下面就是小编给大家带来的浙教版七年级数学上册复习资料(共含6篇),希望大家喜欢阅读!同时,但愿您也能像本文投稿人“蕙纕”一样,积极向本站投稿分享好文章。
有理数及其运算
1.整数:包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。正整数和负整数通称为自然数
2.正数:都比0大,负数比0小,0既不是正数也不是负数。
正整数、0、负整数、正分数、负分数这样的数称为有理数。
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
3.相反数:只有符号不同的两个数互为相反数,互为相反数,0的相反数是0。
在任意的数前面添上“-”号,就表示原来的数的相反数。
在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。
4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
①对任何有理数a,都有|a|≥0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b,则a=±b
④对任何有理数a,都有|a|=|-a|
6.比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。
7.两个负数比较大小,绝对值大的反而小。
8.数轴上的两个点表示的数,右边的总比左边的大。
实数
1.一般地如果一个数的平方根等于a,那么这个数叫做a的平方根,也叫a的二次方根.
一个正数有正负两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
正数的平方根称为算数平方根.
2 .实数定义:有理数与无理数统称为实数。
3.实数的分类: 无理数:无限不循环小数叫无理数。
有理数:整数和分数统称有理数。
无理数定义:
即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。
无理数是无限不循环小数。如圆周率π、根号2等。
无理数性质:
无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数
性质1 无理数加(减)无理数既可以是无理数又可以是有理数
性质2 无理数乘(除)无理数既可以是无理数又可以是有理数
性质3 无理数加(减)有理数一定是无理数
性质4 无理数乘(除)一个非0有理数一定是无理数
无理数与有理数的区别:
1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
比如:4=4.0,五分之四=0.8,三分之一=0.33333……
而无理数只能写成无限不循环小数,
比如:根号2=1.414213562…………
根据这一点,人们把无理数定义为无限不循环小数;
2、所有的有理数都可以写成两个整数之比,而无理数不能。根据这一点,有人建议给无理数摘掉,把有理数改叫为“比数”,把无理数改叫为“非比数”。
无理数的识别:
判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。
初中常见的无理数有三种类型:
(1)含根号且开方开不尽的方根,但切不可认为带根号的数都是无理数;
(2)化简后含π的式子;
(3)不循环的无限小数。
掌握常见无理数的类型有助于识别无理数。
4.实数的大小比较:用数轴表示数,右边的数总比左边的数大:正数>0>负数
( 1 ) 差值比较法:>0>,=0,<0<
(2)商值比较法:若为两正数,则>>;<<
(3)绝对值比较法:若为两负数,则><
(4)两数平方法:如实数与数轴上的点一一对应。平面直角坐标系中的点与有序实数对之间一一对应。
数a的相反数是-a
一般地如果一个数的立方根等于a,那么这个数叫做a的立方根,也叫a的三次方根
求一个数的立方根的运算,叫做开立方.
一个正数有一个立方根, 一个负数有一个立方根;0的立方根是0.
在实数运算时,有理数的运算法则及运算性质同样适用。先算乘方和开平,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算。
规律: 正数的平方根中被开方数大的较大。正数的立方根中被开方数大的较大。
被开方数相同时,开方的次数越大结果越小。
有理数的运算
1.有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加。
·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两数相加得0.
