二次函数的性质与图像教案

| 收藏本文 下载本文 作者:me_夏棠

以下是小编整理的二次函数的性质与图像教案(共含20篇),欢迎阅读分享,希望对大家有帮助。同时,但愿您也能像本文投稿人“me_夏棠”一样,积极向本站投稿分享好文章。

二次函数的性质与图像教案

篇1:二次函数的性质与图像教案

一 学习目标

1、掌握二次函数的图象及性质;

2、会用二次函数的图象与性质解决问题;

学习重点:二次函数的性质;

篇2:二次函数的性质与图像教案

二 知识点回顾:

函数 的性质

函数函数

图象a>0a<0

性质

三 典型例题:

例 1:已知 是二次函数,求m的值

例 2:(1)已知函数 在区间 上为增函数,求a的范围;

(2)知函数 的单调区间是 ,求a;

例 3:求二次函数 在区间[0,3]上的最大值和最小值;

变式:(1)已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

(2)已知 在区间[0,1]内有最大值-5,求a。

(3)已知 ,a>0,求 的最值。

四、限时训练:

1 、如果函数 在区间 上是增函数,那么实数a的取值

范围为 B

A 、a≤-2 B、a≥-2 C、a≤-6 D、B、a≥-6

2 、函数 的定义域为[0,m],值域为[ ,-4],则m的取值范围是

A、B、C、D、

3 、定义域为R的'二次函数 ,其对称轴为y轴,且在 上为减函数,则下列不等式成立的是

A、B、

C、D、

4 、已知函数 在[0,m]上有最大值3,最小值2,则m的取值范围是

A、B、C、D、

5、函数 ,当 时是减函数,当 时是增函数,则

f(2)=

6、已知函数 ,有下列命题:

① 为偶函数 ② 的图像与y轴交点的纵坐标为3

③ 在 上为增函数 ④ 有最大值4

7、已知 在区间[0,1]上的最大值为2,求a的值。

8、已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

9、已知函数 ,求a的取值范围使 在[-5,5]上是单调函数。

篇3:九年级数学下册《二次函数的图像与性质(2)》教学教案(湘教版)

【知识与技能】

1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.

【教学重点】

①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.

【教学难点】

二次函数图象的性质及其探究过程和方法的体会.

【知识与技能】

1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.

【教学重点】

①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.

【教学难点】

二次函数图象的性质及其探究过程和方法的体会.

【知识与技能】

1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.

【教学重点】

①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.

【教学难点】

二次函数图象的性质及其探究过程和方法的体会.

篇4:九年级数学下册《二次函数的图像与性质(1)》教学教案(湘教版)

【知识与技能】

1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

【教学重点】

1.会画y=ax2(a>0)的图象.

2.理解,掌握图象的性质.

【教学难点】

二次函数图象及性质探究过程和方法的体会教学过程.

一、情境导入,初步认识

问题1  请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

问题2 如何用描点法画一个函数图象呢?

【教学说明】 ①略;②列表、描点、连线.

二、思考探究,获取新知

探究1  画二次函数y=ax2(a>0)的图象.

画二次函数y=ax2的图象.

【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

②从列表和描点中,体会图象关于y轴对称的特征.

③强调画抛物线的三个误区.

误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

如图(1)就是y=x2的图象的错误画法.

误区二:并非对称点,存在漏点现象,导致抛物线变形.

如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.

误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

篇5:九年级数学下册《二次函数的图像与性质(3)》教学教案(湘教版)

【知识与技能】

1.会用描点法画二次函数y=ax2+bx+c的图象.

2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.

3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.

【过程与方法】

1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.

2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.

【情感态度】

进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.

【教学重点】

①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.

【教学难点】

能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.

一、情境导入,初步认识

请同学们完成下列问题.

1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.

2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.

3.画y=-2x2+6x-1的图象.

4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.

5.二次函数y=-2x2+6x-1的y随x的增减性如何?

【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.

二、思考探究,获取新知

探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?

学生回答、教师点评:

一般分为三步:

1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.

2.列表,描点,连线画出对称轴右边的部分图象.

3.利用对称点,画出对称轴左边的部分图象.

探究2  二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?

篇6:二次函数的图像与性质教学反思

本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

通过本节课教学,得出几点体会:

1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的'独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。

篇7:二次函数的图像与性质教学反思

在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.

