherent Interface);ANSI/EIA/EIA-644(1995年11月通过),主要定义了LVDS的电特性,并建议了655Mbps的最大速率和1.823Gbps的无失真媒质上的理论极限速率。在两个标准中都指定了与物理媒质无关的特性,这意味着只要媒质在指定的噪声边缘和歪斜容忍范围内发送信号到接收器,接口都能正常工作。
图1为LVDS的原理简图,其驱动器由一个恒流源(通常为3.5mA)驱动一对差分信号线组成。在接收端有一个高的直流输入阻抗(几乎不会消耗电流),所以几乎全部的驱动电流将流经100Ω的终端电阻在接收器输入端产生约350mV的电压。当驱动状态反转时,流经电阻的电流方向改变,于是在接收端产生一个有效的“0”或“1”逻辑状态。
LVDS技术的恒流源模式低摆幅输出意味着LVDS具有很高的传输速度,能较好地抑制共模信号,并行的差分信号降低了周围的电磁干扰,CMOS工艺保证了较低的静态功耗。另外,由于是低摆幅差分信号技术,其驱动和接收不依赖于供电电压,因此,LVDS能比较容易应用于低电压系统中,如3.3V甚至2.5V,保持同样的信号电平和性能。LVDS也易于匹配终端。无论其传输介质是电缆还是PCB走线,都必须与终端匹配,以减少不希望的电磁辐射,提供最佳的信号质量。通常,一个尽可能靠近接收输入端的100Ω终端电阻跨在差分线上即可提供良好的匹配。
3 3.3V和5.0V电平信号的转换
在混合电压系统中,不同电源电压的逻辑器件互相接口时存在以下几个问题:
第一,加到输入和输出引脚上允许的最大电压限制问题。器件对加到输入或者输出脚上的电压通常是有限制的。这些引脚有二极管或者分离元件接到Vcc。如果接入的电压过高,则电流将会通过二极管或者分离元件流向电源。例如在3.3V器件的输入端加上5V的信号,则5V电源会向3.3V电源充电。持续的电流将会损坏二极管和其它电路元件。
第二,两个电源间电流的互串问题。在等待或者掉电方式时,3.3V电源降落到0V,大电流将流通到地,这使得总线上的高电压被下拉到地,这些情况将引起数据丢失和元件损坏。必须注意的是:不管在3.3V的工作状态还是在0V的等待状态都不允许电流流向Vcc。
第三,接口输入转换门限问题。5V器件和3.3V器件的接口有很多情况,同样TTL和CMOS间的电平转换也存在着不同情况。驱动器必须满足接收器的输入转换电平,并且要有足够的容限以保证不损坏电路元件。
基于上述情况,5V器件和3.3V器件是不能直接接口的。有些半导体器件制造厂家就推出了具有5V输入容限的3.3V器件,这种器件输入端具有ESD保护电路。实际上数字电路的所有输入端都有一个ESD保护电路,传统的CMOS电路通过接地二极管对负向高电压限幅,正向高电压则由二极管钳位。这种电路的缺点是最大的输入电压被限制在3.3V+0.5V(二极管压降)以内(否则电流将流向3.3V电源)。而大多数5V系统输出端的电压可达3.6V以上,因此采用了这种电路结构的3.3V器件是不能与5V器件输出端直接接口的。如果采用相当于快速齐纳二极管的MOS场效应管代替上述钳位二极管,实现对高电压限幅,并且去掉接到Vcc(3.3V)的二极管,那么最大输入电压不受Vcc(3.3V)的限制。典型情况下,这种电路的击穿电压在7V~10V之间。因此,这种改进后具有ESD保护电路的3.3V系统的输入端可以承受5V的输入电压。为了防止在3.3V器件的输出端可能存在电流倒灌问题,还需要在输出端加保护电路,当加到输出端电压高于Vcc(3.3V)时,保护电路的比较器会断开电流倒灌通路,这样在三态方式时就能与5V器件相连。
分析各种逻辑电平信号的电特性(见表1),会发现有以下五种接口情况:
