以下是小编收集整理的工厂供电系统无功补偿技术研究论文(共含12篇),仅供参考,希望对大家有所帮助。同时,但愿您也能像本文投稿人“BIBO”一样,积极向本站投稿分享好文章。
摘要:针对无功补偿技术展开讨论, 提升供电系统的供电效率, 找寻影响提高供电效率的因素, 并提出解决方案.
关键词:无功补偿; 供电系统; 功率因数;
社会经济的发展, 国内工厂用电不断增加, 对供电系统提出了更高的要求, 无功补偿技术的使用可以减少无功功率在工厂电网中的流动, 降低线路和变压器因为输送无功功率而造成电能损失;安装无功补偿设备可以有效的降低工厂电力网的损耗.另外, 无功补偿可以提高功率因数, 相对其他节能措施而言, 是一项收效快、投资少的降损节能措施, 可以使电力系统少送无功功率, 多送有功功率, 而且可以在电力系统无功功率不足时, 迅速提供无功功率.工厂是一个大型机电场所, 需要用到很多的用电的机器, 而这些机器大多都是电感设备,平时会消耗大量的电源, 浪费很多的无用功, 这对于工厂的发展来说是不利的, 而且违反了国家节能减排政策, 所以, 提高工厂用电设备的供电效率, 做到充分利用设备容量, 实现远距离低损耗输电, 加强用电效率, 响应国家节能减排号召, 提高用电质量, 这是一件非常有必要的事情.
1 无功补偿技术原理
电流经过电阻时会因为电流损耗而做功, 从而发光发热, 这就是电流的热效应, 而在经过纯容性电阻时, 会因为电阻没有阻拦电流的涌动, 从而并不做功, 形成无功功率, 对用电功率造成浪费, 在感电设备中, 总有一部分的电子设备是纯容性电阻, 这时就会进行无功功率, 就会大幅度降低电流的使用功率, 这是对电流的一种浪费, 如果能够进行无功补偿技术, 在电流不做功的时候进行补偿, 会大幅度的增加电流的使用效率, 是对电的一种节约措施, 那应该如何进行无功补偿呢?由于工厂的设备大多是感电设备, 所以只能进行公共无功补偿, 而无功补偿总共分为两种, 一种是由配电措施来进行功率补偿, 但是长期进行配电措施的.无功补偿会严重损坏变电箱, 这就得不偿失了, 所以这种方法对于工厂来说并不可取, 二是由补偿电容器来进行无功补偿, 这是一种专门的电流功率补偿设备, 不会产生上一个措施的状况, 是所需采取的最佳措施.
2.1 使用电力电容器作无功补偿.
工厂中最常使用的方法是安装一个电力电容器, 将未做功的电流进行做功处理, 这样就可以很好的降低电流的无功效率, 经济便捷, 很受工厂的欢迎.
1) 低压分组补偿.这种方式是通过在配电车间安装电力电容器, 在供电部位就进行电流做功补偿, 可实现单体补偿和混合补偿, 是一种经济实惠的措施, 是工厂最常用的方法.
2) 个别补偿, 也称就地随机补偿, 这种方法有着很多的局限, 主要分为以下三点:
一是要安装位置要正确, 既必须安装在合格的位置上面, 安装不当效果就不会那么好.二是电流做功功率不能超过0.9, 超过0.9就会损坏这机器.三是要选择合格的适当的补偿电容器, 这些要求相对较复杂, 所以工厂使用的较少.
3) 高压集中补偿, 这种方法耗资较高, 不适合工厂使用, 所以不推荐使用.
2.2 使用同步补偿器作无功补偿.
同步补偿机, 它的工作原理是运用过励磁运行的原理, 使用过励磁吸收电路运行过程中的无功电流, 这是一种相当有效的措施, 能够均匀的调节电网电流做功, 这是一种很有效的措施, 能够做到均匀供电, 但这这种方法也有它的弊端, 那就是它的运营成本较高, 而且后期的维护成本也是一笔不小的数目, 这就造成了工厂大多不敢用的局面, 方法虽好, 但代价太高, 除了一些大型的供电设备, 这些相对来讲性价比合适, 很多时候都是不使用这种方法的, 而对于工厂来讲, 也不推荐使用.
