以下是小编帮大家整理的新型数字CCD相机及其图像数据传输卡设计(共含9篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“阿猫阿狗”一样,积极向本站投稿分享好文章。
摘要:以DALSA公司的CA-D7-1024T数字CCD相机为例,详细讨论了数字CCD相机的接口信号及其时序关系;研究了数字CCD相机图像传输卡的关键技术,介绍了传输卡的电路原理及各部分的实现方法。
关键词:CCD相机FGPA图像数据传输卡PCI总线
随着CCD技术的发展,频率高、数字化的新型CCD相机不断出现。CCD相机输出的数字化,简化了相机与传输采集系统的接口设计,使数字CCD相机正越来越多地成为实时PCI控制、数据采集、图形图像处理、遥感遥测等系统中的探测器。这种CCD相机多采用帧转移型体系结构,转换速度快,量化精度、量子效率高。准确理解相机的接口信号及其时序关系,掌握其图像数据传输卡的原理及实现方法,可大大拓宽数字CCD相机的应用领域,提高应用系统的灵活性。
1数字CCD相机及其接口技术
在本系统中使用DALSA公司生产的CA-D7-1024T数字CCD相机。该相机是一种帧转移型的CCD相机,相机的空间分辨力为1024×1024像元,单像元尺寸为12μm×12μm,100%填充因子。在相机内部采用了相关双采样(CDS)、垂直反晕(VAB)等技术,大大提高了相机的成像品质。相机输出经过采样、量化的数据,量化精度为12位,最大帧频为8.4Hz,电子快门。相机内部由CCD图像传感器、驱动器、定时器、A/D转换等模块组成。其接口信号分为两类:用户总线接口信号和数据总线接口信号。
用户总线接口信号包括:
・EXSYNC?触发帧读出信号,是必备信号。当EXSYNC固定接低电平时,相机以最大帧速率输出图像数据;当EXSYNC正负交替时,它的下降沿触发帧读出。
・PRIN?像元复位信号,为可选信号。在两次EXSYNC有效之间复位像元(给积累电荷的电容放电),从而缩短有效曝光时间。PRIN低有效,在其上升沿开始有效曝光。如果PRIN固定接高电平,积分时间最大;如果PRIN被固定接低电平,探测器收集不到任何图像信息。
・BIN?像元合并信号,也是可选信号,可以控制像元合并。像元合并后会降低相机的空间分辨率,但会增强探测器对光的敏感性。BIN信号高有效,不用时将其接为低电平。
以上信号均由应用系统产生,送给相机,为应用系统根据需要设定相机的工作模式提供了手段。
数据总线接口信号为相机输出信号,包括:
・DATA0~11?12位数据总线。DATA0~11是相机输出的、分别对应目标某个像元灰度的12位图像数据。
・STROBE?像元时钟信号。STROBE是图像数据的像元时钟。它的频率与数据速率相同,即使数据无效,STROBE仍然连续交变。为了获得有效的图像数据,传输卡应在FVAL和LVAL为高电平时,在STROBE的下降沿进行数据锁存。
・FVAL?帧同步信号。FVAL高电平表明相机正输出一帧有效数据。
・LVAL?行同步信号。当FVAL为高电平时,LVAL高电平表明相机正输出一个有效的像元行。在两个有效行之间,LVAL会变低跳过几个无效的像元,跳过的像元数取决于相机的型号和预触发设定。
图像数据传输卡正是利用这些接口信号来实现对相机的控制及图像数据的抓取操作。为提高信号的抗干扰能力,所有这些接口信号均按RS422规范?以差分方式在数字相机和图像传输卡间进行传输,传输电缆为100Ω屏蔽双绞线。图1表示了相机接口信号之间的时序关系。
当PRIN由低电平向高电平跳变时,相机开始曝光。达到设定的曝光时间后,使EXSYNC信号变低,触发帧读出。此时相机首先进行帧转移,帧转移一结束,输出信号FVAL由低变高表示有效的数据帧开始,LVAL由低变高表示相机正输出有效像元行。当FVAL和LVAL再一次变低时,表示一帧数据输出结束,可以开始第二次触发帧读出(使EXSYNC有效)。第二次曝光可在第一次帧转移结束后与第二次帧读出启动前这段时间进行,曝光时间在一定范围内可调。
