下面就是小编给大家带来的小升初数学考试知识点(共含6篇),希望大家喜欢,可以帮助到有需要的朋友!同时,但愿您也能像本文投稿人“荔枝君”一样,积极向本站投稿分享好文章。
基本定义与运算定律
一、数与数字的区别
数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。
数是由数字和数位组成。
1.0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。00是最小的自然数,是一个偶数。是任何自然数(0除外)的倍数。0不能作除数。
2.自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。简单说就是大于等于零的整数。
3.整数: 自然数都是整数,整数不都是自然数。
4.小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。
5.混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。
5.纯小数:小数的整数部分为零的小数,叫做纯小数。
7.有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
8.无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
9.循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。
10.纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。
11.混循环小数:与纯循环小数有的区别,不是从十分位开始循环的循环小数,叫混循环小数。
12.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
二、分数
表示把 “单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。
运算的意义
一、整数四则运算
1 、整数加法
把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
【公式】
加数+加数=和
一个加数=和-另一个加数
2 、整数减法
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、 整数乘法
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
【公式】
一个因数× 一个因数 =积
一个因数=积÷另一个因数
4 、整数除法
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
【公式】
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
二、小数四则运算
1、小数加法
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2、小数减法
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3、小数乘法
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4、小数除法
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5、乘方
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
三、分数四则运算
1. 分数加法
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
5. 分数除法
分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。
整数和小数
1.最小的一位数是1,最小的自然数是0
2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4.小数的分类:小数 有限小数
无限循环小数
无限小数
无限不循环小数
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
一、体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
二、算术
加法交换律:两数相加交换加数的位置,和不变。
加法结合律:a + b = b + a
乘法交换律:a × b = b × a
乘法结合律:a × b × c = a ×(b × c)
乘法分配律:a × b + a × c = a × b + c
除法的性质:a ÷ b ÷ c = a ÷(b × c)
除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
有余数的除法: 被除数=商×除数+余数
三、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
四、分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
五、数量关系计算公式
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
六、长度单位
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
七、面积单位
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
何谓数、行、形、算,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。
由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%。
知识体系:
约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则 (小升初常考内容)
质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
余数问题:
(1)带余除式的理解和运用;
(2)同余的性质和运用;
中国剩余定理奇偶问题:
(1)奇偶与四则运算;
(2)奇偶性质
在实际解题过程中的应用完全平方数:
(1)完全平方数的判断和性质
(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)
整除问题:
(1)数的整除的特征和性质 (小升初分班常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
这四个问题我们需要掌握到什么样的程度?
上文是小升初数学考试知识点,希望文章对您有所帮助!
[必备小升初数学考试知识点总结]
一、符号化的思想方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
人教版教材从一年级就开始用“□”或“”代替变量x,让学生在其中填数。例如:1+2=□,6+=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。
符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。
二、统计的思想方法
在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。
[2017年小升初数学考试思想方法推荐]