3 提高自然功率因数
工厂的设备也是一个很重要的环节, 工厂设备的使用比是造成无功功率的关键, 那么应该如何解决这一问题是根治工厂设备不做功的根本, 下面提出了两种建议, 希望能够帮助解决这一现象.
3.1 选择合适的电动机, 在进行电动机的选择时, 电动机的规格和型号、使用效率和最大电流时的运营情况是选择电动机最主要的考察项目, 在进行电动机的厂家选择时, 要避免使用闭封式电动机, 这种电动机的使用效率低, 而且容易损坏, 维护成本高, 而且在工厂设备的运行中, 若设备的使用效率长期处于50%以下时, 就要考虑更换更小型号的设备了.
3.2 选择适合的变压器.变压器在工厂的运营过程中是最能进行无功运营的了,平时工作无功效率就达到总无功效率的25%, 而在全部设备停用的情况下时, 无功效率更是达到了80%, 这是一个极大的浪费, 想要实现用电效率的提高, 选择合适的变压器是一个非常重要的环节, 要综合的考虑到电压器的台数, 型号, 运营方式等方面, 确保变压器的使用效率最大化.
4 无功补偿注意事项
谐波的有效抑制.电容器在对抗谐波方面有着一定的抗衡作用, 但是它在抗衡的同时又会放大谐波的负面作用, 相当于是一把双刃剑, 这就需要一定的人为控制, 严格控制电容器的数量, 在电容器对抗谐波方面, 提出以下几点建议:
1) 给易受谐波损坏的电容器串联一个抗谐波电容器, 中和谐波的损害.
2) 在换流的部位接入一个滤波器, 消除谐波.
3) 给母线Pr使用微电脑消谐装置.
4) 提高变流器的使用电流, 提高使用效率, 降低使用低段谐波的使用, 从根本上减少谐波的产生.
参考文献
[1]王雨.工厂供电系统无功补偿问题研究[J].技术与市场, (6) :65-66.
[2]赵敬涛.试论无功补偿在工厂供电中的应用[J].北京电力高等专科学校学报, (3) :21-22.
[3]侯丽倩, 马辉, 孙兴盛.浅谈工厂供电中的无功补偿[J].中国科技博览, (35) :167.
摘要:提高工厂供电系统中各相关部分的功率因数,以充分利用设备的容量,增强输电能力,减少功率损耗和电能损耗,实现电能的节约及供电质量的提高意义深远。文章从无功补偿的原理出发,介绍了无功补偿技术在工厂供电系统的应用及其注意事项,有一定借鉴意义。
关键词:无功补偿;供电系统;功率因数
工厂用电设备繁多,且大部分为电感性设备,在生产运行中往往需要吸收大量的无功功率,进而造成工厂供电系统的功率因数降低,不仅对电压质量造成影响,导致不能有效地利用电气设备,更对系统的供电能力造成严重影响。因此,对工厂而言,提高系统中各相关部分的功率因数,以充分利用设备的容量,增强输电能力,进而减少功率损耗和电能损耗,实现电能的节约及供电质量的提高,意义深远。
1无功补偿技术原理
电流经过纯电阻过程中电能会转化为热能,但在经过纯容性负载时并未做功,因此被称为无功功率,在实际电路中常为混合性负载,因此有电流经过时会有部分电能未做功,这时功率很小,若进行无功补偿则能大幅度地提高电能利用率,利于工厂节能增效。如前所述,工厂多为感性负荷,因此电感负载需依赖公共功率的大量补偿,一般可采用如下两大种途径,一是由输配电系统提供,输配电系统在设计时均要考虑有功功率及无功功率,但传输无功功率会对变压器造成损害,使得系统效益降低。二是由补偿电容器来提供,其无功功率为直接就地提供,不会造成上述问题的困扰,利于系统经济效益的提高。
2.1使用电力电容器作无功补偿。电力电容器也称为静电电容器或移相电容器,实际中可通过在工厂线路上安装静电电容器,有效降低线路前端电网中的无功电流,此方法简单经济,是工厂企业中较常采用的方法,其具体补偿方式有如下三种类型。