在应用系统中,数字CCD相机图像数据传输卡的主要任务是产生相机工作所需的输入信号,解译相机的输出信号,使相机在电控方式下工作?并实时、正确地抓取相机输出的图像数据,在相机和计算机内存之间建立硬件传输通道。为了适应数字CCD相机数据传输速率的不断提高,早期基于ISA总线的'图像数据传输卡正逐步向基于PCI总
线的传输卡过渡。
2.1图像数据传输卡电路说明
笔者设计开发的适用于DALSA公司CA-D7-1024T型数字CCD相机的图像传输卡的原理框图如图2所示。
驱动转换接口电路对相机与传输卡间的接口信号进行RS422和TTL电平间的相互转换;双口RAM为帧存储器,经编程控制可将相机输出的一帧图像数据写入,或经PCI桥读出图像数据至内存。采用帧存储器可以实现多个相机同时曝光,图像数据分时通过计算机总线写入内存。FPGA时序发生器用来产生双口RAM的地址线、读写控制线以及相机和传输卡正常工作所需的联络信号。PCI接口芯片是计算机与双口RAM及FPGA间的桥梁,在它们之间实现数据、控制信号的传输,并可通过初始化设置,实现PCI协议提供的各种传输模式。
2.2FPGA时序逻辑发生器设计
本图像数据传输卡采用ALTRA公司生产的FPGA芯片EPM7128SLC84-15作为时序逻辑发生器。通过在系统编程(ISP)使其实现一个20位计数器、一个1位计数器、两个锁存器及十几个非标逻辑门的功能。其中20位计数器给1M×4Bit的帧存储器提供地址;1位计数器用来对卡上的30MHz时钟信号进行二分频,产生15MHz的VCLK信号;两个锁存器分别输出行同步和场同步信号;逻辑门用来实现信号的与、或、非等逻辑运算。
ALTERA公司的MAX+PLUSⅡ编程仿真工具软件,可对FPGA芯片进行在系统编程、仿真、调试,大大提高了传输卡设计的灵活性和对不同型号相机的适应能力,缩短了传输卡的研发周期。使用AHDL编程语言对FPGA芯片进行在系统编程,程序文件的主体如下:
BEGIN
HSYNC=lpm_ff_component2.q?0..0??
lpm_ff_component2.clock=FVALT&STROBT&LVALT&??
GP5?#GP5&VCLK?
lpm_ff_component2.data?0..0?=HSYNN?
VSYNC=lpm_ff_component3.q?0..0??
lpm_ff_component3.clock=FVALT&STROBT&LVALT&
??GP5?#GP5&VCLK?
lpm_ff_component3.data?0..0?=VSYNN?
STROO=FVALT&STROBT&LVALT&??GP5??
A?19..0?=lpm_counter_component.q?19..0??
lpm_counter_component.aclr=sclr?
lpm_counter_component.clock=FVALT&STROBT&LVALT&
??GP5?#GP5&VCLK?
/WE=??FVALT&LVALT&?STROO??
/OE=FVALT?
FVTA=FVALT?
/FVTA=?FVALT?
VCLK=lpm_counter_component1.q?0..0??
lpm_counter_component1.clock=VVCLK?
VVCLK=CLK&GP5?
2VCLK=VVCLK?
F1=A19&GP5?
HSYNN=A5&A6&A7&A8&A9&GP5?
VSYNN=A14&A15&A16&A17&A18&GP5?
END?
