正弦函数图像和性质的评课稿

| 收藏本文 下载本文 作者:干了这碗白米饭

下面是小编给各位读者分享的正弦函数图像和性质的评课稿(共含8篇),欢迎大家分享。同时,但愿您也能像本文投稿人“干了这碗白米饭”一样,积极向本站投稿分享好文章。

正弦函数图像和性质的评课稿

篇1:正弦函数图像和性质的评课稿

正弦函数图像和性质的评课稿

今天上午听了我校数学老师唐的《正弦函数图像和性质》一节课,本节课教学设计好,制作实用性强,教学流程清楚,环节紧凑、流畅。唐老师授课思路清晰,结构严谨,重难点突出,讲解语言精炼,板书工整,特别注重启发引导,突出学生的主体性地位,引导学生进行主动探究,营造了积极、宽松的教学氛围。具体来说,唐老师的课有如下特点:

1. 教学定位非常准

唐老师对课标的解读、教材的分析有自己独到的见解,教学设计中教学目标、教学重难点把握到位,课堂教学中把握住正弦函数图像及五点法画法这一既是重点又是难点的内容展开,引导学生进行自主探究,深入理解,抓住教学的关键点,有效的突出了教学重点、突破了教学难点。

2. 制作实用性强

唐老师的制作针对性强,动画演示效果好,很好的`辅助学生理解正弦函数的图像画法的过程。

3. 课堂驾驭能力强

唐老师上课教态自然,语言语调好,板书清楚有条理,个人基本功非常扎实,能与学生进行有效沟通,而且舍得把时间给学生去板演作图、去交流思考思路、去讲解解决问题过程,善于启发调动学生学习的主动性,有较强的驾驭课堂的能力。这是一节非常成功的公开课 。

篇2:《正切函数的图像与性质》评课稿

《正切函数的图像与性质》评课稿

《正切函数的图像与性质》是高一的一节概念课,在学习了正弦函数和余弦函数的图形与性质以后,再学习正切函数的图像与性质,教学的重点除了要让学生掌握正切函数的图像性质,更要让学生掌握研究函数的一般方法,也就是在课堂教学中学生对于“方法”的掌握和体验很关键。这次,听了刘卫华老师的《正切函数的图像与性质》一课,给我的启发和收获很大。

首先,虽然现在的数学课堂教学过程中可以利用的教学辅助技术和工具很多,而且,刘老师也确实恰到好处地在课堂教学过程中使用了PPT和几何画板,这对于更精确、形象而又直观地研究函数图像有很大的帮助。然而,让我很敬佩的是,刘老师同时也没有因此而放弃我们传统的尺规作图的教学,她通过自己的作图带领学生经历了一次很好的函数性质研究过程。从而也体现了她良好的数学业务功底以及对数学学科知识的很高认知水平。

此外,刘老师教学语言的规范性,教学过程中推理的严密性也非常值得我学习。她的课堂教学语言非常简练,几乎没有什么多余的废话。对学生的'问题总是能非常简洁而又一针见血地指出。这对于培养学生严密的思维以及良好的数学语言表达能力是非常重要的。让我印象很深的是,在研究正切函数奇偶性的时候,当学生完成了奇函数的证明后,刘老师能够继续指出,让学生思考有没有可能是一个偶函数?从而充分体现了教师在教学过程中推理演绎过程的严密性。在这里,稍微有点遗憾的是,有学生提出是奇函数了就不会是偶函数时,教师可能因为没有听到的原因,没有针对这个问题把学生的这个错误纠正。

第三、教学过程中对于一些通性通法的教学使得学生能够在类比思想的引导下,基本自主地完成函数图像和性质的研究。在整堂课的教学过程中,其实类比的思想方法是始终贯穿其中的。教师一开始就让学生类比正弦函数的定义来得到正切函数的定义。虽然在类比过程中,正切函数的定义得出有点快,但是整个的设计指导思想是对的。因为,数学教学中,最重要的是数学思想和一些研究问题的方法的学习,这才是对学生今后的继续学习最有用的。如果说稍微有些遗憾的地方,就是在课的最后小结部分显得有些仓促和慌乱,没有能很好的利用课堂小结这个环节将整堂课所涉及到的那么多研究的方法进行总结。

篇3:下学期 4.8正弦函数、余弦函数的图像和性质1

下学期 4.8正弦函数、余弦函数的图像和性质1

4.8正弦函数、余弦函数的图像和性质(第一课时)

(一)教学具准备

直尺、圆规、投影仪.