2.1.1低压分组补偿。即通过在车间变配电室安装电容器,减少所需电容器的总容量,提高电容器的使用效率。该补偿方式采用的低压开关及保护装置价格低廉,可实现自动控制,使得配电变压器及高压线中的电能损耗大大减少,有效降低工厂车间内的主变压器功率。但在此过程中切不可减少低压线路中的无功电流,因此为增强补偿效果,可将无功补偿设备安置在配电箱及低压用电设备附近,混合使用分组补偿与个别补偿。
2.1.2个别补偿。个别补偿,也称就地随机补偿,即直接将电容器与电动机的引出线端相连,与电动机合用一套开关设备。在采用该补偿方式时,为更好地发挥其效果,要注意如下问题:
(1)安装位置选址必须正确,且不可随意进行,如,若电气装置的功率因数超过0.9时,若电设备无重大变动则无需进行就地无功补偿;高次谐波含量过多处不宜应用就地无功补偿;电力装置的输出侧以及逆运行的电动机不可采用就地无功补偿。
(2)要选择适当的补偿电容器容量,尽量避免过补偿。
(3)必须购买合格产品。
2.1.3高压集中补偿。高压集中补偿,即在工厂总降压变电所低压侧为6-IOKV的母线上安装电容器,但该方式虽安装简便且利用率高,但由于该电容器只能安装在总降压变电所,因此只能减少变电所前电力系统通过的无功功率,提高本变电所的电压质量,对工厂内部配电系统的`无功功率作用不大,且电容器的开关设备及其保护装置价格较高,较之前面两种经济效果较差。
2.2使用同步补偿器作无功补偿。同步补偿器也叫同步调相机,其实际上是空载运行的同步电动机在过励磁运行状态下,向电力系统供给无功功率,在欠励磁运行状态下,从电力系统吸取无功功率。该方式虽能均匀地调节电网电压水平,但结构复杂,较之电力电容器投资及运行成本大,因此除大的电网中枢外,一般工厂不宜采用。
2.3提高自然功率因数。工厂电气设备的负荷性质决定着自然功率因数的高低,一般为阻性负荷的功率因数高而感性负荷的功率因数低。要提高功率因数则系统供给的无功功率要减少,实际中可采用以下两大措施降低用电设备所需无功功率,提高自然功率。
2.3.1合理选择电动机。合理选择电动机的规格、型号及容量,使其最大限度地接近或满足满载运行状态。同时,由于各工厂生产环境及条件要求各异,异步电动机的结构形式也各异,因此选择电动机时既要注意其电气指标,又要兼顾其机械性能,一般来说选择电动机形式时应尽量避免选择和使用封闭式电动机。
2.3.2合理选择变压器。变压器消耗的无功功率因数在工厂整个供电系统中比例约占全部无功功率的25%,而变压器处于空载运行状态下的无功功率约占全部无功功率因数的80%,因此工厂要想有效地改善功率因数,节能降耗,必须综合考虑变压器的台数、容量以及运行方式,确保其达到最优化。
3无功补偿注意事项
3.1谐波的有效抑制。电容器虽能抗谐波,但也有放大谐波的副作用,因此需对谐波进行有效抑制,具体措施如下:
(1)将易受谐波侵害的补偿电容器串接抑波电抗器;
(2)在换流装置附近接入滤波器;
(3)在母线Pr上设置微电脑消谐装置;
(4)提高变流器的供电电压及脉动数,减少低次谐波,将多台变流器接于一段母线上。
3.2并联电容器接线方式。并联电容器分两大类,三角形及星形,前者又分单三角形、及双三角形,后者分单星形及双星形。同样三个单相电容器,采用三角形接线的容量为星形接线的容量的3倍,因此以往工厂中以三角形接法最为普遍。但另一方面,高压电容器三角形接法具有一定的安全隐患,因此国家规定新(扩)建高压电容器组不再采用三角形接线,对于有些低压三相并联电容器内部已接成三角形属正常接线方式。