2.3多层高速印制电路板设计
笔者研制的图像数据传输卡的印制板设计为四层板,除了顶层和低层外,单独设计了电源和地层,这是基于PCI总线板卡的基本要求。另外,由于卡上的数据、地址及控制信号多为高速信号,在进行印制板设计时,还必须注意以下几点:
・PCI桥引脚的最大走线长度限于1.5英寸,CLK信号走线长度限于2.5±0.1英寸,且只连接一个负载;
・板上的共享PCI信号线的无负载特性阻抗(Z0)应控制在60~100Ω;
・PCI控制信号应考虑上拉电阻;
・每个电源引脚都要对地去耦合,处理开关电流的冲击。一般跨接0.01μF高频去耦电容;
・采集卡应遵守最大引脚电容小于10pF的限制;
・共享的PCI信号在板上,只能带一个负载。
在深入研究了数字CCD相机接口要求的基础上,按照以上的设计原理,自行研制成功基于PCI总线的、适用于多相机同时曝光的图像数据传输卡。该卡在机载多波段偏振成像系统原理样机中成功地通过了调试。测试数据表明,图像数据传输卡能够满足系统的设计要求。
新型数字CCD相机及其图像数据传输卡设计
摘要:以DALSA 公司的CA-D7-1024T数字CCD相机为例,详细讨论了数字CCD相机的接口信号及其时序关系;研究了数字CCD相机图像传输卡的关键技术,介绍了传输卡的电路原理及各部分的实现方法。关键词:CCD相机 FGPA 图像数据传输卡 PCI总线
随着CCD技术的发展,频率高、数字化的新型CCD相机不断出现。CCD相机输出的数字化,简化了相机与传输采集系统的接口设计,使数字CCD相机正越来越多地成为实时PCI控制、数据采集、图形图像处理、遥感遥测等系统中的探测器。这种CCD相机多采用帧转移型体系结构,转换速度快,量化精度、量子效率高。准确理解相机的接口信号及其时序关系,掌握其图像数据传输卡的原理及实现方法,可大大拓宽数字CCD相机的应用领域,提高应用系统的灵活性。
1 数字CCD相机及其接口技术
在本系统中使用DALSA公司生产的CA-D7-1024T数字CCD相机。该相机是一种帧转移型的CCD相机,相机的空间分辨力为1024×1024像元,单像元尺寸为12μm×12μm,100%填充因子。在相机内部采用了相关双采样(CDS)、垂直反晕(VAB)等技术,大大提高了相机的成像品质。相机输出经过采样、量化的`数据,量化精度为12位,最大帧频为8.4Hz,电子快门。相机内部由CCD图像传感器、驱动器、定时器、A/D转换等模块组成。其接口信号分为两类:用户总线接口信号和数据总线接口信号。
用户总线接口信号包括:
・EXSYNC?触发帧读出信号,是必备信号。当EXSYNC固定接低电平时,相机以最大帧速率输出图像数据;当EXSYNC正负交替时,它的下降沿触发帧读出。
・PRIN?像元复位信号,为可选信号。在两次EXSYNC有效之间复位像元(给积累电荷的电容放电),从而缩短有效曝光时间。PRIN低有效,在其上升沿开始有效曝光。如果PRIN固定接高电平,积分时间最大;如果PRIN被固定接低电平,探测器收集不到任何图像信息。
・BIN?像元合并信号,也是可选信号,可以控制像元合并。像元合并后会降低相机的空间分辨率,但会增强探测器对光的敏感性。BIN信号高有效,不用时将其接为低电平。
以上信号均由应用系统产生,送给相机,为应用系统根据需要设定相机的工作模式提供了手段。
数据总线接口信号为相机输出信号,包括:
・DATA0~11?12位数据总线。DATA0~11是相机输出的、分别对应目标某个像元灰度的12位图像数据。
・STROBE?像元时钟信号。STROBE是图像数据的像元时钟。它的频率与数据速率相同,即使数据无效,STROBE仍然连续交变。为了获得有效的图像数据,传输卡应在FVAL和LVAL为高电平时,在STROBE的下降沿进行数据锁存。
・FVAL?帧同步信号。FVAL高电平表明相机正输出一帧
[1] [2] [3] [4]
基于1M60数字CCD相机的数字图像存储系统
传统光电经纬仪是通过高速同步摄影机拍摄胶片来获取实时测量信息,测量的数据处理通常只能依靠胶片的事后判读,存在着操作复杂、人工判读误差大,无法实现实时数据处理等诸多不利因素.通过对数字CCD相机应用的研究,设计了以Pantera TF 1M60相机为数据录取器件,工控机为数据存储处理平台的数字化数据采集记录系统,实现了光电经纬仪数据、图像的.数字化存储和处理.结果表明系统的软硬件设计满足光电经纬仪性能要求.