(二)教学目标

1.了解作正、余弦函数图像的四种常见方法.

2.掌握五点作图法,并会用此方法作出 上的正弦曲线、余弦曲线.

3.会作正弦曲线的图像并由此获得余弦曲线图像.

(三)教学过程(可用课件辅助教学)

1.设置情境

引进弧度制以后, 就可以看做是定义域为 的实变量函数.作为函数,我们首先要关注其图像特征.本节课我们一起来学习作正、余弦函数图像的方法.

2.探索研究

(1)复习正弦线、余弦线的概念

前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?(师画图1)

设任意角 的终边与单位圆相交于点 ,过点作 轴的垂线,垂足为 ,则有向线段 叫做角 的正弦线,有向线段 叫做角 的余弦线.

(2)在直角坐标系中如何作点

由单位圆中的正弦线知识,我们只要已知一个角 的大小,就能用几何方法作出对应的正弦值 的大小来,请同学们思考一下,如何用几何方法在直角坐标系中作出点 ?

教师引导学生用图2的方法画出点 .

我们能否借助上面作点 的方法在直角坐标系中作出正弦函数 , 的图像呢?

①用几何方法作 , 的图像

我们知道,作函数的图像的步骤是:列表、描点、连结;如果我们用列表法得出各点的坐标,就会因各点的纵坐标都是查三角函数表得到的数值不够精确,使得描点后画出的图像误差也大,为克服这一不足,我们用前面作点 的几何方法来描点,从而使图像的精确度有了提高.

(边画图边讲解),我们先作 在 上的图像,具体分为如下五个步骤:

a.作直角坐标系,并在直角坐标系中 轴左侧画单位圆.

b.把单位圆分成12等份(等份越多,画出的图像越精确).过单位圆上的`各分点作 轴的垂线,可以得到对应于0, , , ,…, 角的正弦线.

c.找横坐标:把 轴上从0到 ( )这一段分成12等分.

d.找纵坐标:将正弦线对应平移,即可指出相应12个点.

e.连线:用平滑的曲线将12个点依次从左到右连接起来,即得 , 的图像.

②作正弦曲线 , 的图像.

图为终边相同的角的三角函数值相等,所以函数 , , 且 的图像与函数 , 的图像的形状完全一样,只是位置不同,于是我们只要将函数 , 的图像向左、右平移(每次 个单位长度),就可以得到正弦函数数 , 的图像,如图1.

正弦函数 , 的图像叫做正弦曲线.

③五点法作 , 的简图

师:在作正弦函数 , 的图像时,我们描述了12个点,但其中起关键作用的是函数 , 与 轴的交点及最高点和最低点这五个点,你能依次它们的坐标吗?

生:(0,0), , , ,

师:事实上,只要指出这五个点, , 的图像的形状就基本确定了,以后我们常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图.

④用变换法作余弦函数 , 的图像

因为 ,所以 , 与 是同一个函数,即余弦函数的图像可以通过正弦曲线向左平移 个长度单位角得到,余弦函数的图像叫做余弦曲线,如图2,师:请同学们说出在函数 , 的图像上,起关键作用的五个点的坐标.

生:(0,1), , , ,

3.例题分析

【例1】画出下列函数的简图:

(1) , ;

(2) , .

解:(1)按五个关键点列表

0

0

1

0

-1

0

1

2

1

0

1

利用五点法作出简图3

师:请说出函数 与 的图像之间有何联系?

生:函数 , 的图像可由 , 的图像向上平移1个单位得到.

(2)按五个关键点列表

0

1

0

-1

0

1

-1

0

1

0

-1

利用五点法作出简图4

师: , 与 , 的图像有何联系?

生:它们的图像关于 轴对称.

练习:

(1)说出 , 的单调区间;

(2)说出 , 的奇偶性.

参考答案:(1)由 , 图像知、, 为其单调递增区间, 为其单调递减区间

(2)由 , 图像知 是偶函数.

4.总结提炼

(1)本课介绍了四种作 , 图像的方法,其中五点作图法最常用,要牢记五个关键点的选取特点.

(2)用平移诱变法,由 这不是新问题,在函数一章学习习近平移作图时,就使用过,请同学们作比较.应该说明的是由平移量是不惟一的,方向也可左可右.

5.演练反馈,(投影)

(1)在同一直角坐标系下,用五点法分别作出下列函数的图像

① , ② ,

(2)观察正弦曲线和余弦曲线,写出满足下列条件的 的区间.