接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

篇8:二次函数的图像与性质教学反思

1.一定要留足时间让学生自己作出二次函数的图象

可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观察、分析图象,从而不让学生画图象或者只是简单的画一两个。这种做法看上去好像更加突出了重点、难点,却没有给学生探索与发现的过程,造成学生对于二次函数性质的理解停留在表面,知识迁移相对薄弱,不利于培养学生自主研究二次函数的能力。

2. 相信学生并为学生提供充分展示自己的机会

在归纳二次函数性质的时候,也要充分的相信学生,鼓励学生大胆的用自己的语言进行归纳,因为学生自己的发现远远比老师直接讲解要深刻得多。在教学过程中,要注重为学生提供展示自己聪明才智的机会,这样也利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3.注意改进的方面

在让学生归纳二次函数性质的时候,学生可能会归纳得比较片面或者没有找出关键点,教师一定要注意引导学生从多个角度进行考虑,而且要组织学生展开充分的讨论,把大家的观点集中考虑,这样非常有利于训练学生的归纳能力。

篇9:二次函数的图像与性质一教学反思

二次函数的图像与性质(一)教学反思

教学反思

本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知识。《二次函数的图像与性质(一)》是二次函数性质研究的第一步,为后面研究较为复杂的函数类型作了必要的铺垫,具有承上启下的`作用。

讲课中首先一起回顾一次函数与反比例函数的图像与性质,然后让学生动手在坐标系中作二次函数y=x2和y=-x2的图象,从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结,从理性上再次结识抛物线.利用几何画板揭示了两个抛物线之间的联系,使本节课的知识得到了升华。

成功之处:

1.课前的引课很精彩,几句简短的语言使学生感受数学就在我们的身边,并激起学生学习数学的兴趣.

2.对二次函数图象的作图,通过学生作品的展示、思考、讨论、讲评起到指导全体学生的作用.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神.

3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的图象和性质,也为今后探讨其他类函数的性质提供思路.

4.在教学中注重多种学习信息的捕捉,引导学生从图与形,表达式、表格、图像等多角度地去分析理解数学知识,使学生对抛物线有一个丰满的认识。

5.几何画板很好的展示了两个函数之间的关系,动态的演示有助于理解难点,是这节课的亮点。

不足之处:

1.在学生作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.

2.作图展示时只说明了有问题的部分而没有展示优秀的部分,无法使学生获得成功的喜悦。

3.在探索二次函数的图象和性质的活动中,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.

通过这节课,我认为要使课堂真正成为学生展示自我的舞台,还学生课堂的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己的舞台,充分利用合作交流的形式,使教师帮助学生不断积累学习经验,完善学习的过程,最终使“要我学”变为“我要学”。

篇10:《对数函数的图像与性质》教案

案例背景

对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

案例叙述:

(一).创设情境

(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

(提问):什么是指数函数?指数函数存在反函数吗?

(学生): 是指数函数,它是存在反函数的.

(师):求反函数的步骤

(由一个学生口答求反函数的过程):

由 得 .又 的值域为 ,

所求反函数为 .

(师):那么我们今天就是研究指数函数的反函数-----对数函数.

(二)新课

1.(板书) 定义:函数 的反函数 叫做对数函数.

(师):由于定义就是从反函数角度给出的.,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

(在此基础上,我们将一起来研究对数函数的图像与性质.)

篇11:《对数函数的图像与性质》教案

(提问)用什么方法来画函数图像?

(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

(学生2)用列表描点法也是可以的。

请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

(1) 定义域:

(2) 值域:

由以上两条可说明图像位于 轴的右侧.

(3)图像恒过(1,0)

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

(三).简单应用

1. 研究相关函数的性质

例1. 求下列函数的定义域:

(1) (2) (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2. 利用单调性比较大小

例2. 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 ; (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

三.拓展练习

练习:若 ,求 的取值范围.

四.小结及作业

案例反思:

本节的重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

篇12:二次函数图像性质总结

二次函数简介

①y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称。

②y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称。

③y=ax^2+bx+c与y=-ax^2-bx+c-b2/2a关于顶点对称。

④y=ax^2+bx+c与y=-ax^2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

篇13:高一数学二次函数图像性质总结

高一数学二次函数图像性质总结

1二次函数图像

2二次函数性质

二次函数y=ax²+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程,即ax²+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax²,y=ax²+k,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。

2.抛物线y=ax²+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a).