3.3无功倒送问题。无功倒送势必造成配电网损耗的增加,加重输电线路的负担,对工厂采用固定电容器补偿的用户,负荷在低谷时往往产生无功倒送问题,对此可采用电容自动补偿装置或部分投入电容器。
3.4运行维护问题。若供电系统电压过低或功率因数过低时,则应投入并联电容器,值班员应在并联电容器组正常运行中对电压、电流及室温等进行定期检视其,并检查其外部是否有外壳膨胀及漏喷油等现象,有无放电声响或放电痕迹,接头是否存在发热现象,放电设备是否完好,指示灯是否指示正常等。若发生以下任一情况,即:电容器爆炸;套管闪络放电;接头严重过热;电容器严重喷油或燃烧;环境温度超过40℃;变配电所母线电压超过电容器额定电压的1.1倍等,必须立即切除电容器。
总之,工厂企业想要降低无功耗损,满足电力部门对电能质量的要求,必须从负荷的特性及电网的情况出发,结合自身实际特点确定无功补偿的方式。此外,在进行时无功补偿时要遵循一定的原则,即注意降损及调压结合,降损为重,注意总体与局部的平行关系,局部为重,注意电网与使用者的结合,注意分散补偿和集中补偿的结合,分散为重,以切实实现用电的经济、可靠及安全,为工厂生产服务。
参考文献
[1]王雨.工厂供电系统无功补偿问题研究[J].技术与市场,(06).
[2]赵敬涛.试论无功补偿在工厂供电中的应用[J].北京电力高等专科学校学报,(03).
供电系统的接地技术研究论文
在TN-S系统中,保护导体和中性导体是没有在一起的,在就相应的限制了建筑物内导体的使用类型,要求建筑物内无PEN导体。因此,建筑物内采用了(L1、L2、L3、N、PE)三相五线制系统作为配电系统。在正常的工作状态下,PE线是没有电流呈现的,也不会有电压呈现在设备外露的导电部分,对电子设备的适应能力较强。在TN-C系统中,中性线和保护线合位PEN线,能够具备安全保护和通过正常符合电流的作用。当PEN线中通过高次谐波时,将会导致有电压降产生在PEN线上,会对电子设备和安全造成一定的影响。对于不能够满足TN-S型供电环境,可用TN-C-S系统替代TN-C系统。我国多由TN-C系统,也就是三相四线制完成供电网系统,建筑物进户处为改造时的分界点,分开N线和PE线,重复接地,建筑物主接地端子和接地点相联,如图一所示。分开N线和PE线后,就不可以重新合并,按相线处理中性导体N线,通常情况下不能再重复地将N线接地。整个建筑物内部,供电均采取TN-S型式。在TT电力系统中,存在一个直接接地电,可直接将外露在电气设备的导电部分接在无关户接地点的接地极。然而,IT电力系统不直接将其带电部分和大地相连,外露于电气设备的可导电部分接地。
信息设备及系统的接地
国际电信联盟、国际电工委员会,以及国家相关标准规定等都大力推荐使用等电位连接和共用接地,其中共用接地也称为统一接地,即交流电源、防雷、安全和电子设备的接地体为同一个。这样的接地方式采用合理的技术,经济合算。同时,在采取这种统一的接地方式后,在一定程度上可稳定各系统的参考电平。在外界环境的干扰下,参考电平也将随之相应分离浮动。经过较多的工程实践应用,均可证明接地的最佳方案为统一的接地。在实际的工程实践当中,部分厂家提出将电子设备的直流地或信号地实施独立的接地,这与等电位安全要求是相违背的。为了避免电磁干扰,电子设备的信号地和直流地已经和外壳连接在一起。假如电子设备的供电为220V交流电源,那么根据相关的规程要求,该设备的外壳应当和保护地PE线连接。然而,在实践操作中,各种类型计算机则是将直流地和外壳在一起连接在PE线上,外界提供分离的保护线和信号线,然而计算机却将分离的保护线和信号线连接在一起,那么,所谓的单独接地也就无任何实际意义。根据国际电工委员会标准的要求,一个建筑物值可以存在一个接地系统。这样直接避免了多个分开的接地系统同时存在,建筑物内不同金属导体因电位差而形成的电气事故的发生。