① , ② , ③ , ④

(3)画出下列函数的简图

① ,   ② ,   ③ ,

参考答案:

(1)

(2)① , ,   ② 、,

③    ④

(3)

(五)板书设计

课题

1.正、余弦函数线

2.作点

3.作 , 的图像

4.五点法作正弦函数图像

5.变换法作 的图像

6.五点法作余弦函数图像

7.例题

(1)

(2)

演练反馈

总结提炼

返回

篇4:下学期 4.8 正弦函数、余弦函数的图像和性质2

下学期 4.8 正弦函数、余弦函数的图像和性质2

4.8正弦函数、余弦函数的图像和性质(第二课时)

(一)教学具准备

直尺,投影仪.

(二)教学目标

1.掌握 , 的定义域、值域、最值、单调区间.

2.会求含有 、的三角式的定义域.

(三)教学过程

1.设置情境

研究函数就是要讨论一些性质, , 是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

2.探索研究

师:同学们回想一下,研究一个函数常要研究它的哪些性质?

生:定义域、值域,单调性、奇偶性、等等.

师:很好,今天我们就来探索 , 两条最基本的性质――定义域、值域.(板书课题正、余弦函数的定义域、值域.)

师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

师:请同学思考以下几个问题:

(1)正弦、余弦函数的定义域是什么?

(2)正弦、余弦函数的'值域是什么?

(3)他们最值情况如何?

(4)他们的正负值区间如何分?

(5) 的解集如何?

师生一起归纳得出:

(1)正弦函数、余弦函数的定义域都是 .

(2)正弦函数、余弦函数的值域都是 即 , ,称为正弦函数、余弦函数的有界性.

(3)取最大值、最小值情况:

正弦函数 ,当 时,( )函数值 取最大值1,当 时,( )函数值 取最小值-1.

余弦函数 ,当 ,( )时,函数值 取最大值1,当 ,( )时,函数值 取最小值-1.

(4)正负值区间:

( )

(5)零点: ( )

( )

3.例题分析

【例1】求下列函数的定义域、值域:

(1) ; (2) ; (3) .

解:(1) ,

(2)由 ( )

又∵ ,∴

∴定义域为 ( ),值域为 .

(3)由 ( ),又由

∴定义域为 ( ),值域为 .

指出:求值域应注意用到 或 有界性的条件.

【例2】求下列函数的最大值,并求出最大值时 的集合:

(1) , ; (2) , ;

(3) (4) .

解:(1)当 ,即 ( )时, 取得最大值

∴函数的最大值为2,取最大值时 的集合为 .

(2)当 时,即 ( )时, 取得最大值 .

∴函数的最大值为1,取最大值时 的集合为 .

(3)若 , ,此时函数为常数函数.

若 时, ∴ 时,即 ( )时,函数取最大值 ,

∴ 时函数的最大值为 ,取最大值时 的集合为 .

(4)若 ,则当 时,函数取得最大值 .

若 ,则 ,此时函数为常数函数.

若 ,当 时,函数取得最大值 .

∴当 时,函数取得最大值 ,取得最大值时 的集合为 ;当 时,函数取得最大值 ,取得最大值时 的集合为 ,当 时,函数无最大值.

指出:对于含参数的最大值或最小值问题,要对 或 的系数进行讨论.

思考:此例若改为求最小值,结果如何?

【例3】要使下列各式有意义应满足什么条件?

(1) ; (2) .

解:(1)由 ,

∴当 时,式子有意义.

(2)由 ,即

∴当 时,式子有意义.

4.演练反馈(投影)

(1)函数 , 的简图是(      )

(2)函数 的最大值和最小值分别为(     )

A.2,-2       B.4,0        C.2,0         D.4,-4

(3)函数 的最小值是(     )

A.          B.-2          C.           D.

(4)如果 与 同时有意义,则 的取值范围应为(     )

A.       B.       C.       D. 或

(5) 与 都是增函数的区间是(      )

A. ,                B. ,

C. ,           D. ,

(6)函数 的定义域________,值域________, 时 的集合为_________.

参考答案:1.B   2.B   3.A  4.C  5.D

6. ; ;

5.总结提炼

(1) , 的定义域均为 .

(2) 、的值域都是

(3)有界性:

(4)最大值或最小值都存在,且取得极值的 集合为无限集.

(5)正负敬意及零点,从图上一目了然.

(6)单调区间也可以从图上看出.

