下面是小编帮大家整理的什么是对焦系统(共含7篇),希望对大家的学习与工作有所帮助。同时,但愿您也能像本文投稿人“TeNz1N”一样,积极向本站投稿分享好文章。
什么是对焦系统
所谓对焦系统,简单的说跟人眼的生理功能差不多,是一种模仿人眼功能的模块。对于数码摄像机来说,低端的数码摄像机均采用自动对焦系统,部分高端专业的`摄像机采用手动对焦系统。
自动对焦技术是计算机视觉和各类成像系统的关键技术之一,在数码相机、数码摄像机等成像系统中有着广泛的用途。传统的自动对焦技术较多采用测距法,即通过测出物距,由镜头方程求出系统的像距或焦距,来调整系统使之处于准确对焦的状态。随着现代计算技术的发展和数字图像处理理论的日益成熟,自动对焦技术进入一个新的数字时代,越来越多的自动对焦方法基于图像处理理论对图像有关信息进行分析计算,然后根据控制策略驱动电机,调节系统使之准确对焦。
一个典型的自动对焦系统应具备以下几个单元:成像光学镜头组、成像器件、自动对焦单元、镜头驱动单元。
自动变焦系统结构图
成像光学镜头组包括光学滤波器、变焦透镜组和对焦透镜组;成像器件是CMOS(CCD)数字式图像传感器,输出图像信息的数字量;自动对焦单元由DSP芯片作为核心器件,图像信息的采集、计算、控制策略的选择和控制信号的产生都在这个单元中进行;镜头驱动单元包括步进电机及其驱动电路,该单元接受自动对焦单元的控制,驱动成像光学镜头组中的变焦透镜组和对焦透镜组进行位置调节,最终使图像传感器输出准确对焦的图像。
什么是对焦距离
在了解对焦距离之前,应该先了解两个概念:景深和焦距。
景深的概念:当某一物体聚焦清晰时,从该物体前面的某一段距离到其后面的某一段距离内的所有景物也都当清晰的。焦点相当清晰的这段从前到后的距离就叫做景深。景深分为前景深和后景深,后景深大于前景深。景深越深,那么离焦点远的景物也能够清晰,而景深浅,离焦点远的景物就模糊。
焦距是一个任何的光学仪器都有的不折不扣的光学参数。从光学原理来讲焦距就是从焦点到透镜中心的`距离。对于镜头来说,焦距有着非常重要的意义。焦距长短与成像大小成正比,焦距越长成像越大,焦距越短成像越小。镜头焦距长短与视角大小成反比,焦距越长视角越小,焦距越短视角越大。焦距长短与景深成反比,焦距越长景深越小,焦距越短景深越大。焦距长短与透视感的强弱成反比,焦距越长透视感越弱,焦距越短透视感越强。焦距长短与反差成反比,焦距越长反差越小,焦距越短反差越大。
对焦距离越远景深越深,对焦距离越近景深越浅。因此在拍摄远景时应该选择较大对焦距离的镜头,而在拍摄近景时则应该使用较小对焦距离的产品。镜头对焦距离是用cm(厘米)表示的,可谓一目了然。
什么是对焦方式
对焦的英文学名为Focus,通常数码相机有多种对焦方式,分别是自动对焦、手动对焦和多重对焦方式。
自动对焦:
传统相机,采取一种类似目测测距的方式实现自动对焦,相机发射一种红外线(或其它射线),根据被摄体的反射确定被摄体的距离,然后根据测得的结果调整镜头组合,实现自动对焦。这种自动对焦方式――直接、速度快、容易实现、成本低,但有时候会出错(相机和被摄体之间有其它东西如玻璃时就无法实现自动对焦,或者在光线不足的情况下),精度也差,如今高档的相机一般已经不使用此种方式。因为是相机主动发射射线,故称主动式,又因它实际只是测距,并不通过镜头的实际成像判断是否正确结焦,所以又称为非TTL式。