第一,相同供电电压的TTL器件驱动CMOS器件时,TTL器件的输出高电平可能达不到CMOS器件的输入高电平的最小值。3.3V TTL器件的VOH是2.4V,3.3V CMOS器件的VIH是0.8VCC(3.3V×0.8=2.64V);5.0V TTL器件的VOH是2.4V,5.0V CMOS器件的VIH是0.7VCC(3.5V)。为了可靠地传输数据,可以将TTL器件的输出端上拉。有些CMOS工艺制造的器件兼容 TTL电平,这样就可以与相同供电电压的TTL器件直接接口,不需要上拉。
第二,相同供电电压的CMOS器件驱动TTL器件,电平匹配,数据能可靠地传输。
第三,不同供电电压的TTL器件驱动CMOS器件时,TTL器件的输出高电平也可能达不到CMOS器件的输入高电平的最小值。3.3V TTL器件的VOH是2.4V,5.0V CMOS器件的VIH是0.7VCC(3.5V),电平不匹配;5.0V TTL器件的VOH是2.4V,3.3V CMOS器件的VIH是0.8VCC(2.64V),可以将5.0V TTL器件的`输出端上拉,达到电平匹配的目的。
第四,不同供电电压的CMOS器件驱动TTL器件时,在输入端具有5V容限的情况下,电平匹配,数据能可靠地传输。
第五,不同供电电压的TTL器件在输入端具有5V容限的情况下可以直接接口;不同供电电压的CMOS器件由于电平不匹配不能直接接口。
由以上分析可知,不同逻辑标准的电平信号一般是不能直接接口的。在只有少量信号需要电平转换的情况下,可以考虑上拉电阻或选择具有5V输入容限的器件,甚至可以考虑电阻分压降低输入电压的办法。对于大量信号需要电平转换的情况,为了可靠传输数据,可以采用双电压(一边是3.3V,另一边是5V)供电的双向驱动器来实现电平转换。如仙童半导体公司的74LVX4245、TI公司的SN74ALVC164245、SN74ALVC4245
等芯片,可以较好地解决3.3V与5V电平的转换问题。
(本网网收集整理)
4 3.3V、5.0V电平信号与RS-232电平信号的转换
在TFT彩色液晶网络终端系统中,Intel PXA255微处理器有3个与16550标准兼容的UART端口,3.3V CMOS逻辑结构。终端外围设备一般都遵守RS-232C标准的串口,因此必须进行EIA-RS-232C与Intel PXA255电平和逻辑关系的转换。实现这种变换的方法很多,可用分离元件,也可用集成电路。目前较为广泛地使用集成电路转换器件,如MC1488、SN75150等芯片可完成TTL电平到串口电平的转换。MC1489、SN75154可实现串口电平到TTL电平的转换。MAX232/MAX232A、MAX3221/MAX3223 等芯片可完成多路3V~5V电平与串口电平的双向转换。在TFT彩色液晶网络终端系统中,串口多达8路,从价格和电路的复杂性等方面考虑,选用Intelsil公司的HIN232。HIN232的供电电压是5.0V,它的接收模块的输出管脚、发送模块的输入管脚的逻辑电平与TTL/CMOS兼容。
5 3.3V电平信号与LVDS信号的转换
Intel PXA255微处理器的LCD控制模块提供16位显示数据,行、场同步信号,象素时钟,输出使能信号。在TFT显示模式下,红色5位,绿色6位,蓝色5位。这些信号都是3.3V CMOS电平。国家半导体公司推出的DS90C385发送器,专用于将LVTTL和LVCMOS信号转换为LVDS数据流。在选用转换芯片时,一定要注意转换速率是否满足系统需要。
在今后的数字逻辑系统的设计中,会经常遇到混合逻辑电平的接口问题。只要深入理解各种逻辑电平的电特性,同时注意一些具体问题,例如转换速率等,就能设计出正确的接口电路,保证数据可靠传输。
混合逻辑电平的接口技术