作 者:赵云峰 王秋颖 ZHAO Yun-feng WANG Qiu-ying 作者单位:中国人民解放军91245部队,辽宁,葫芦岛,125004 刊 名:电光与控制 ISTIC PKU英文刊名:ELECTRONICS OPTICS & CONTROL 年,卷(期): 14(5) 分类号:V245.6 关键词:数字CCD 动态目标测量 无压缩存储 光电经纬仪EFD图像数据传输系统设计论文
在此计以STM32系列处理器作为控制器,利用uCGUI进行图形界面设计,利用循环移位算法将黑白图像定制成符合TFT?EFD显示的数据格式,实现了静态EFD图像的通信,可以根据实际要求传输不同静态EFD图像,后期如果需要可以升级成传输数据流来支持动态显示。
1 设计原理
本设计采用的单色TFT?EFD显示屏的分辨率是320×240,行线连接着晶体管的栅极,控制着晶体管的打开与关闭,列线连接着晶体管的源极,控制着数据的传输,整体的结构如图1所示。
图1 EPD Panel
基于EFD的图像显示经历了图像采集,图像传输,图像显示等步骤。EFD目前只支持黑白图像显示,因此图像采集利用Processing软件对图片进行一次加工,转换成黑白图像。数据生成之后需要进行传输,传递给微控制器进行处理,这时需要对数据进行二次加工,变成满足TFTEFD显示屏驱动芯片要求的格式,之后通过DMA方式传递给外部的SRAM。FPGA读取SRAM的数据,根据相应的时序控制驱动芯片输出数据,从而实现图像显示。如果控制好时序,能在1 s内刷新25帧以上,那么就可以实现图像的动态显示。
数据的传输是整个过程的中间阶段,需要进行不断的测试来找到最优的传输数据时序,构造出相对完善的波形序列来实现动态显示。因此搭建数据传输系统来显示不同的图像,测试其显示效果,对于实现稳定的动态显示有积极的作用。本设计利用uCGUI构造图形控制界面,可以传输不同的EFD图像数据给SRAM,FPGA读取其中的数据就可以进行图像显示,并且系统界面简单直观,操作起来也相对简便。
2 系统设计
2.1 硬件设计
利用STM32F103ZET6微处理器作为主控芯片,SD卡作为存储设备,SRAM作为转换数据的输送目的地,TFT?LCD用作显示与触摸控制,各个硬件相互配合构建起一个完整的数据传输系统。系统框图如图2所示。
图2 系统结构
显示模块采用2.8寸ALIENTEK TFTLCD模块,利用ILI9320控制器作为驱动芯片进行驱动。ILI9320液晶控制器自带显存,其显存总大小为172 820 b(240×320×[1818])。并且ALIENTEK TFTLCD模块自带电阻式触摸屏,可以实现触控的功能。ALIENTEK TFTLCD模块自带的触摸屏控制芯片为XPT2046,内部含有12位分辨率125 kHz转换速率逐步逼近型A/D转换器,是一款4导线制触摸屏控制器。
由于数据量比较大,将大量数据储存在SD卡中[1],SD卡的配置使用SPI驱动,最高通信速度可达18 Mb/s,每秒可传输数据2 MB以上,可以满足一般的应用需求。SRAM采用的是IS62WV51216芯片,存储容量为1 MB,采用STM32的FSMC接口对其进行配置。FSMC是灵活的静态存储控制器,能够与同步或异步存储器、16位PC存储器卡接口,STM32的FSMC接口支持包括SRAM,NAND FLASH,NOR FLASH等存储器。本设计使用FSMC的BANK1区域3来控制IS62WV51216芯片。
2.2 软件设计
FATFS文件系统:FATFS是一个完全免费开源的FAT文件系统模块,专门为小型的嵌入式系统而设计。它用标准C 语言编写,一般只需要修改2个文件,即ffconf.h和diskio.c,之后进行简单配置就可以移植到单片机上,进而可以对SD卡和FLASH进行文件的读、写操作。
uCGUI移植:uCGUI 是一种小型化的嵌入式图形界面接口,该接口独立于处理器和LCD 控制器种类,对系统的要求很低[2]。它设计用于为任何使用LCD图形显示的应用提供高效的独立于处理器和LCD控制器的图形用户接口[3],它适用单任务或是多任务系统环境,并且在任意LCD控制器和CPU下进行任何尺寸的真实显示或虚拟显示。
本设计依靠uCGUI进行界面设计,设计比较直观的按键和列表来控制图像传输和图像显示。使用uCGUI也需要做移植的工作,移植的工作包括显示屏和触摸屏两个部分。
显示屏:首先,TFT?LCD显示屏的底层驱动函数需要事先写好,保证单线程程序中正常显示。
其次,向工程中加入uCGUI程序包。
再次,根据自己的显示屏规格配置LcdConf.h GuiConf.h
GuiTouchConf.h文件
最后,修改LcdDriver使uCGUI与你的LCD驱动相互关联。
触摸屏:若要在uCGUI 中使用触摸屏, 则必须将GUI_SUPPORT_TOUCH (Config 目录下GUIConf.h中定义的宏)设置为1[4]。同时要编写底层的触摸屏源驱动函数,对gui_TouchConf.h文件中进行配置,然后在GUI_X_Touch.c文件中进行函数的改动。