这种对焦方式相对于主动式自动对焦,后来发展了被动式自动对焦,也就是根据镜头的实际成像判断是否正确结焦,判断的依据一般是反差检测式,具体原理相当复杂。因为这种方式是通过镜头成像实现的,故称为TTL自动对焦。也正是由于这种自动对焦方式基于镜头成像实现,因此对焦精度高,出现差错的比率低,但技术复杂,速度较慢(采用超声波马达的`高级自动对焦镜头除外),成本也较高。
手动对焦:
手动对焦,它是通过手工转动对焦环来调节相机镜头从而使拍摄出来的照片清晰的一种对焦方式,这种方式很大程度上面依赖人眼对对焦屏上的影像的判别以及拍摄者的熟练程度甚至拍摄者的视力。早期的单镜反光相机与旁轴相机基本都是使用手动对焦来完成调焦操作的。现在的准专业及专业数码相机,还有单反数码相机都设有手动对焦的功能,以配合不同的拍摄需要。
多重对焦:
很多数码相机都有多点对焦功能,或者区域对焦功能。当对焦中心不设置在图片中心的时候,可以使用多点对焦,或者多重对焦。除了设置对焦点的位置,还可以设定对焦范围,这样,用户可拍摄不同效果的图片。常见的多点对焦为5点,7点和9点对焦。
全息自动对焦
全息自动对焦功能(Hologram AF),是索尼数码相机独有的功能,也是一种崭新自动对焦光学系统,采用先进激光全息摄影技术,利用激光点检测拍摄主体的边缘,就算在黑暗的环境亦能拍摄准确对焦的照片,有效拍摄距离达4.5米。
基于DSP的自动对焦系统
摘要:介绍了一种基于DSP芯片TMS320F206进行数值计算和实施控制的自动对焦系统。给出了系统的硬件构成和软件设计。该系统不仅充分发挥了DSP芯片的数值计算优势,而且拓展了其在人机对话和电机控制等输入输出方面的应用。关键词:自动对焦DSP爬山搜索算法
现代社会是一个高度信息化的社会,多媒体技术的发展使图像信息的获取及其传输手段倍受瞩目。自动对焦技术是计算机视觉和各类成像系统的关键技术之一,在照相机、摄像机、显微镜、内窥镜等成像系统中有着广泛的用途。传统的自动对焦技术较多采用测距法,即通过测出物距,由镜头方程求出系统的像距或焦距,来调整系统使之处于准确对焦的状态。随着现代计算技术的发展和数字图像处理理论的日益成熟,自动对焦技术进入一个新的数字时代,越来越多的自动对焦方法基于图像处理理论对图像有关信息进行分析计算,然后根据控制策略驱动电机,调节系统使之准确对焦。
本文利用数字式CMOS图像传感器作为感像器件,运用DSP芯片采集图像信息并计算系统的对焦评价函数,根据优化的爬山搜索算法控制驱动步进电机,调节系统光学镜头组的位置,使系统成像清晰,从而实现自动对焦。这是一种数字式的自动对焦方法,其准确性和实时性使其在视频展示台和显微镜等设备中的应用具有广泛的前景。
1系统的硬件构成
一个典型的自动对焦系统应具备以下几个单元:成像光学镜头组、成像器件、自动对焦单元、镜头驱动单元。在本系统中,成像光学镜头组包括光学滤波器、变焦透镜组和对焦透镜组;成像器件是CMOS数字式图像传感器,输出图像信息的数字量;自动对焦单元由DSP芯片作为核心器件,图像信息的采集、计算、控制策略的选择和控制信号的产生都在这个单元中进行;镜头驱动单元包括步进电机及其驱动电路,该单元接受自动对焦单元的控制,驱动成像光学镜头组中的变焦透镜组和对焦透镜组进行位置调节,最终使图像传感器输出准确对焦的图像。系统的硬件结构如图1所示。
1.1数字式CMOS图像传感器
图像传感器是把光信号转换成电信号的装置。本系统采用1/3英寸数字式CMOS图像传感器OV7620,总有效像素单元为664(水平方向)x492(垂直方向)像素;内置10位双通道A/D转换器,输出8位图像数据;具有自动增益和自动白平衡控制,能进行亮度、对比度、饱和度、γ校正等多种调节功能;其视频时序产生电路可产生行同步、场同步、混合视频同步等多种同步信号和像素时钟等多种时序信号;5V电源供电,工作时功耗<120mW,待机时功耗<10μW。
