下面小编给大家整理的欧拉对函数概念的发展(共含7篇),希望大家喜欢!同时,但愿您也能像本文投稿人“asdfdasfa”一样,积极向本站投稿分享好文章。
欧拉对函数概念的发展
目的 探讨欧拉(Leonard Euler,1707-1783)对函数概念的贡献.方法 文献考证与历史分析.结果 欧拉定义的作为解析式的函数概念,使函数概念由几何形态转向代数形态;对超越函数幂级数展式的研究把微积分的'研究对象由代数函数扩展为解析函数;对连续性的研究引出了对解析函数的探讨;由物理推理及几何直观催生的非连续函数为微积分的发展提出了新的问题.它的出现预示着微积分研究对象面临着新一轮的扩展;1775年提出的一个更为广泛的函数概念对19世纪的函数概念产生了深刻的影响.结论 欧拉对函数概念的发展不仅推动了微积分的发展,而且为现代函数概念的产生做了准备.
作 者:贾随军 任瑞芳 JIA Sui-jun REN Rui-fang 作者单位:贾随军,JIA Sui-jun(西北大学,数学与科学史研究中心,陕西,西安,710127;西北师范大学,教育学院,甘肃,兰州,730070)任瑞芳,REN Rui-fang(西北大学,数学与科学史研究中心,陕西,西安,710127;山西财经大学应用数学系,山西 太原 030006)
刊 名:西北大学学报(自然科学版) ISTIC PKU英文刊名:JOURNAL OF NORTHWEST UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期): 38(3) 分类号:O11 关键词:欧拉(Leonard Euler 1707-1783) 函数概念 解析函数 连续GCDTime Limit:3000MSMemory Limit:32768KB64bit IO Format:%I64d & %I64uSubmit StatusAppoint description:
Description
Given 5 integers: a, b, c, d, k, you‘re to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you‘re only required to output the total number of different number pairs.Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.Each case contains five integers: a, b, c, d, k, 0< a<= b<= 100,000, 0< c<= d<= 100,000, 0<= k<= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.Sample Input
21 3 1 5 11 11014 1 14409 9
Sample Output
Case 1: 9Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
题目大意:求1到b内x,1到d内y,gcd(x,y)= k 的对数,二元组无序,要求不重复
x和y的最大公约数都是k,也就是说x,y都是k的倍数,b /= k , d /= k 得到新的区间,需要找到新区间的中互质的对数,要求不重复,所以使大的数为b,小的数为d ,从1到b遍历-->i,当i小于等于d时,ans加上i的欧拉函数值,当i大于d时,计算1到d中与i互质的个数,累加得到最后的结果,
hdu1695GCD(欧拉函数+容斥原理)
,
为防止超时,要将欧拉函数值提前处理好,还有将一个数的分解也要预处理。
#include b ? a : b ;}int min(int a,int b){ return a >b ? b : a ;}LL f(int a,int b){ int n = max(a,b) , m = min(a,b) ; LL num = euler[m] ; for(int i = m+1 ; i<= n ; i++) num += cop(m,i) ; return num ;}int main(){ int a , b , c , d , k ; int t , tt ; sieve() ; scanf(“%d”, &t) ; for(tt = 1 ; tt<= t ; tt++) { scanf(“%d %d %d %d %d”, &a, &b, &c, &d, &k) ; if(k == 0 || k >b || k >d) {printf(“Case %d: 0\n”, tt);continue ; } printf(“Case %d: %I64d\n”, tt, f(b/k,d/k) ); } return 0;} Co-primeTime Limit:1000MSMemory Limit:32768KB64bit IO Format:%I64d & %I64uSubmit StatusAppoint description: Description Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer. Input Output Sample Input 21 10 23 15 5 Sample Output Case #1: 5Case #2: 10 Hint In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}. 题目大意: 计算a到b内,与n互质的个数 分别统计1到a-1中,和1到b中与n互质的数,在相减,求1到m中与n互质的数,先求1到m中与n不互质的数的个数, hdu4135Coprime(欧拉函数+容斥原理)篇3:hdu4135Coprime(欧拉函数+容斥原理)
,
求出n分解后的质数个数,用二进制数表示第i个质数的选和不选,得到m内包含的个数,当选了奇数个质数是,统计的结果累加,为偶数个时,减去。
#include #include #include #include #include #include #define N 3 using namespace std; bool h[N]; int p[4000]; void prime//筛选求素数 { int cnt=1; int i,j; p[0]=2; for(i=2;i for(i=3;i { p[cnt++]=i; for(j=i*i;j h[j]=1; } } __int64 solve(__int64 n)//求与小于n互质的数字的个数{ int m=(int)sqrt(n*1.0); __int64 r=n,tp=n; int i; for(i=0;p[i]<=m;i++) if(n%p[i]==0) { tp=tp/p[i]*(p[i]-1); while(n%p[i]==0) n/=p[i]; if(n==1) break; } if(n>1) tp=tp/n*(n-1); return tp; } int main()// 欧拉公式的引伸:小于或等于n的数中,与n互质的数的总和为:φ(x) * x / 2, [原创]HDU 3501 Calculation 2欧拉函数扩展 prime(); __int64 i,j,n; while(scanf(”%I64d“,&n)!=EOF&&n) { __int64 k=solve(n); k=k*n/2; __int64 sum=n*(n-1)/2; sum-=k; printf(”%I64d\n“,sum%1000000007); } return 0; }篇4:[]HDU 3501 Calculation 2欧拉函数扩展
Farey SequenceTime Limit:1000MSMemory Limit:65536KB64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Appoint description:
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few areF2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.Sample Input
23450
Sample Output
1359
题意:给定一个数n,求小于或等于n的数中两两互质组成的真分数的个数,
POJ 2478Farey Sequence(筛选法求欧拉函数)
,
思路:这个博客有关于这道题的推理---->点击打开链接
#include
采用欧拉两相流法对翼型表面霜冰的数值模拟
基于欧拉两相流理论提出一种翼型表面霜冰的数值模拟方法.采用同位网格上的SIMPLE(Semi-Implicit Method for Pressure Linked Equations)算法求解空气控制方程;提出一种可穿透型壁面边界模拟水滴对翼型表面的`撞击,通过求解过冷水滴的控制方程得到翼型表面的水滴收集特性;利用冰层时间推进法模拟积冰过程,使用积冰法向生长假设生成积冰外形.对NACA 0012翼型在0°和4°迎角下的积冰情况进行了研究,冰形预测结果与实验结果一致.通过对结冰翼面的压力分布进行分析,表明积冰对翼型气动性能会产生不利影响.
作 者:张强 曹义华 李栋 Zhang Qiang Can Yihua Li Dong 作者单位:北京航空航天大学,航空科学与工程学院,北京,100191 刊 名:北京航空航天大学学报 ISTIC EI PKU英文刊名:JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS 年,卷(期): 35(3) 分类号:V244.1 关键词:积冰 两相流 可穿透型壁面 水滴收集率 数值模拟RelativesTime Limit:1000MSMemory Limit:65536KB64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2407 Appoint description:
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x >1, y >0, z >0 such that a = xy and b = xz.Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.Output
For each test case there should be single line of output answering the question posed above.Sample Input
7120
Sample Output
64
题意:给一个数n,求出不大于n且与n互素的数的个数,
POJ 2407Relatives(求一个整数的欧拉函数值)
,
#include
★ 函数课件
★ 《欧亨利》读后感
★ 陈欧广告词
★ 二次函数知识点
★ 二次函数练习题