摘要:介绍了3.3V和5.0V逻辑电平、RS-232C逻辑电平、LVDS信号的电特性,讨论了它们相互间的接口技术。关键词:接口 逻辑电平电源变换
在功耗低、体积小的便携式设备(蜂窝电话、PDA、笔记本电脑、数字相机等)的应用需求驱动下,越来越多的半导体器件采用低电压设计技术,很多半导体器件制造厂家纷纷推出3.3V和2.5V等一系列超低功耗集成电路。这样使很多低电压逻辑标准得以广泛应用。在新一代的银行终端、教育终端等产品的设计过程中,为了降低成本、保持与终端外设的兼容性,还需要在同一系统中采用许多不同逻辑标准的器件,因此在同一系统中不可避免地存在不同供电电压的模块。如何解决不同的逻辑电平信号间的接口问题,就成了硬件工程师面临的关键技术。本文结合TFT彩色液晶网络终端的设计,详细介绍了几种逻辑电平信号的接口特性,并讨论了它们之间的接口技术。
1 DC/DC电源变换
传统的线性稳压器,如LM117系列都要求输入电压比输出电压高3V以上,否则不能正常工作,同时传统的线性稳压器转换效率低,发热量大,所以LM117系列已经不能满足低功耗小体积的'应用系统的电源设计要求。电池供电的便携式设备,对于电源转换效率和散热要求更高,所以必须寻求其他的解决方案。
TFT彩色液晶网络终端主板涉及大量的5.0V和3.3V逻辑信号,必须有5.0V和3.3V两个供电模块。为了与其它系列终端的外置电源兼容,这里采用国家半导体公司的LM2576从12V变换到5V,再采用MICREL公司的MIC5207(或Linear公司的LT1086)从5V变换到3.3V。
LM2576是基于开关电源技术的低电压输出单片集成电路,内置52kHz的振荡电路,仅仅需要4个外围器件,电源转换效率高达77%,输出电流最大可达3A,发热量小,电磁辐射小,可靠性高。
面对低电压电源的需求,许多电源芯片公司推出了低压差线性稳压器LDO(Low Dropout Regulator)。这种电源芯片的压差可以低至0.2V~1.3V,可以实现5V转3.3V/2.5V、3.3V转2.5V/1.8V等要求。生产LDO的公司很多,如ALPHA、 LT(Linear Technology)、NI(National semiconductor)、TI等。低压差线性稳压器MIC5207特别适合手持的电池供电设备,它有一个与COMS、TTL电平兼容的使能控制引脚,便于关断电源降低功耗,其外围电路也特别简单。
2 各种逻辑电平信号的电特性
[1] [2] [3] [4] [5]
低功耗MSP430单片机在3V与5V混合系统中的逻辑接口技术
摘要:低功耗MSP430单片机与传统的LSTTL、HCMOS和CMOS接口技术,特别阐述了3V器件具有5V容限的特点,介绍两种电平移位器。关键词:单片机 接口电路 微机硬件
MSP430超低功耗微处理器是TI公司推出的一种新型单片机。它具有16位精简指令结构,内含12位快速ADC/Slope ADC,内含60K字节FLASH ROM,2K字节RAM,片内资源丰富,有ADC、PWM、若干TIME、串行口、WATCHDOG、比较器、模拟信号,有多种省电模式,功耗特别小,一颗电池可工作。开发简单,仿真器价格低廉,不需昂贵的编程器。
(本网网收集整理)
MSP430其特点有:1.8V~3.6V低电压供电;高效16位RISC CPU可以确保任务的快速执行,缩短了工作时间,大多数指令可以在一个时钟周期里完成;6微秒的快速启动时间可以延长待机时间并使启动更加迅速,降低了电池的功耗。MSP430产品系列可以提供多种存储器选择,简化了各类应用中MSP430的设计;ESD保护,抗干扰力特强。与其它微控制器相比,带Flash的微控制器可以将功耗降低为原来1/5,既缩小了线路板空间又降低了系统成本。