3.抛物线y=ax²+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax²+bx+c(a≠0)的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b²-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax²+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax²+bx+c的最值(也就是极值):如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b²)/4a.

顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax²+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中高考的热点考题,往往以大题形式出现。

篇14:二次函数的性质和图像教学设计

二次函数的性质和图像教学设计

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第二节第二课(2.2.2)《二次函数的性质与图象》。关于《二次函数的性质与图象》在初中已经学习过,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。二次函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习其他初等函数的基础,同时在生活及生产实际中有着广泛的应用,所以二次函数应重点研究。

二、学生学习况情分析

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的又一次应用。基于在初中教材的学习中已经给出了二次函数的图象及性质,已经让学生掌握了二次函数的图象及一些性质,只是像单调性、对称性、零点这种性质还没有规范,课本给出的三个例题对于学生来说非常熟悉。本节课需要认真设计问题来激发学生学习新知的兴趣和欲望。

三、设计思想

1.函数及其图象在高中数学中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:

(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。

(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

(3)通过课堂教学活动向学生渗透数学思想方法。

四、教学目标

根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。

3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点

教学重点:使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。

教学难点:借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

六、教学过程:

(一)创设情景、提出问题

本节课一开始我就让学生直接总结出二次函数的性质与图象,并指出如何得到函数的相关性质。学生在初中学习的基础上很容易就完成。就在学生回答后,教师提出一个让大家意想不到的问题:既然大家已经学习也掌握了二次函数的图象和性质,那我们今天还有必要再重复吗?编者的失误?还是另有用意呢?

【设计意图:一方面可以激发学生学习热情和探索新知的欲望;另一方面也给学生传递一个学习目标方面的信息。在学生感觉很疑惑的时候,教师再次设问,把问题引向深入。】

【学情预设:学生可能很疑惑,或者有一些猜测】

你能独立完成问题2吗?。

问题2:试作出二次函数的图象。

要求学生按照自己处理二次函数的方法独立完成。

【设计意图:充分暴露学生的问题,突出本节课的重要性,激发学生学习的动力。】

【学情预设:一部分学生使用描点法作图;另一部分学生只确定对称轴和开口、只利用对称轴和y轴的交点等不是很规范的方法作图。】

在总结交流的基础上教师指出:有的同学用描点作图的方法作出函数的图象,从方法上没有问题,但是需要描出大量的点才能得到较为准确的图象;有的同学只是找到函数的对称轴判定开口方向就画出一个图象,或者是找到函数的对称轴和y轴的交点确定开口方向就画出函数的图象等等,这种不是很规范的作图方法,感觉很快,但是往往得到的图象不是很准确的,为什么呢?

(学生稍作思考)

师:实质上函数的性质是函数自身特殊对应关系的体现,而体现函数的对应关系的方法有解析式法、图象法和列表法。既然能够用解析式结合图象得到函数的性质,那么能否借助于解析式直接分析其性质,然后推断出图象的特征呢?在推断函数的图象时要考虑函数的哪些主要性质呢?我想这也是今天这节课的意图所在,如何利用函数性质的研究来推断出较为准确的函数图象,大家是否有兴趣和能力来探讨这个问题呢?

带着这样的问题我带领学生进入下一个环节——师生互动、探究新知。

(二)师生互动、探究新知

在这个环节上,我引用课本所给的例题1请同学们以学习小组为单位尝试完成。

例1、试述二次函数的性质,并作出它的图象。

要求:按照解析式----性质----推断函数图象的`过程来探讨,

【设计意图是:以便于学生在对比中进一步理解函数性质的应用,突破应用函数的性质来推断函数图象这一难点。同时体验分析障碍和获得成功的快乐,激发学生的学习兴趣。】

在学生学习小组的一番探讨后,教师选小组代表做总结发言,要求说出利用解析式得到性质的分析过程。

(其他小组作出补充,教师引导从以下几个方面完善):