信息设备及系统的防雷
在当代,防雷工程需要保护的对象为建筑物、设备、人,该工程的主要目的是避免雷电直击建筑物,以及雷电产生的电磁脉冲侵害建筑物、设备、人。其中,前者是将防雷装置安放在建筑物上,后者则是保护雷电电磁脉冲,采用了比前者更复杂、更广泛的防雷技术和防雷范围,两者之间存在密不可分的联系,同时又有相应的分工,仅仅是从不同的角度,采用不同的方法实现防雷。建筑物内信息设备及系统防雷的首要屏障就是建筑物本身的防雷装置。所以,要想更好地完成信息系统的防雷,就必须要对建筑物本体的防雷加以重视。现今建筑物的防雷基本上是通过建筑物顶部避雷带、建筑物的楼板、柱、梁、以及四周墙面内的主钢筋作为引下线,网状接闪器,接地体则以地下钢筋混凝土基础实现。因此,在设计和施工建设建筑物时,就应当考虑引下线、网状接闪器和接地体的钢筋网络这几部分的电气连接,最后完成“法拉第笼”式的理想程度较高的避雷体。采用此结构的避雷保护的优点是:能够在很大程度上降低侵入的雷电电池脉冲强度,起到“法拉第笼”的屏蔽作用;能够避免“绕击”;能够确保人和设备的安全,这是由于建筑物各层的楼板、圈梁、梁、柱、墙面的金属管线和钢筋等导电体已经连成的电气一体化,几乎做到了各个部位具备相等电位;“笼”式避雷装置是以众多数量的钢筋组成引下线,使雷电流在一定程度上获得大量的分散,同时削减了脉冲电磁场冲击增幅值;以分布在地下四周的.钢筋混凝土基础作为接地体,能够形成均匀分布的均压网,以大范围的面积和大地接触,接地电阻稳定、低。在众多的防雷方式中,被国内外公认的、可靠的、经济的防雷方式是现代建筑钢筋混凝土结构和防雷网相结合。如今的信息技术在快速的发展中,考虑到将来的信息事业的发展,在建筑物的设计和施工中,还要将各层梁、板、柱内的主钢筋焊出接头预留出来,方便以后能够顺利地和室内接地母线连接。
结束语
信息设备及系统防雷工作是较为复杂的系统工程。在该工程的起始阶段,需将建筑物构造成一个避雷系统,建筑物内的供电均采用TN-C-S或者TN-S系统完成,虽有的内部导体的连接均为等电位,所有设备的接地系统均为同一个,还要合理地布置和屏蔽线路和设备。为了避免雷电波的反击和侵入,还必须在设备端口或者机房安装相应的避雷器。若能够仔细、认真地完成上述几点,那么就能够使信息系统的安全得到基本的保障。
关于工厂供电系统运行分析论文
[摘要]在供电系统的运行过程中,由于雷击、操作、短路等原因,产生危及电气设备绝缘的过电压,严重危害供电系统,需要进行电气设备的防雷、接地、防腐蚀。还需要注意静电的防护及防爆和防腐蚀。在供电系统运行时,人们得知道触电后该怎么样做才安全。必须认识电流对人体的危害,人体触电的形式和触电后脱离电源的方法,同时还得了解电后急救的知识。本论文分析了影响工厂供电系统安全、可靠、经济运行的要素,提出了保证安全运行的技术措施。
[关键词]供电,系统,可靠性,运行分析
工厂供电系统是企业的主要组成部分。电力系统一旦中断,后果不堪设想。供电系统安全、可靠、经济运行,是工厂正常生产的基本条件之一,同时对提高产品质量、增加产量等都具有一定的意义。现就工厂供电系统安全、可靠、经济运行的办法分析如下。
一、依靠科技进步,提高供电系统的可靠性