MSP430具有如此多的优点,可以预测在今后会有广泛的应用。但是目前仍有许多5V电池的逻辑器件和数字器件在使用,因此在许多设计中3V(含3.3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在同一电路板中混用。随着更低电压标准的引进,不同电源电压逻辑器件间的接口问题会在很长一段时间内存在。本文讨论MSP430与单片机中最常用的LSTTL电路、CMOS电路及计算机HCMOS电路的3V和5V系统中逻辑器件间的接口方法。理解这些方法可避免不同电压的逻辑器件接口时出现问题,保证所设计的电路数据传输的可靠性。
1 逻辑电平不同,接口时出现的问题
在混合电压系统中,不同电源电压的逻辑器件相互接口时会存在三个主要问题:第一是加到输入和输出引脚上的最大允许电压的限制问题;第二是两个电源间电流的互串问题;第三是必须满足的输入转换门限电平问题。器件对加到输入脚或输出脚的电压通常是有限制的。这些引脚有二极管或分离元件接到Vcc。如果接入的电压过高,电流将会通过二极管或分离元件流向电源。例如3V器件的输入端接上5V信号,则5V电源将会向3V电源充电,持续的电流将会损坏二极管和电路元件。在等待或掉电方式时,3V电源降落到0V,大电流将流到地,这使总线上的高电平电压被下拉到地。这些情况将引起数据丢失和元件损坏。必须注意的:不管是在3V的工作状态或是0V的等状态都不允许电流直接流向Vcc。另外用5V的器件来驱动3V的器件有很多不同情况,各种电路间的转换电平也存在不同情况。驱动器必须满足接收器的输入转换电平,并要有足够的容限保证不损坏电路元件。
2 可用5V容限输入的3V逻辑器件
3V的逻辑器件可以有5V输入容限的器件有LVC、LVT、ALVT、LCX、LVX、LPT和FCT3等系列。此外,还有不带总线保持输入的飞利浦ALVC也是5V容限。
2.1 ESD保护电路
3V器件可以有5V的输入容限。一般数字电路的输入端都有一个静电放电(ESD)保护电路。如图1(a)所示,传统的CMOS电路通过接地的二极管D1、D2对负向高电压限幅实现保护,正向高是则由二极管D3箝位。这种电路为了防止电流流向Vcc电源,最大输入电压被限制在Vcc+0.5V。对Vcc为3V的器件来说,当输入端直接与大多数5V器件输出端接口时允许的输入电压太低大多数3V系统加到输入端的电压可达3.6V以上。有些3V系统可以使用两个MOS场效应管或晶体管T1、T2代替二极管D1、D2,如图1(b)所示。T1、T2的作用相当于快速剂纳二极管对高电压限幅。由于去掉了接到Vcc的二极管D3,因此最大输入电压不受Vcc的限制。典型情况下,这种电路的击穿电压在7~10V之间,因此可以适合任何5V系统的输入电压。
由上述分析可知,改进后具有ESD保护电路的3V系统的输入端可以与5V系统的输出端接口。
2.2 总线保护电路
总线保护电路就是有一个MOS场效应管用作上拉或下拉器件,在输入端浮空(高阻)的情况下保护输入端处于最后有效的逻辑电平。图2(a)中的电路为一LVC器件总线保护电路,采取改进措施而使其输入端具有5V的容限。其基本原理如下:P沟道MOS场效应管具有一个内在的寄生二极管,它连接在漏极和衬底之间,通常源极与衬底是连在一起的,这就限制了输入电压不能高于Vcc+0.5V。现在的措施是用常闭接点S1将源极与衬底相连,当输入端电压比Vcc高0.5V时,比较器使S2闭合,S1断开,输入端电流不会通过二极管流向Vcc而使输入具有5V的容限。图2(b)是LVT和LAVT器件总线保持电路的例子。这种电路用了一个串联的肖特基二极管D,消除了从输入到Vcc的电流通路,从而可以承受5V输入电压。对于3V的总体保持LVC、LVT和ALVT系列器件可以承受5V的输入电压。但对于3V的ALVC、VCX等系列器件则不能,它们的输入电压被限制在Vcc+0.5V。