(五)板书设计

1.定义域

2.值域

3.最值

4.正负区间

5.零点

例1

例2

例3

课堂练习

课后思考题:求函数 的最大值和最小值及取最值时的 集合

提示:

篇5:下学期 4.8 正弦函数、余弦函数的图像和性质3

下学期 4.8 正弦函数、余弦函数的图像和性质3

4.8正弦函数、余弦函数的图像和性质(第三课时)

(一)教学具准备

直尺、投影仪.

(二)教学目标

1.理解 , 的周期性概念,会求周期.

2.初步掌握用定义证明 的周期为 的一般格式.

(三)教学过程

1.设置情境

自然界里存在着许多周而复始的现象,如地球的自转和公转,物理学中的单摆运动和弹簧振动、圆周运动等.数学里从正弦函数、余弦函数的定义可知,角 的终边每转一周又会与原来的位置重合,故 , 的值也具有周而复始的变化规律.为定量描述这种周而复始的变化规律,今天,我们来学习一个新的数学概念――函数的周期性(板书课题)

2.探索研究

(1)周期函数的定义

引导学生观察下列图表及正弦曲线

0

0

1

0

-1

0

1

0

-1

0

正弦函数值当自变量增加或减少一定的值时,函数值就重复出现.

联想诱导公式 ,若令 则 ,由这个例子,我们可以归纳出周期函数的定义:

对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有 ,那么函数 叫做周期函数,非零常数 叫做这个函数的周期.

如 , ,…及 , …都是正弦函数的周期.

注意:周期函数定义中 有两点须重视,一是 是常数且不为零;二是等式必须对定义域中的每一个值时都成立.

师:请同学们思考下列问题:①对于函数 , 有 能否说 是正弦函数 的周期.

生:不能说 是正弦函数 的周期,这个等式虽成立,但不是对定义域的每一个值都使等式 成立,所以不符合周期函数的定义.

② 是周期函数吗?为什么

生:若是周期函数,则有非零常数 ,使 ,即 ,化简得 ,∴ (不非零),或 (不是常数),故满足非零常数 不存在,因而 不是周期函数.

思考题:若 为 的周期,则对于非零整数 , 也是 的周期.(课外思考)

(2)最小正周期的定义

师:我们知道…, , , , …都是正弦函数的周期,可以证明 ( 且 )是 的周期,其中 是 的最小正周期.

一般地,对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做 的最小正周期.

今后若涉及的周期,如果不加特别说明,一般都是指函数的最小正周期.

依据定义, 和 的最小正周期为 .

(3)例题分析

【例1】求下列函数的周期:

(1) , ; (2) , ;

(3) , .

分析:由周期函数的定义,即找非零常数 ,使 .

解:(1)因为余弦函数的周期是 ,所以自变量 只要并且至少要增加到 ,余弦函数的值才能重复取得,函数 , 的值也才能重复取得,从而函数 , 的周期是 .

即 ,∴

(2)令 ,那么 必须并且只需 ,且函数 , 的周期是 ,就是说,变量 只要并且至少要增加到 ,函数 , 的值才能重复取得,而 所以自变量 只要并且至少要增加到 ,函数值就能重复取得,从而函数 , 的周期是 .

(3)令 ,那么 必须并且只需 ,且函数 , 的周期是 ,由于 ,所以自变量 只要并且至少要增加到 ,函数值才能重复取得,即 是能使等式 成立的最小正数,从而函数 , 的周期是 .

师:从上例可以看出,这些函数的周期仅与自变量 的系数有关,其规律如何?你能否求出函数 , 及函数 , (其中 , , 为常数,且 , )的周期?

生:

∴ .

同理可求得 的周期 .

【例2】求证:

(1) 的周期为 ;

(2) 的周期为 ;

(3) 的周期为 .

分析:依据周期函数定义 证明.

证明:(1)

∴ 的'周期为 .

(2)

∴ 的周期为 .

(3)

∴ 的周期为 .

3.演练反馈(投影)

(1)函数 的最小正周期为(      )

A. B. C. D.

(2) 的周期是_________

(3)求 的最小正周期.

参考答案:

(1)C;(2)   ∴

(3)欲求 的周期,一般是把三角函数 化成易求周期的函数 或 的形式,然后用公式 求最小正周期,而化得的一般思路是“多个化一个,高次化一次”,将所给函数化成单角单函数.

4.总结提炼

(1)三角函数所特有的性质是周期性,周期与最小正周期是不同概念,研究三角函数的周期时,如未特别声明,一般是指它的最小正周期.