·一个数同0相加仍得这个数
2.灵活运用运算律,使用运算简化,通常有下列规律:
①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
3.加法交换律:
4.加法结合律:
5.有理数减法法则:减去一个数等于加上这个数的相反数。
6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘积仍得0。
7.有理数减法运算时注意两“变”:①改变运算符号;
②改变减数的性质符号(变为相反数)
8.有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
有理数的加减法混合运算的步骤:①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
9.倒数:如果两个数互为倒数,则它们的乘积为1。(如:-2与二分之一等)
10.有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
11.乘法交换律:
12.乘法结合律:
13.乘法分配律:
乘法的交换律、结合律、分配律在有理数运算中同样适用。
14.有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
15.有理数除法法则:·除以一个不等于0的数,等于乘这个数的倒数。
两个有理数相除,同号得正,异号得负,绝对值相除。0除以任何数都得0,且0不能作除数,否则无意义。
16.有理数的乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
17.乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
18.有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
19.混合运算顺序:· 先算乘方,再乘除,后加减;
同级运算,从左到右进行;
如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。
20.近似数和有效数字:与实际相符的数,叫做准确数,与实际接近的数,叫近似数
21.有效数字:一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数字起到精确到那一位数字止,所有的数字。
图形的初步认识
1. 线段、射线、直线
正确理解直线、射线、线段的概念以及它们的区别:
名称 | 图形 | 表示方法 | 端点 | 长度 |
直线 | 直线AB(或BA) 直线l | 无端点 | 无法度量 | |
射线 | 射线OM | 1个 | 无法度量 | |
线段 | 线段AB(或BA) 线段l | 2个 | 可度量长度 |
经过两点有一条直线,并且只有一条直线。(两点确定一条直线).
2..比较线段的长短
线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.
比较线段长短的两种方法:
①圆规截取比较法;
②刻度尺度量比较法.
用刻度尺可以画出线段的中点,线段的和、差、倍、分;
用圆规可以画出线段的和、差、倍.
两点之间的所有连线中,线段最短。(两点间的线段长度,叫做这两点的距离)
两点之间线段的长度,叫做这两点之间的距离。
3角的度量与表示
角:有公共端点的两条射线组成的图形叫做角;
这个公共端点叫做角的顶点;
这两条射线叫做角的边.
角的表示法:角的符号为“∠”
①用三个字母表示,如图1所示∠AOB
②用一个字母表示,如图2所示∠b
③用一个数字表示,如图3所示∠1
④用希腊字母表示,如图4所示∠β
4.角度数的换算:1°=60分,1′=60秒
角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:
一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。如图6平角:
终边继续旋转,当它又和始边重合时,所成的角叫做周角。如图7所示:
5.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
6.等角的补角相等,等角的余角相等
7.经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都与第三条直线平行,那么这两条直线互相平行。
9.互相垂直的两条直线的交点叫做垂足。
10.平面内,过一点有且只有一条直线与已知直线垂直。
第一、要合理安排复习计划,紧跟老师课堂布置
不少同学一到重要考试前不会合理安排复习计划,按着很多同学们自己的话来说,“比较晕”,常常盲目的找来一堆参考书猛做题。这个阶段再进行题海战术效果并不好。正确的方法是跟着课堂老师走,说到底期中考试是阶段性的一次考试,并且一般都是学校自主出题,老师一般都会根据考试,布置一些针对性的作业,完成这些已经能够很好应对考试了,如果同学们还不放心,可以找往年的期中试题或者这一阶段的经典测试题再练习一下,但在精不在多。如果感觉在某个章节有明显缺陷,可重点针对这个章节多做一些测试题,强化一下。
第二、善于归纳和总结知识点以及经典类型题
知识点的归纳总结对我们理清我们所学知识的脉络有很好的帮助。对学过的章节内容做一个框架图或整理一个知识大纲,理清各个知识点之间的联系。对其中的重点,难点、易混淆的知识点应当分门别类。
第三、建立自己的错题本和精题本
同学们可以建立自己的错题本和经典题型本。对于平时的作业,小测试中出现的错题,有选择地记下来,并用红笔加以标注,考试前复习时重点翻看红笔标注的内容即可。再把日常做过的一些经典巧妙或难度高的题记录下来,同样用红笔加以标注,这里要注意,重点标注的是所用的解题方法和解题的思路。这样久而久之,同学们就可归纳出一些类型题的解题规律。最终它们会成为你拿到高分的有力保障。
第一步
把握新课程新特点
如何才能学好数学,掌握最全面、实用的考试技巧呢?在考试中取得好成绩首先要把握新课程的特点,而目前与新课程相适应的新特点主要有以下四点:
1. 在数学考试中,规律意识类试题将成为主流;
2. 试题难度降低,将从以往的论证转向发现、猜测和探究;
3. 考查创新意识和实践能力的试题将成为命题的方向;