图3是用于3V CMOS器件输出电路的简化形式。当输出端电压高于Vcc+0.5V(二极管压降)时,P沟道MOS场效应管的内部二极管会形成一条从输出端到Vcc的电流通路。这种电路在与5V器件相接时需要加保护电路。
图4是一种带保护电路的CMOS器件输出电路。当输出端电压高于Vcc时,比较器使S1开路,S2闭合,电流通路消失。这样在三态方式时就能与5V器件相接。
2.3 biCMOS输出电路
LVT和ALVT器件的biCMOS输出电路如图5所示。它用双极NPN晶体管和CMOS场效应管来获得输出电压摆幅达到电源电压的要求。电流不会通过NPN双极晶体管回流到Vcc,但在P沟道MOS场效应管中的内在二极管仍然会形成一条从输出端到Vcc的电流通路(为了简化,图5中没有画出该二极管)。因此这种电路不能接高于Vcc的电压。
对图5电路所加的保护电路如图6所示。增加了反向偏置的肖特基二极管,用以防止电流从输出端流到Vcc。图6中的`输出端与5V驱动器共用一条总线。在三态方式时,电路可以得到保护。当出现总线争夺即两个驱动器都以高电平驱动总线时,比较器将P沟道MOS场效应管断开。当3V器件处于等待方式而3V电源为0时,比较器和肖特基二极管可以起保护作用。
3 接口电路的有关参数
了解了3V器件为什么具有5V容限后,在MSP430与LSTTL、HCMOS、CMOS电路实现相互联接之间,要先了解各种电路和器件的参数,如表1所示。
表1 各种电路和器件参数
参数电路电源电压范围输入电平输出电平V(V)VIH(V)VIL(V)VOH(V)VOL(V)LSTTL4.5~5.520.82.70.4CMOS3~18(取Vcc=5)3.51.54.50.5HCMOS2~63.515.20.4MSP4301.83.60.8Vcc0.2VccVcc-0.60.6ALVT系列3.3或2.51.70.82.00.2~0.55LVC系列1.65~5.50.7Vcc0.3Vcc2.7~5.50.1~0.55
4 接口实现
不同电源电压的逻辑器件相互接口时存在的主要问题是逻辑信号电平的配合问题,就是前级电路输出的电平要满足后级电路对输入电平的要求。此外还有负载电流的配合问题,即前级电路的输出电流应大于后级电路对输入电流的要求,同时不应造成器件损坏。还有就是在高速或有严重干扰的场合,必须考虑接口对系统和抗干扰性能带来的不良影响。这里主要讨论逻辑信号电平的配合问题。因为对于负载电流配合问题只是一个带负载能力。而抗干扰问题则用本文中提到的方法都可以忽略。
4.1 LSTTL-MSP430
如表1所示,LSTTL电路的高电平输出电压VOH约为2.7V,MSP430的高电平输入约为0.8VCC,LSTTL电路的低电平输出电压VOL约为0.4V,MSP430的低电平输入电压VIL的0.2VCC。如果0.8Vcc小于2.7V且0.2Vcc大于0.4V时,不存在逻辑信号电平的配合问题,可以直接连接。如果0.8Vcc大于2.7V或0.2Vcc小于0.4V时,就出现了逻辑信号电平的配合问题。为了增大LSTTL电路的输出高电平,利用TI公司的LVC系列。从表1中可以看到LVC系列产品的高电平输出电压和低电平输出电压都符合要求。
4.2 CMOS-MSP430
在接口时使CMOS和MSP430使用同一电源,例如3V电源可以直接驱动。如果实际情况不允许,则根据1表,通过ALVT系列的器件就可以实现CMOS驱动MSP430。
4.3 HCMOS-MSP430
同上述CMOS分析一样,同样选用ALVT来驱动MSP430。