设备是保证供电系统安全运行的重要要素。供电设备本身的技术含量、整体水平,直接影响供电系统的安全运行。由于企业由计划经济向市场经济转化,部分企业出现亏损,无形之中给企业设备更新带来一定的困难,如淘汰设备(SJ型变压器、JO型电机等)在线运行,设备超期服役,导致供电系统的可靠性降低。
1.要保证供电系统的安全运行,必须保证一定数量的技改资金,应正确理解和处理资金投入与供电系统安全运行的关系。
2.应用变频调速、模糊控制技术,对风机、水泵等进行技术改造,降低电耗。
3.油浸电力电缆终端头制作采用热缩技术,制作一个热缩终端头可节约检修时间约20h。我厂已做多个油浸电力电缆热缩式终端头,运行效果良好。
4.应用RTV-1绝缘子防污闪涂料、增爬裙及热缩管,提高变电所、配电站一次设备的绝缘性能。
5.逐步采用微机保护、微机监控、微机录波、微机故障检测装置,实现计量实时检测、线损实时管理,保护准确动作,逐步实现变电站无人值班。
6.更新改造供电系统一次设备,提高设备的技术含量。如采用节能型变压器、节能型电动机、聚乙烯交联电力电缆、氧化锌避雷器、真空断路器(有条件时可采用SF6断路器)等。
7.采用免维护蓄电池,降低维护费用。我厂使用免维护蓄电池已5年,从未发生异常现象。建议逐步淘汰镉镍蓄电池和酸性GF型蓄电池,以提高变电站运行安全可靠性。
8.交、直流电动机大修时,应以提高交、直流电动机的主绝缘为主要内容。如我厂5600kW、8000kW同步电动机更换定子线圈,绝缘等级由B级提到F级;2×3200kW热粗轧电动机更换换补绕组,主极、换向极加强对地主绝缘;送水两台790kW同步电动机更换转子线圈对地主绝缘,以保证主要电气设备的安全运行。
二、预防为主,定期试验
电力生产是高度集中的社会化大生产系统,具有发、供、用密切相关和产、供、销同时完成的特点,电力生产与用户之间存在着相互影响、相互依存的密切关系。随着高参数大容量机组和超大规模发供电网络的不断发展,随着全社会对电力这一特殊商品依赖程度的不断提高,电力生产事故造成的损失和影响也将会越来越大。由此决定了电力生产必须保证安全。
要使电力生产保持稳定,必须坚持采取以“预防为主”为中心的安全技术措施。生产系统的安全性取决于系统设计阶段的安全功能设计质量、建造阶段的工程质量和运行阶段的管理质量。《安全生产工作规定》第7条规定:“公司系统各企业要做到计划、布置、检查、总结、考核生产工作的同时,做到计划、布置、检查、总结、考核安全工作”,即做到““五同时”,这是贯彻“预防为主”思想的具体体现。
生产系统设计配置水平低、压低单位成本造价、降低设计标准等,都会给日后的生产留下隐患,甚至造成不可挽回的损失。这一点可从上世纪七八十年代上马建设的工程中找到答案。如电气设备继电保护配置水平低,将会导致拒动或误动,严重时会造成设备的损坏;又如架空线路的绝缘设计水平低,将会在恶劣的环境中发生事故,严重时会造成系统的瓦解等。因此必须杜绝“先上车、后补票”的错误做法,把“安全第一、预防为主”的思想贯穿到生产系统设计及建造工作的所有环节中去,在厂址选择、生产设计、设备配置、管理结构设计、生产管理设计、劳动组合、设备选择、安装及调试等诸方面都要研究和解决好有关安全问题,实现人、机、环境三者的优化匹配,防止先天性事故隐患的存在,切实把事故消灭在源头。
通过预防性试验,继电保护校验,及时发现设备隐患、缺陷,把事故消灭在萌芽状态,有效地控制一般事故,杜绝重、特大事故的发生。
1.电气设备交工时必须符合《电气设备交接和预防性试验标准》,资料齐全。继电保护整定值应匹配,整组试验动作正确可靠。