(1)定义域(2)开口方向(3)值域(顶点)及最值(4)对称轴(5)单调性(6)奇偶性(7)零点(8)图象

【设计意图是:让学生在师生互动,共同探讨的过程中逐步实现知识的迁移,基本上形成新的认知。】

【学情预设:因为是第一次尝试利用解析式分析性质并推断图象,学生对于某些性质不能准确的阐述出分析过程,对对称轴的确定、单调区间及单调性的分析等可能存在困难。】

这时教师可以利用对解析式的分析结合多媒体引导学生得到分析的思路和解决的方法,进而突破教学难点。

根据实际情况教师可以引导学生从二次函数的配方结果来分析:

(1)单调性的分析: 在=中当时,取得最小值-2,当时,自变量就越大,越小,就越大,就越大,即就越大,即就越大; 就越大;当时,自变量越大,这样单调性及单调区间(分界点)自然可以解决,结合单调性的定义可给出严格的证明;同时也可以帮助我们说明开口的方向是向上的。

(2)对称性的分析:

在=中当和时,如果=时,即,也就是,则时,一定有

也就是成立。因此可以令成立,这就是说二次函数的两个数于直线和对称。 的自变量时,函数值在轴上取两个关于-4对应的点为对称中心的两个点对应总是成立的,这就说明函数的图象关在对解析式分析的同时借助于几何画板课件演示,让学生直观感受:

然后在教师的引导之下推广并得出一般结论:如果函数成立,则函数的图象关于直线对定义域内的任意

对称。 都有在得出对称性的一般结论这一副产品后,为了强化对这个结论的认识和理解,教师可以安插一个练习题:

练习:试用以上结论来概括函数___________________________. 应该满足的结论是

在完成以上各环节后,教师再次提出任务:既然我们把二次函数的相关性质都分析完成,那么根据以上性质请同学们再次分析如何利用二次函数的性质推断出二次函数的图象? 用二次函数的性质推断函数的图象时需要研究分析二次函数的哪些主要性质才能比较准确地画出图象?

篇15:二次函数的图像和性质概念教学反思

二次函数的图像和性质概念教学反思

本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k (h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意 “类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

通过本节课教学,得出几点体会:

1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的`基本方法。

3、要使课堂真正成为学生展示自我的舞台

还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课

堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

1、某些记忆性的知识没记住。

2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气

3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。

4、解题过程写得不全面,丢三落四的现象严重。

针对上述问题,需要采取的措施与方法是:

1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。

2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。

3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。

4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。

5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。

篇16:《正切函数的定义、图像与性质》说课稿

一、教材分析(说教材)

1.教材所处的地位和作用

本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.

2.教学目标

知识与技能:(1)能借助单位圆理解任意角的正切函数的定义.(2)能画出y=tanx的图像.(3)掌握正切线的基本性质.(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.

过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.

情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神. 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的.兴趣.

3.重点、难点以及确定的依据和处理的方法

重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.

难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.

二、学情分析(说学法)

学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.

三、教学策略(说教法)

(一)教学手段

一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.

(二)教学方法及其理论依据

如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.

四、教学流程

(一)复习回顾:正弦函数和余弦函数;

利用单位圆中的正弦线作出正弦函数的图像.

(二)自主探究:

1.正切函数的定义

请学生课前自主学习课本35页7.1的内容,明确以下几个问题:

(1)正切函数的定义及定义域。

(2)正切函数值在每个象限的符号。

(3)什么是正切线?怎样作?

(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?

分组讨论后解答这几个问题。

通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.

2.正切函数的图像

让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.

3.正切函数的性质

通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.

(三)例题展示

篇17:《正切函数的定义、图像与性质》说课稿

设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.

例2 利用正切函数图像求满足条件的角的范围.

设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.

(四)课堂小结:学生自己先总结然后老师补充.

(五)思考问题:

1.正切函数是整个定义域上的增函数吗?为什么?

2.正切函数会不会在某一区间内是减函数?为什么?

五、作业布置

完成相应的课后作业.

六、设计说明

1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.

2.时间分配:(一) 五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟

(三)五分钟(四)一分钟(五)一分钟

篇18:《正切函数的定义、图像与性质》说课稿

一、教材分析(说教材)

1.教材所处的地位和作用

本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.

2.教学目标

知识与技能:

(1)能借助单位圆理解任意角的正切函数的定义.