4.4 MSP430驱动LSTTL、CMOS和HCMOS
MSP430的输出引脚(P0.x、P1.x、P2.x、P3.x、P4.x、Oy)都有规定的外接电阻。外接电阻的大小取决于电源电压Vcc的大小。如果输出电流比规定的要大,就需要输出驱动器。图7所示为限制MSP430输出电流的电阻最小值。设计以Vcc=3V,通过这些器件可以驱动需要大电流的LSTTL、HCMOS和CMOS电路接口。
5 两种电平移位器件
5.1 双电源电平移位器74LVC4245
74LC4245是一种双电源的电平移位器,如图8所示。5V端用5V电源作为Vcc(A),而3V端则用3V作为Vcc(B)。它的功能类似于常用的收发器74LVC245,所不同的是用两个电源而不是一个电源。74LVS4245的电平移位在其内部进行。双电源能保证两边端口的输出摆幅都能达到满电源幅值,并且有很好的噪声抑制性能。因此该器件用来驱动5V CMOS器件是很理想的。缺点是增加了功耗。
5.2 74LVC07
较为简单的一种电平移位器件是74LVC07。它使用一个漏极开路缓冲器去驱动5V CMOS器件,如图9所示。它的输出端出一个上拉电阻R接到5V电源。
低功耗MSP430与LSTTL、HCMOS和CMOS器件共存于一个系统中,这种情况将在相当长的时间。在设计这种系统时要分析其中逻辑器件的接口问题,保证所设计的电路在不同电压器件间数据传输的可靠性。
低功耗MSP430单片机在3V与5V混合系统中的逻辑接口技术
摘要:低功耗MSP430单片机与传统的LSTTL、HCMOS和CMOS接口技术,特别阐述了3V器件具有5V容限的特点,介绍两种电平移位器。关键词:单片机 接口电路 微机硬件
MSP430超低功耗微处理器是TI公司推出的一种新型单片机。它具有16位精简指令结构,内含12位快速ADC/Slope ADC,内含60K字节FLASH ROM,2K字节RAM,片内资源丰富,有ADC、PWM、若干TIME、串行口、WATCHDOG、比较器、模拟信号,有多种省电模式,功耗特别小,一颗电池可工作10年。开发简单,仿真器价格低廉,不需昂贵的编程器。
MSP430其特点有:1.8V~3.6V低电压供电;高效16位RISC CPU可以确保任务的快速执行,缩短了工作时间,大多数指令可以在一个时钟周期里完成;6微秒的快速启动时间可以延长待机时间并使启动更加迅速,降低了电池的功耗。MSP430产品系列可以提供多种存储器选择,简化了各类应用中MSP430的设计;ESD保护,抗干扰力特强。与其它微控制器相比,带Flash的微控制器可以将功耗降低为原来1/5,既缩小了线路板空间又降低了系统成本。
MSP430具有如此多的优点,可以预测在今后会有广泛的应用。但是目前仍有许多5V电池的逻辑器件和数字器件在使用,因此在许多设计中3V(含3.3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在同一电路板中混用。随着更低电压标准的引进,不同电源电压逻辑器件间的接口问题会在很长一段时间内存在。本文讨论MSP430与单片机中最常用的LSTTL电路、CMOS电路及计算机HCMOS电路的.3V和5V系统中逻辑器件间的接口方法。理解这些方法可避免不同电压的逻辑器件接口时出现问题,保证所设计的电路数据传输的可靠性。
1 逻辑电平不同,接口时出现的问题