具体的移植过程可以参考uCGUI使用手册,这里不再赘述。
数据转换算法?循环移位:显示屏里每一个像素格里有一滴彩色油墨,油墨在加电时会收缩,在不加电时会平铺。下极板是一层反光隔膜,里边每一个像素格里有一个TFT晶体管作为电压开关,上极板是玻璃板,当在上下极板间加入适当电压,像素格里的油墨就会打开,用光照射就显示出明亮状态,当不加电时就会平铺显示出的是油墨的颜色。EFD?Panel的微观结构如图3所示。
图3 EPD Panel微结构
由于EFD是国内新型显示技术,有着自身的图像数据格式,需要定制符合其显示格式的数据来实现图像显示。控制油墨打开与关闭的芯片要求一个像素格有两位进行控制,即“01”代表打开,“10”代表关闭,因此需要对原始图像数据进行二次加工来满足要求。EPD Panel 的规格是320×240,即240行,320列,由于驱动芯片的数据输出位数是8位,因此先定义一个字符型的二维数组data[240][80],然后利用内存管理单元开辟相应的区域来存放最终数据。利用FATFS模块的f_read函数从文本文档里读取数据,根据文档中每一个数据的内容是‘1’还是‘0’,分别对二维数组内的元素进行0x01或0x02的赋值操作,如果移位次数没有达到4次则进行左移两位操作,否则读取下一个数据重新进行判断。这样每4个数据构成二维数组里的一个元素值。接下来的工作就是判断列数与行数是否小于预先设定数值,如果列数超出设定值,则行数加1,从新的一行开始读取数据,如果行数超出设定值,则循环结束,所有数据均被转换完。
算法流程图如图4所示。
图4 图像转换算法
在Keil集成开发环境下利用C语言编写数据格式转换代码,实现图像转换的'重要代码片段如下:
if(*(num++)=='1')
{
if((x%4==0)&&(x!=0))j++;
data[i][j]|=0x01;
if(x!=(3+4*j))data[i][j]<<=2;
}
else
{
if(x==320||x==321)continue;
if((x%4==0)&&(x!=0))j++;
data[i][j]|=0x02;
if(x!=(3+4*j))data[i][j]<<=2;
}
界面设计部分:进行完所有的移植工作之后,就可以进行界面的设计,具体的界面程序流程图如图5所示。
图5 主程序流程图
整个系统分成了3个界面,界面之间可以实现相互的切换。第一个界面是进入界面,第二个界面是控制界面,第三个界面是数据列表界面。具体实现方法是建立了非模态对话框,以第一个界面为例,其对话框建立代码为: GUI_CreateDialogBox(_aDialogCreate1,GUI_COUNTOF(_aDialogCreate1),
&_cbCallback1, 0, 0, 0);
构造的ENTER按键用来控制界面的交换。第二个界面构造了三个按键来实现不同的控制,包括Begin Button,Exit Button,List Button,利用扫描方式来检测按键的触摸,从而执行不同的功能函数,代码片段如下:
switch(GUI_GetKey)
{
case GUI_ID_BUTTON0: datacopy(col); //控制数据传送
break;
case GUI_ID_BUTTON1: LED0=1; //界面转换标志置位
break;
case GUI_ID_BUTTON2: GUI_Clear();
BUTTON_Delete(hButton[0]);
BUTTON_Delete(hButton[1]);
BUTTON_Delete(hButton[2]);
GUI_CreateDialogBox(ImagelistDialog, GUI_COUNTOF(ImagelistDialog), &listCallBack, 0, 0, 0); //界面转换
break;
default:break;
}
第三个界面是图像名称的列表,是将对话框与列表结合显示出存储在SD卡中图像名称,进而来控制传输不同的图像。三个界面的显示效果如图6所示。
3 结 语
本设计可以作为EFD图像显示的测试装置来进行使用,通过显示不同的图像来找到合适的波形图来辅助动态图像显示,同时实现了信息的可视化显示[5],后期可以进行程序上的修改,对系统进行改进与升级,以数据流的形式传输数据,和终端的FPGA进行配合来实现动态显示。
新型数字疲劳传感器设计
为了解决疲劳传感器在结构疲劳监测时,模拟信号传输噪声大、热输出大等引起的检测精度不高等问题,设计了一种数字疲劳传感器,此传感器采用片上系统ADuC845完成数据的'采集与处理,传感器自带稳压,高精度、低温漂供桥与参考电路.传感器能实现温度补偿、非线性校正及数字信号传输.试验证明:传感器实际分辨力达0.001Ω,时间漂移小于0.002Ω/h,抗干扰能力强,测试精度与可靠性高,完全能满足工程疲劳检测的要求.