(2)能画出y=tanx的图像.

(3)掌握正切线的基本性质.

(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.

过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.

情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神. 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣.

3.重点、难点以及确定的依据和处理的方法

重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.

难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.

二、学情分析(说学法)

学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的.研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.

三、教学策略(说教法)

(一)教学手段

一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.

(二)教学方法及其理论依据

如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.

四、教学流程

(一)复习回顾:正弦函数和余弦函数;

利用单位圆中的正弦线作出正弦函数的图像.

(二)自主探究:

1.正切函数的定义

请学生课前自主学习课本35页7.1的内容,明确以下几个问题:

(1)正切函数的定义及定义域。

(2)正切函数值在每个象限的符号。

(3)什么是正切线?怎样作?

(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?

分组讨论后解答这几个问题。

通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.

2.正切函数的图像

让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.

3.正切函数的性质

通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.

(三)例题展示

例1 求函数 《正切函数的定义、图像与性质》说课稿 的定义域.

设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.

例2 利用正切函数图像求满足条件的角的范围.

设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.

(四)课堂小结:学生自己先总结然后老师补充.

(五)思考问题:

1.正切函数是整个定义域上的增函数吗?为什么?

2.正切函数会不会在某一区间内是减函数?为什么?

五、作业布置

完成相应的课后作业.

六、设计说明

1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.

2.时间分配:(一) 五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟

(三)五分钟(四)一分钟(五)一分钟

篇19:《正切函数的图像与性质》评课稿

《正切函数的图像与性质》评课稿

《正切函数的图像与性质》是高一的一节概念课,在学习了正弦函数和余弦函数的图形与性质以后,再学习正切函数的图像与性质,教学的重点除了要让学生掌握正切函数的图像性质,更要让学生掌握研究函数的一般方法,也就是在课堂教学中学生对于“方法”的掌握和体验很关键。这次,听了刘卫华老师的《正切函数的图像与性质》一课,给我的启发和收获很大。

首先,虽然现在的数学课堂教学过程中可以利用的教学辅助技术和工具很多,而且,刘老师也确实恰到好处地在课堂教学过程中使用了PPT和几何画板,这对于更精确、形象而又直观地研究函数图像有很大的帮助。然而,让我很敬佩的是,刘老师同时也没有因此而放弃我们传统的尺规作图的教学,她通过自己的作图带领学生经历了一次很好的函数性质研究过程。从而也体现了她良好的数学业务功底以及对数学学科知识的很高认知水平。

此外,刘老师教学语言的规范性,教学过程中推理的严密性也非常值得我学习。她的课堂教学语言非常简练,几乎没有什么多余的废话。对学生的'问题总是能非常简洁而又一针见血地指出。这对于培养学生严密的思维以及良好的数学语言表达能力是非常重要的。让我印象很深的是,在研究正切函数奇偶性的时候,当学生完成了奇函数的证明后,刘老师能够继续指出,让学生思考有没有可能是一个偶函数?从而充分体现了教师在教学过程中推理演绎过程的严密性。在这里,稍微有点遗憾的是,有学生提出是奇函数了就不会是偶函数时,教师可能因为没有听到的原因,没有针对这个问题把学生的这个错误纠正。

第三、教学过程中对于一些通性通法的教学使得学生能够在类比思想的引导下,基本自主地完成函数图像和性质的研究。在整堂课的教学过程中,其实类比的思想方法是始终贯穿其中的。教师一开始就让学生类比正弦函数的定义来得到正切函数的定义。虽然在类比过程中,正切函数的定义得出有点快,但是整个的设计指导思想是对的。因为,数学教学中,最重要的是数学思想和一些研究问题的方法的学习,这才是对学生今后的继续学习最有用的。如果说稍微有些遗憾的地方,就是在课的最后小结部分显得有些仓促和慌乱,没有能很好的利用课堂小结这个环节将整堂课所涉及到的那么多研究的方法进行总结。