在混合电压系统中,不同电源电压的逻辑器件相互接口时会存在三个主要问题:第一是加到输入和输出引脚上的最大允许电压的限制问题;第二是两个电源间电流的互串问题;第三是必须满足的输入转换门限电平问题。器件对加到输入脚或输出脚的电压通常是有限制的。这些引脚有二极管或分离元件接到Vcc。如果接入的电压过高,电流将会通过二极管或分离元件流向电源。例如3V器件的输入端接上5V信号,则5V电源将会向3V电源充电,持续的电流将会损坏二极管和电路元件。在等待或掉电方式时,3V电源降落到0V,大电流将流到地,这使总线上的高电平电压被下拉到地。这些情况将引起数据丢失和元件损坏。必须注意的:不管是在3V的工作状态或是0V的等状态都不允许电流直接流向Vcc。另外用5V的器件来驱动3V的器件有很多不同情况,各种电路间的转换电平也存在不同情况。驱动器必须满足接收器的输入转换电平,并要有足够的容限保证不损坏电路元件。
2 可用5V容限输入的3V逻辑器件
3V的逻辑器件可以有5V输入容限的器件有LVC、LVT、ALVT、LCX、LVX、LPT和FCT3等系列。此外,还有不带总线保持输入的飞利浦ALVC也是5V容限。
2.1 ESD保护电路
3V器件可以有5V的输入容限。一般数字电路的输入端都有一个静电放电(ESD)保护电路。如图1(a)所示,传统的CMOS电路通过接
[1] [2] [3] [4]
尊敬的贵公司领导:
您好!真诚地感谢您在百忙之中浏览这份求职材料。
我是一名20XX年07月毕业的XXXX大学学生,本科学历,所学专业是计算机接口技术。
在四年的大学生活中,我始终以提高自身的素质为目的,以个人的全面发展为奋斗方向,树立正确的人生观、价值观。为适应社会发展的需求,我认真努力学习专业知识,并取得较好的成绩,努力提高自己的`学习能力和分析能力。通过四年的苦读,掌握了计算机软硬件专业知识,能进行软件设计,动态网站制作,数据库编程与管理。我以较好的成绩通过了国家英语四级考试,现已能阅读并翻译计算机资料。
自入校以来,我积极参加各种社会实践活动,各种实践经历锻炼了我,使我具备了高度的工作责任和吃苦耐劳的精神。曾在百货公司做销售员,体验了社会生活的艰辛,同时确立了自己的奋斗目标,很好的锻炼了交际与临场应变能力。在餐饮部做助理,有意识的锻炼自己的演讲与领导能力。
希望通过这封自荐材料,能使您对我有一个更全面深入的了解,我期盼成为贵公司的一员,从事计算机及相关工作。也许我的知识和实践经历还略显稚嫩,但我会用我的热情、勤奋来弥补,以我最大的能力来回报贵公司。
期待您的回复。祝贵公司的事业蒸蒸日上,稳步发展!
此致
敬礼!
求职人:XXX
XX年X月X日
摘 要近年来,有关教育技术学逻辑起点的问题备受关注,本文在文献调研的基础上,分析了我国现有的最具影响力的几种关于教育技术学逻辑起点的观点。
并在此基础上,提出“运用技术的教育”这一教育技术学逻辑起点的概念。
1对逻辑起点的认识―相关概念的界定
逻辑起点就是学科内最基本的范畴以及对这些范畴之间关系的最基本的规定。
它是科学结构的起始范畴,是理论体系的始自对象。
所谓范畴,是指反映事物本质属性和普遍联系的基本概念,人类理性思维的逻辑形式,所以说逻辑起点是思维的起点而不是存在的起点。
各门学科都有自己的一些基本范畴。
逻辑起点之所以被称为起始范畴,原因在于在学科理论体系的建构过程中,它满足范畴的内涵,是思维的起点,这一范畴是一个最初或最先的范畴,是理论体系建构的出发点。
根据对逻辑起点这一概念的界定,我们可以对教育技术学的逻辑起点定义为:对教育技术学科内最基本的范畴以及这些范畴之间关系的最基本的规定,它是教育技术学理论体系的始自对象。
2研究学科逻辑起点的意义
学科的逻辑起点是一门学科实践工作的基础和理论建构的起点,是这门学科区别于其它学科的关键。
一门学科的研究对象、培养目标、理论体系、学科属性、实践领域等都是在此基础上逐渐建立和完善的。
目前,我国教育技术学在学科自身理论建设和学科理论体系方面仍然非常薄弱,这主要是源于教育技术理论及实践研究的逻辑起点的错位。