作 者:张明 胡明敏 ZHANG Ming HU Ming-min 作者单位:南京航空航天大学,力学中心,江苏,南京,210016 刊 名:传感器与微系统 PKU英文刊名:TRANSDUCER AND MICROSYSTEM TECHNOLOGIES 年,卷(期): 27(8) 分类号:O346.2 关键词:疲劳传感器 疲劳监测 结构健康监测遥感卫星CCD相机的动态范围设计考虑
动态范围是遥感器的一项重要性能指标,设计是否合理直接关系到卫星图像的层次、亮度和对比度,最终影响图像的`品质.文章根据CCD相机的成像原理,结合中国已发射遥感卫星的在轨像质,对CCD相机动态范围的设计进行分析并提出一些建议.
作 者:何红艳 王小勇 付兴科 He Hongyan Wang Xiaoyong Fu Xingke 作者单位:北京空间机电研究所,北京,100076 刊 名:航天返回与遥感 英文刊名:SPACECRAFT RECOVERY & REMOTE SENSING 年,卷(期):2008 29(1) 分类号:V4 关键词:电荷耦合器件 动态范围 辐亮度 空间相机 航天遥感数字摄影测量系统中非量测CCD相机标定算法
为了解决传统的`相机标定方法,通常需要建立复杂三维标定块或高精度三维控制场这一实际问题,采用平面控制格网作为标定块,利用二维直接线性变换分解出相机的内外方位元素初值,然后采用改进的Hough变换算法检测标定图像中的格网直线并利用最小二乘法拟合出最佳直线,通过求直线的交点得到标定格网点的像坐标.最后利用自检校光线束法平差进行相机的精确标定.实际图像数据实验结果表明:主点和焦距的标定精度分别达到了0.2和03像素左右.可以满足高精度近景三维量测的要求.
作 者:于宁锋 YU Ning-feng 作者单位:中国矿业大学,环境与测绘学院,江苏,徐州,221008 刊 名:辽宁工程技术大学学报(自然科学版) ISTIC PKU英文刊名:JOURNAL OF LIAONING TECHNICAL UNIVERSITY 年,卷(期): 26(2) 分类号:P231.5 关键词:直接线性变换 共线方程 光束法平差 相机标定 Hough变换嫦娥一号卫星CCD立体相机的设计与在轨运行
介绍了立体成像原理、参数选择、相机方案及设计结果.发射前的`实验室检测表明:整机MTF达0.48,S/N为235.由嫦娥一号卫星CCD立体相机获取的图像清晰,层次丰富.用户根据在轨运行前期探测数据对CCD立体相机的科学探测数据质量进行了初步评估,认为CCD立体相机工作正常,数据格式正确,科学数据有效,图像质量优良,能够进行稳定的数据观测、采集与下传.最后介绍了相机在研制过程中采用的一些新技术.
作 者:赵葆常 杨建峰 汶德胜 高伟 阮萍 贺应红 作者单位:中国科学院西安光学精密机械研究所,西安,710119 刊 名:航天器工程 ISTIC英文刊名:SPACECRAFT ENGINEERING 年,卷(期):2009 18(1) 分类号:V476 关键词:嫦娥一号卫星 有效载荷C CD立体相机 在轨检测 月面图像★ 新型玻璃教学设计