篇20:二次函数与实际问题(复习)教案

二次函数与实际问题(复习)教案

《二次函数与实际问题》(复习)教案 单位:上饶县尊桥中学 年级:九 设计者:罗兴满 时间:2010年6月13日 课题 二次函数 课型 复习课 教学目标 知识技能 掌握二次函数的解析式求法,能灵活运用抛物线的解析式的求法和图象的性质知识解一些实际问题. 数学思考 通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 解决问题 学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性. 情感态度 经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活. 教学重点 二次函数解析式的求法和图象及其性质,应用二次函数分析和解决简单的实际问题. 教学难点 二次函数解析式的求法性质的灵活运用,能把相关应用问题转化为数学问题. 课前准备(教具、活动准备等) 制作课件 教 学 过 程 教学步骤 师生活动 设计意图 基础知识之 自我构建   1、二次函数解析式的`三种表示方法: (1)顶点式:y=a(x-h)2+k (2)交点式:y=a(x-x1)(x-x2)(3)一般式: 2、求二次函数的解析式,在怎样的情况下,对应地设其解析式求解更方便。   通过二次函数,请学生说出结论,主要让学生回忆二次函数有关基础知识.同学们之间可以相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性. 基础知识之 基础演练 例1、已知二次函数的图象过点(1,4),且与x轴交点为(-1, 0)和(3,0),求此函数的解析式。   例2、已知二次函数为x=4时有最小值-3且它的图象与x轴交点的横坐标为1,求此二次函数解析式.       第1题主要是学生复习用一般式求二次函数的解析式。 第2题主要复习二次函数的顶点式解析式的简捷求法。   基础知识之 灵活运用   例3、利用二次函数解决实际问题 一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米, (1)根据题意建立直角坐标系,并求出抛物线的解析式。 (2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?         第3题涉及用一般式二次函数求实际问题的解析式,二次函数的平移性质,根据图象平移,就能正确写出该运动员应该跳多高。让学生经历和体验图形平移的变化过程,引导学生感悟知识的生成、发展和变化.数形结合思想是一种重要的数学思想。   难点突破之 思维激活 例4.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m. (1)建立如图所示的直角坐标系,求此抛物线的解析式. (2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥220km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?                     本部分这道题目不能呆板地应用二次函数的基础知识,而要综合相关知识,以达到能力提升之目的.这种函数Y=ax2 学生都以为只要一个点的坐标就够了,但这里有两个未知数,就只有列方程组才可以求出所要的未知数的值。 另一方面,抛物线的问题,似乎与另外的一个问题无关,但实际上这种关联,需要思维的跨越,这里的时间,正是在第二问中所要用的路程与速度、时间相关联的。这一点如果联系不起来,那么就无法解题。     难点突破之 聚焦中考 例5:某商场销售一批名牌衬衫,平均每天可售出20件,进价是每件80元,售价是每件120元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降低1元,商场平均每天可多售出2件,但每件最低价不得低于108元. ⑴若每件衬衫降低x元(x取整数),商场平均每天盈利y元,试写出y与x之间的函数关系式,并写出自变量x的取值范围. ⑵每件衬衫降低多少元时,商场每天(平均)盈利最多? 本题首先读懂题意,正确求出二次函数解析式.二次函数的最值是体现二次函数实际应用价值的一种常见题型,它在优选方案、减小投入、增大收益中意义非凡.解题时通常借助顶点坐标来求,但有时由于实际问题实际意义的限制,需结合自变量的取值范围进行调整.本题由图象可知,抛物线顶点(15,1250)不在本题图象上,它不是最高点,最高点应该是(12,1232)或者这样理解:顶点横坐标是15,不满足,因此不能理解为:当时,y取最大值为1250元. 反思 与 提高 1、本节课你印象最深的是什么? 2、通过本节课的函数学习,你认为自己 还有哪些地方是需要提高的? 3、在下面的函数学习中,我们还需要注意 哪些问题? 归纳本章知识网络图示   实际问题 二次函数 利用二次函数的图象和性质求解 实际问题的答案       让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基础,由此达到数学教学的新境界――提升思维品质,形成数学素养.                        

九年级数学下册《二次函数的图像与性质(3)》教学教案(湘教版)

二次函数教案

初中数学二次函数教案

二次函数知识点

二次函数练习题

二次函数数学教案

正弦函数图像和性质的评课稿

二次函数的练习题

二次函数教学设计

二次函数教学反思

二次函数的性质与图像教案(精选20篇)

欢迎下载DOC格式的二次函数的性质与图像教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档