4. 关注实际生活,聚焦社会热点。
“了解了新课程的特点,学生就要结合这些特点,展开下一阶段的学习。”
第二步
掌握正确学习方法
无论学习哪门课程,好的学习方法往往能起到事半功倍的效果,建议:
1. 重视基础知识、基本方法的巩固和提高。课本的例题、练习题、习题为编拟中考数学试题提供了丰富的题源,所以数学学习中应紧扣课本。
2. 运用所学的知识和技能分析问题和解决问题。学生通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,既加深对知识的理解,又学习到创造的策略和方法。
3. 学用结合,增强用数学的意识。多注意发生在学生身边的事情,如银行商标图案,骑自行车反映出来的函数图象,测量电视塔的高度,投寄平信应付的邮费,购买商品如何省钱等等,还要注意与教材上内容的类比。函数应用题目通过建立数学模型,把实际问题数学化。
4. 加强识图能力和处理图表信息能力。纵观近年来中学数学试题,很多试题都是以图像、图表为背景展现在考生面前,这类题目一般是使学生“亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。
5. 注重数学思想和方法。中考数学试题特别重视突出数学思想和方法的考查,初中数学中常用的基本方法有:配方法、换元法、待定系数法、观察法等;数学思想有:函数思想、数形结合思想、分类讨论思想、化归思想等。学生要针对具体题目总结、体会这些数学方法和数学思想。
第三步
精通四种学习技巧
除了掌握了上述的数学学习思想与方法,还需一定的学习技巧才能使我们在考试中“战无不胜”。总结学习数学的四个技巧:
1. 紧扣课本。要抓住教材,在总体上把握教材,明确每一章、节的知识在整体中的地位、作用。以课本为基础,章节之间善于归总;知识之间善于转化;例题习题善于变化;分段训练,分类推进。
2. 单元训练。练是基础,总结是精华。练习后一定要归纳总结。学生总结过程要做到这些内容。
审题:已知是什么?求证或求解的问题是什么?
思考:需要用哪些数学知识和思想方法去解决问题?本问题有几种方法解?哪种方法较简便?
求解:格式规范,表达清楚,书写整洁,步步有据。
反思:本题解法中是否有不合情理的地方?它与哪些题有联系?有没有规律性的东西?是否发现新的结论等等。
3. 综合训练。学生学到的知识构成网络、形成系统、打破章节、学科的界限,提高综合应用知识的能力和迁移能力。在单元知识点突破的基础上,再进行代数、几何学科综合。
4. 强化模拟。加强模拟练习,强化对知识的掌握和答题速度、节奏、经验等方面的积累训练,训练考试能力。用与考试试卷结构相同的套题进行模拟训练,严格按照考试要求答题,按标准格式答题,纠正答题过程中的不良习惯,对于试卷的错误要认真分析,找出错误的原因和解决的办法。
七年级上册数学复习资料
相似变换
※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.
※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
※3、注意点:
①a:b=k,说明a是b的k倍;
②由于线段a、b的长度都是正数,所以k是正数;
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
④除了a=b之外,a:b≠b:a,与互为倒数;
平移变换
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)
(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
相似三角形
※1、在相似多边形中,最为简简单的就是相似三角形.
※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
※5、相似三角形周长的比等于相似比.
※6、相似三角形面积的比等于相似比的平方.
统计
科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。
调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。
频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
第一章 有理数
1.1 正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1.有理数(1)整数:正整数、0、负整数统称整数(integer),
(2)分数;正分数和负分数统称分数(fraction)。
(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。
2.数轴
(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
(2)数轴三要素:原点、正方向、单位长度。
(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。
(4)数轴上的点和有理数的关系:
所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
①有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.
第二章 整式的加减
2.1 整式
单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和.
多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里 是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.
它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
2.2整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项
2.3整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
2.4整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。