2.一次电气设备必须按试验标准定期试验,以便及时发现设备隐患、缺陷。
3.采用红外线激光测温仪,对电气设备连结部位不定期测试,及时发现连结部位松动、过热,消除隐患,提高电气设备的运行可靠性。
4.继电保护按标准定期校验,系统参数变化时,其整定值应根据系统的参数重新整定。
5.采用先进的试验仪器,如回路电阻测试仪、电机匝间试验仪、变压器直流电阻快速测试仪、真空度检测仪等,以适应电气设备更新换代的需要,提高测试精度,减轻职工的劳动强度,提高工效率。
6.试验、校验原始数据记录完整、准确,并整理归档。
7.利用绝缘在线监测技术,对运行设备的绝缘参数进行实时监视,及时发现潜伏性、慢性发展的'电气设备之缺陷隐患。
三、改善电气设备运行环境
在人防工程内部敷设的电力线路应满足设计、施工规范要求。值得一提的是人防内部无论明敷、暗敷的管材均宜采用钢管,而非其他类型管材。穿越围护结构、防护密闭隔墙、密闭隔墙的电气管线及预留备用管线钢管,应进行防护密闭或密闭处理,管材应选用热镀钢管。进出人防工程的电气线路,为防核爆冲击波,室外应一律采用埋地电缆敷设经防爆波电缆井引入,并应预留备用穿线管。不允许架空敷设。从低压配电室至每个防护单元的战时配电回路,应各自独立,以防止战时一个防护单元被破坏而影响其他防护单元的正常供电。当穿越其他防护单元时,在穿越的防护单元内应有防护措施。安装空气过滤器,减少设备本体的灰尘;改善设备通风条件;根据设备运行条件安装加热器,提高设备运行的环境温度;安装除湿机,减少设备周围的湿度等,均可以有效地改善设备运行环境。将各配电、变电站改为弹簧门,用防火泥堵塞管线口、洞,采用“五防”开关柜等,严防蛇、鼠等动物进入开关柜,并投放药物、鼠夹,防蛇灭鼠;在各配电、变电站种植草坪、树木或栽麦冬,清除杂草,破坏蛇、鼠、野兔的栖身地;同时,美化环境、净化空气,为职工创造良好的工作环境;高压开关柜少油断路器相间加装隔板,有条件时,对一次母线进行热缩处理,防止小动物引起的相间短路事故。
四、结论
保证工厂供电系统的安全、可靠、经济运行,应以安全运行为基础,以优质检修为保证,以技术改造为活力;坚持预防为主,定期检修与视情检修相结合;合理调度,根据生产需求改变运行方式,力求最佳;遵章守纪,按章办事,杜绝误操作。
[参考文献]
[1]陈伯时著:《自动控制系统》,机械工业出版社版。
[2]谭浩强著:《微机原理与接口技术》,清华大学出版社版。
增加无功补偿 提高经济效益工学论文
摘要:安装新的无功补偿装置,可提高电网功率因数,可减少电能做无用功造成的能源损耗和经济损失,节约能源,提高电网的经济运行效益。
关键词:增加补偿效益
1电力现状
1.1电源现状农四师电力公司霍尔果斯电网内拥有电站6座,总装机14820kW,其中水电站5座,装机容量8820kW,火电站1座,装机容量6000kW。霍尔果斯电网水电站主要分布于霍尔果斯河及格干沟河上,水电装机总容量8820kW,均为无调节能力的径流式电站。
1.2电网现状霍尔果斯电网输电线路电压等级为110kV、35kV。红卡子一、二、三级电站所发出的电经35kV线路送至62团110kV中心变,输电线路中途开口接入口岸35kV变电所,霍河电站所发出的电经35kV线路直接送至62团110kV中心变电所。中心变电网呈放射式网络,110kV出线1回,110kV线路由62团110kV变电所至三道河110kV变电所,长30.9km,7回35kV线路贯穿垦区,其中进线二回,出线五回,长180.501km。目前,霍尔果斯垦区电网有110kV变电所2座:62团110kV变电所主变容量为(6300+16000)kVA,三道河110kV变电所主变容量为(6300+16000)kVA。35kV变电所10座,容量共计38950kVA。分别有口岸、61团、63团、65团、66团、68团、可克达拉、糖厂、70团18连、酵母厂35kV变电所。农四师电网在65团变电所与伊犁州电网联网,联网线路为35kV线路。