(2)设 , .若 为 的周期,则必有:① 为无限集,② ;③ 在 上恒成立.

(3)只有 或 型的三角函数周期才可用公式 ,不具有此形式,不能套用.如 ,就不能说它的周期为 .

(四)板书设计

课题

1.周期函数定义

两点注意:

思考问题①

2.最小正周期定义

例1

例2

的周期

的周期

练习反馈

总结提炼

思考题:设 是定义在 上的以2为周期的周期函数,且是偶函数,当 时, ,求 上的表达式

参考答案:

篇6:二次函数性质的评课稿

二次函数性质的评课稿

9月26、27日两天在舟山第一初级中学参加了为期二天的全员教育培训活动,听了六堂省市级学科带头人上的示范课,感想很多,本以为本次培训又走走过场,并没有实质性的内容,只是点个名,充充数罢了。六堂示范课听下来,还有各位执教老师的设计意图,真是开了眼界,而听了两位教研员的精彩点评,更是有一种“听君一席话,胜读十年书”之慨。

现对张老师执教的《二次函数》谈谈自已的感想。

整节课的学习,张杰老师准备的充分,清楚知道学生应该理解什么,掌握什么,学会什么。整堂课下来,张老师始终是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,充分有效的发挥他们的学习主体作用。张杰老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位。以下是我的一些肯定与不同意见及一些不成熟建议。

内容1、(1)肯定意见: 张杰老师在开始的时候并没有讲二次函数的有关性质而是用幻灯片给出:

“例1 请研究函数y=x2-5x+6的图象与性质,尽可能写出结论。”

让学生自己去体会二次函数的有关性质,这样的做法可以让学生自己积极的思考,使学生的思维变的更积极,更主动。体现出张杰老师知道在教学过程中着重发展学生的自主性、独立性和创造性,知道教师的教是为学生的学服务的。所以说从张杰老师这点的想法、做法上看是成功的。

(2)不同意见:但是,如果说这样的做法张杰老师已经有这样的观念了的话,我认为张杰老师的做法不够彻底,下面是张杰老师操作过程的摘记:

“ 师:(出示例题后不到1分钟)想到3种以上的同学请举手;

师:(出示例题后不到1.5分钟)想到5种以上的同学请举手;”

我说的不够彻底就是让学生思考的时间不够,我们虽然知道让学生思考的重要性,也这样做了,我们就要收到一定的效果。所以我们要让学生有充分的时间考虑,放手让学生,促进学生发展。我们要知道我们的对象应该是大多数学生,使大多数的学生有充分的思考时间。

(3)我的建议:给出题目时让学生思考时间3—5分钟。

内容2、(1)肯定意见:上课摘录:

“师:(叫一学生)说说你的得出的'结果;

生:(1)a﹥0,开口向上……;

(2)Δ﹥0,在轴上有两个交点……;

…… …… ”

张杰老师给出结论时是充分让学生说出自己的答案,让学生充分表达自己的意见,自己的想法,从而提高学生学习的积极性,这符合人的自然规律,要知道无论是谁都是对自己的东西最感兴趣的,也就是对“我的”最感兴趣,它的最里面一层是我的思想、我的爱好、我的健康、我所要表达的一切,接下去是我的父母、我的班级学校、我的国家……。一个具体的例子:“当你看到一张有你集体照,你首先会看谁呢?这是不容质疑的。”也可以用一个图去表示:

所以说张杰老师抓住了学生的人的固有特性,给学生一个自由的发挥的空间,让学生表达出“我的答案、想法”,使学生的思维变的积极,使课堂气氛变的积极,

使学生的思维从中得到很好的锻炼。从这点来说张杰老师这节是成功的。

(2)不同意见:个上面我们谈到这样做符合人固有的本性是很成功的,但我认为在操作上可以改进一下。张杰老师开始的时候都是叫学生个人来完成,后面几个问题干脆让学生一起来回答, 这样做的后果就是不能让学生感觉到这是“我的答案”,感觉不到同学、老师那肯定的眼光,长此以往课堂的气氛会低迷,学生的思维会变的懒惰。因为的思考的答案可能会得不到肯定,我思考也没用。渐渐的学习的积极性、主动性就会削弱,与我们老师的初衷、教改的意图相违背。可以这样说,张杰老师这节课有突出学生的“我的……”,但没有完全突出最里面的一层“我的思想、别人对我的看法”。

(3)我的建议:每次都让学生站来回答问题,给予他及时的肯定与鼓励,使学生在肯定中变的积极,在肯定中变的自信,在肯定中得到进步。

本节课优点:

1、整体感觉是学习过程逻辑清晰,小组分工明确,学生主体地位体现充分,学生配合好,课堂气氛活跃;

2、学生充分小老师角色非常到位,有讲有问,学生回答积极配合;

3、教师穿插点评、补充、总结、讲解,少好精;

4、整个教学过程分为四部分:基本知识、知识应用、扩展部分、总结部分。前后紧密相连,由易而难,步步推进;

整节课教学思路层次分明,脉络清晰,始终以“二次函数的解析式与图象”及其应用为主线,贯穿于整个教学过程。老师语言精炼,富有亲和力与感染力;师生关系融洽,气氛和谐;重点突出,难点突破,教学目标基本达成。做到了“从一个知识传授者转变为学生发展的促进者;从课堂时间与空间支配者的权威地位,向数学的组织者、引导者和合作者的角色转换”。

我的一些不成熟看法:

1、或许张杰老师在内容上的量处理方面更能使学生容易接受一点,我认为可以分为两节课来完成,内容1:“二次函数的图象及有关性质”,内容2:“怎样求二次函数的解析式”。

2、或许张杰老师在语言上可以简练一些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。

3、或许张杰老师的站位可以更恰当一点,不要遮住给学生看的题目,要知道我们的给出的题目是为学生服务的,当我们的学生看不到这些目标——题目时他的思维活动就不能开展。

篇7:数学评课稿-《正比例函数性质》

周二,听了倪老师上的一节数学课。这是一节学了8、9的认识和加减法后的“用数学”的课。倪老师上的课数学味很浓,很重视学生思维能力的培养,同时亲切、自然的教态以及对多媒体的恰当、自如的运用都体现了她的综合素质和功底。这是这节课整体带给我们的印象和感觉。下面具体谈谈听后的体会和感想:

1、课始的听算训练,我觉得较好地培养了学生的听的能力和算的能力。有效利用这2---3分钟,使孩子们静下心来,长期坚持训练为学生的注意力和计算能力都打下了良好的基础。

2、具有激励性的课堂教学语言较好地调动了学生的积极性以及对整个课堂组织教学都起到了较好的作用。一年级孩子好动,注意力集中时间又不持久,所以教师上课过程中穿插着丰富而有变化的鼓励性语言对孩子们来说是很有吸引力的。如“你是第一个智慧星”等。

3、课堂结构安排合理,流程自然、顺畅,重点突出。重点部分有各个层次学生的回答,也有同桌的对答,对学生观察、语言表达能力和归纳能力的培养起到了很大的作用。同时也有教师清楚的归纳总结语,对学生起到良好的示范作用。

4、练习部分让学生用手势表示对错的设计,使课堂动静结合,缓解了学习疲劳。练习题都是学生的易错题,通过判断和说理由,很好地突破了难点。使整个课堂达到了高潮。

篇8:数学评课稿-《正比例函数性质》

研讨结论与建议:郭老师执教的《三角形中位线定理》一课课堂设计完整,注重了学生的自学,注重了课堂的生成,能让学生参与讲解和评价,可见教学思想有了较大的转变。在回顾阶段,十分注重学生的动手;在证明阶段,注重学生的猜想和验证;在练习阶段,特别是在拓展题目上启发学生一题多解。这些都是值得肯定也是我们在课堂设计时需要坚持的。

同时这节课也暴露出问题,需要注意和解决。

主要体现在:

1、需要学生自学的题目抄在黑板上,影响了展示效果。建议尝试使用“学案”的形式。

2、复习导入和引出定理花费了很多时间,显得冗长。建议把比较好理解的概念、定理的学习大胆放给学生在自学阶段解决,课堂首要任务是检验,并根据暴露出的问题进行有针对性的讲解和练习。

3、课堂气氛的活跃程度、学生的参与程度还不够。能不能调动大部分学生甚至是全员学生参与课堂,是评价课堂教学优劣的重要标准。建议正视学生的个体差异,分层次布置学习任务,让他们都有力所能及的学习任务。

二次函数的性质与图像教案

《消化和吸收》评课稿

长方体和正方体评课稿

《纸船和风筝》评课稿

《平移和旋转》评课稿

《三角函数的图像和性质》教学设计

In the library评课稿

课文评课稿

《实数》评课稿

数学评课稿

正弦函数图像和性质的评课稿(精选8篇)

欢迎下载DOC格式的正弦函数图像和性质的评课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档