OV7620工作时序图如图2所示。其中,PCLK是图像传感器的像素时钟,HREF是行同步信号,Y和UV是图像数据信号,VSYNC是帧同步信号,FODD是奇偶场信号。
1.2DSP控制系统
DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。本系统采用TI公司的DSP芯片TMS320F206进行数值计算和实施控制,采用40MHz有源晶振,经过分频后获得50ns的系统时钟周期。该芯片支持硬件等待状态,当BEADY引脚电平为低时,TMS320F206等待一个CLOCK1周期并再次检查READY,在READY被驱动至高电子以前,TMS320F206将不再继续执行。TMS320F206的工作时序图如图3所示。
1.3系统的硬件电路
系统的硬件电路如图4所示。图像数据Y0~Y7通过74LS245输入到DSP的数据端口D0~D7;行同步信号HREF、帧同步信号VSYNC、时钟信号CLOCK、像素时钟PCLK分别接至相应引脚配合数据采集;键盘输入用来手动控制变焦倍率;DSP通过数据端口送出步进电机运转所需的三相六拍脉冲时序,经过74S245缓冲和MC1413功率放大后,驱动步进电机工作。
图3和图4
2系统的软件设计
系统软件包括数据采集及处理、优化搜索算法、步进电机驱动和变焦跟踪等功能模块。系统软件流程图见图5。
2.1数据采集和计算
系统上电复位后,先对系统初始化,包括对DSP芯片TMS320F206内的RAM区进行功能划分、定义程序中的变量、驱动聚焦镜头的电机复位、设置DSP芯片TMS320F206的输入输出端口、设置TMS320F206的.等待状态等。
初始化工作完成后,系统进入数据采集和计算阶段,根据数字图像传感器提供的场同步、行同步和像素时钟等时序信号,可
以方便地选取不同的对焦窗口采集数据。采集完成后,马上计算相邻像素的亮度差值的平方和,并保存到TMS320F206的RAM中。由于TMS320F206提供的重复执行指令极大地节约了运算时间,因此一行数据的差值运算根据采集窗口的不同可在一至两行的时间内完成。一帧图像的数据采集都完成后,将每一行像素的亮度差值平方和累加,就得到这一桢图像的调焦评价函数。将调焦评价函数的最大值及此时的步进电机行程记录下来。一帧图像的数据采集和计算处理结束后,步进电机以一个较大的步长定向前进,重复数据采集和计算的过程,直到步进电机走完规定的行程。
2.2优化的搜索算法
本系统采用了一种优化的爬山搜索算法。控制策略为:先根据整个行程的调焦评价函数值,获得调焦评价函数与步进电机行程的关系曲线,从曲线上可以判断选择最大的步进电机步长。在判断选择时,既要保证不会错过调焦评价函数的最大值区域,同时又要满足以最少的步数走完全程。在获得全程最大调焦评价函数区域后,将步进电机步长减小,在最大值区域内进一步搜索更精确的对焦位置。采用这一策略,既不会发生误判或找不到对焦点的情况,又能以较快的速度进行对焦。软件设计为:电机驱动镜头从起始位置出发,先以等步长走一遍全程,记录下调焦评价函数最大值时的镜头位置,然后镜头回到调焦评价函数最大值位置的前一站,换用小步长,从调焦评价函数最大值位置的前一站走到最大值位置的后一站,记录下这一全程的调焦评价函数最大值时的镜头位置,如此反复搜索,最后镜头停止在调焦评价函数最大值处,使系统实现正确对焦。采用这一方法,既可以避免电机盲目反转,又能确保系统找到正确的对焦点,而且搜索历程短,有利于快速对焦。