因此对教育技术学逻辑起点进行研究和探索,有利于加强对教育技术学学科性质和理论体系的认识,有利于我们理清本学科与其它教育领域学科的关系,有利于我们完善学科自身的理论建设和学科理论体系,推动学科不断向前发展。
我国的专家学者们从各自所处的时代背景、学术背景和专业领域出发,从不同的视角论述并加以验证了教育技术学专业的逻辑起点。
笔者经过深入的学习,发现这些逻辑起点的观点之间有密切的联系,是建立在对教育技术学的基本概念的主要思想等基础上的。
章伟民教授从传播学角度出发,认为教育过程的实质就是教育信息的传播过程,提出教育技术学的逻辑起点就是“传播”。
这种观点有利于对教学过程的各要素进行分析,但是范围过于宽泛。
李龙教授根据教育技术学的学科属性和专业特点提出将“教育和技术的双重定位”作为教育技术学的逻辑起点。
此起点的提出有利于教育技术学的多方面发展,各学校合理设置专业的方向和培养目标,但是双重定位跨越了教育和技术两大学科,造成了专业泛化。
教育起点论是以何克抗教授为代表的。
原因在于教育技术学作为教育学下面的二级学科,必须与教育学的逻辑起点具有共性。
又因为其作为独立地二级学科,教育技术学的逻辑起点又具有着独特的个性特征。
而有些学者认为,教育技术学的逻辑起点应该是“教育中的技术”。
这里同时说明了教育技术的核心是“技术”,也说明了技术和教育的关系。
这里的技术特指教育中的技术,因此也应该遵循教育的规律,解决教育、教学的问题。
以上对各位专家学者提出的关于教育技术学逻辑起点的分析,不仅要严格遵循逻辑起点的概念界定和性质,更要考虑到教育技术学特有的本质――运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率与效益的理论与实践。
笔者不是把人们的视野局限在本文所论述的框架里,更不是去抹杀各位专家学者的不同观点,而是认为如果我们站在教育技术学的源头来讨论本专业的逻辑起点,可以使得研究和争论更加的深入,能更大步伐的加快本专业的理论建设,并使得更快的成熟起来。
教育学的逻辑起点确定以后,教育技术学的逻辑起点也就可以随之确立。
教育技术学作为教育学下的二级学科,又是独立地二级学科,教育技术学的逻辑起点具有和教育学的逻辑起点相同的共性和独立的个性特征。
共性是指教育技术学的逻辑起点也应属于“教育”活动这一范畴;个性则是指,除了共性外,还应具有教育技术学学科的自身特点,即教育技术学学科的质的规定性――教育技术学科区别于教育学其它二级学科的根据所在。
这种质的规定性就是运用技术来优化教育、教学过程,以提高教育、教学的效果、效率与效益。
由此可见,作为教育技术学逻辑起点的范畴为了体现上述共性和个性的统一,必须包括“教育”活动和“运用技术”这两个核心概念,这样,我们就可以合乎逻辑地将教育技术学的逻辑起点表述为“运用技术的教育”。
4结束语
在探讨教育技术学逻辑起点的过程中,我们发现一些影响教育技术学逻辑起点选择的基本概念、基本观点至今尚未能在学术界取得共识,甚至有相当大的分歧,这种情况对学科建设是相当不利的。
因此,应该尽快确立教育技术学逻辑起点,为学科建设和发展打下基础。
参考文献
[1] 孙绍荣.关于教育学逻辑起点的思考[J].教育科学,1991(1).
[2] 瞿葆奎,喻立森.教育学逻辑起点的历史考察[J].教育研究,1986(11).
[3] 张岱年.中国人白科全书.哲学(1)[M].北京:中国人白科全书出版社,1987.
[4] 周效章.我国教育技术学逻辑起点研究综述[J].天中学刊,2010(4).
★ GPRS网络接口
★ 逻辑急转弯
★ 网络接口的检测
★ 逻辑作文600字
★ 量子逻辑述评
★ 经典逻辑题
★ 逻辑的脑筋急转弯