3自动对焦实验结果
在优化的爬山搜索算法中,选取最大步长要以调焦评价函数的变化趋势为依据。在本系统中选择最大步长为30H,这样总能测到一个最大值或两个次大值中的一个数据,在第二次搜索时就一定能找到调焦评价函数的最大值。
什么是对焦方式/范围
摄像头的对焦方式一般是指手动对焦以及自动对焦。手动对焦通常是需要用户对摄像头的对焦距离进行手动选择。而自动对焦则是由摄像头对拍摄物体进行检测,确定物体的位置并驱动镜头的镜片进行对焦。
对焦范围是指摄像头能够完成聚焦的.最近点到最远点的这一个范围。例如有的摄像头的对焦范围是15cm到无限远,也就是说它最近的对焦距离是15cm,而在15cm以内这一范围是无法完成聚焦的,即使能聚焦,所成的图像也不清晰。
目前所有的家用摄录影机,都具有此项功能,它是以红外线测距的方式来完成对焦的动作,
自动对焦
,
装置在镜头内下方的一组红外线发射器,当镜头对准目标时,红外线也同时感应到与目标间的距离,同时驱动调焦机构进行对焦动作。
本教程为摄影爱好者介绍一下摄影中对焦系统的分类和技术知识,希望对大家有帮助,
数码相机的几种对焦方式
数码单反相机的对焦原理图
自动对焦功能在摄影技术发展历程中具有里程碑的意义。相比于普通的消费级数码相机,数码单反相机的对焦性能非常强大,这是由其对焦系统的先进性和准确性所决定的。
不同数码相机根据机身结构、定位的差别,分别采用不同的对焦机制来完成自动对焦操作。 消费级数码相机:对比度检测法。
对比度检测法是一种普及率很高的对焦方式。它的工作原理是当相机需要对焦的时候,只要让镜头来回运动,计算系统就可以根据被测物体的对比度来找到最佳的对焦位置。整个过程都是利用主传感器来进行检测。此方法原理简单,在消费级数码相机中被广泛应用。
数码单反相机 :透镜分离相位检测法
这是当今大多数数码单反相机采用的对焦方式,它的前身是 1975 年美国一家公司发明的技术,经过不断进步,逐渐发展而来。它的原理是通过分离镜片将通过镜头的光线分裂成两束并聚焦,投影到测距组件上,通过判断感光元件阵列上的距离来判断对焦是否准确。这种对焦方式的原理较复杂,精确度相比消费级数码相机的对焦方法也要高很多。
主动式红外线机制
少量数码相机采用这种对焦机制。它通过相机投射出的红外线作为发射信号,然后通过相机的感 应器分析红外线的反射角度,得出拍摄对象的远近距离,从而完成对焦,
数码单反相机的对焦系统
数码单反相机中的对焦组件
对焦系统的元件之一
数码单反相机完成对焦的过程非常复杂。当光线射入镜头后,光线通过反光镜反射在位于反光镜上方的对焦屏上。反光镜到对焦屏的距离与反光镜到感光元件的距离是完全相等的。在未曝光前,对焦屏代替感光元件进行对焦操作,利用透镜分离相位检测法对焦,并发出命令。
而对焦操作的过程是通过镜头内部的自动对焦马达完成的。对焦系统通过调整镜头内部的透镜组,事实上是镜头内的部分透镜组和感光元件的距离来实现的。由于现在的大多数镜头采用了内对焦或后对焦的方式,在对焦过程中,摄影师不会察觉镜头长度的明显变化。此外,数码单反相机的对焦操作还依赖于相机内部的自动对焦传感器等多个组件合力完成。
现今,对焦系统的性能已经成为划分数码单反相机档次高低的重要标准之一,也是各厂商在区分产品档次差别时的重要砝码。
・自动对焦与手动对焦
自动对焦快速准确
数码单反镜头中的超声波马达
自动对焦、手动对焦的功能切换开关
★ IT系统承包合同
★ 系统自查报告
★ 计划系统