2电力负荷预测及功率因数分析
2.1电力负荷预测本工程预测采用年递增率法、电力弹性系数法,预测未来供电发展情况,基准年为,近期水平年为,远期为。霍尔果斯电网20最大用电负荷为22.67MW,年供电量为0.84亿KW.H。预测20最在负荷62.078MW,年供电量将达到12.4亿KW.H
2.2功率因数分析目前霍尔果斯电网用电负荷增长较快,网损较大、功率因数较低、电压低。据统计到末,霍尔果斯电网的综合网损率高达12%,35kV线路平均功率因数达到0.81,10kV线路平均功率因数达到0.67。主要原因是该电网农业节水灌溉和工业用电负荷增长较快,对电网和用电户的无功补偿装置建设更不上,造成目前该电网的功率因数偏低、电压降大、电能损耗大。
需改善霍尔果斯电网的电能利用率,降低电能损耗,因此要加大该电网的无功补偿装置建设力度和用电户的功率因数管理。霍尔果斯电网供电区内有全国最大的陆路口岸霍尔果斯口岸,供电辖区内主要用电户有:火车站、自来水厂、电视台等重要用户;有农四师重要的工业企业如:南岗建材霍城水泥厂、绿华糖厂、中基番茄酱厂、66团酵母厂、新天葡萄酒厂及各团场的棉花加工厂等。农四师最大的节水灌溉农业区在62团、63团、64团、65团场境内。
因这些用户对无功补偿装置配置不够,而电网现有的无功补偿设施已不能满足功率因数合格要求,需在霍尔果斯电网的35kV变电所和10kV配电线路安装新的无功补偿装置。可提高电网功率因数,可减少电能做无用功造成的.能源损耗和经济损失,节约能源,提高电网的经济运行效益。
3变电所无功补偿工程
3.1各变电所补偿容量
3.2各变电所现状以上6个变电所,35kV母线侧采用单母线方式,10kV侧采用单母线方式。35kV变电区为户外设备,63团35kV变电所、65团35kV变电所10kV设备为户内开关柜,其余4个变电所10kV设备为户外设备。10kV断路器为真空断路器。以前都没有安装无功补偿装置。
3.3无功补偿装置
3.3.1无功补偿装置选型设计高压无功补偿装置由若干组TBB型无功补偿器组成。用专用的真空断路器控制无功自动补偿器的投入或退出。电流互感器、抗涌流或抗谐波的干式空芯(或干式铁芯)电抗器、电容器,安装在10kV母线侧,布置在10kV电容间隔。电容器的控制、保护装置布置在主控室的线路保护屏。
3.3.2技术性能①电压无功综合控制:a实现电压优先:按电压质量要求自动投切补偿柜,电压超出最高设定值时,逐步切除电容器组,直至电压合格为止;电压低于最低设定值时,在保证不过补条件下逐步投电容器组;在投电容器前先探询投后是否电压超高限,再决定是否投电容,以免频繁动作。通过综合控制使母线电压始终处于规定范围。b无功自动补偿:在电压优先原则下,依系统实际所需无功量自动投切电容补偿柜组,无功欠补逐步投电容器组;无功过补逐步切电容器组。使系统始终处于不过压、少过补、欠补,电网损耗最小状态。②运行记录和电压检测功能可自动或随时调出内存,查看或打印电压值及出现时间,补偿柜投切次数等当月和上月的统计报表。③过负荷能力:a保护装置能在1.1倍额定电压下长期运行,在1.15倍额定电压下每24h中运行30min,在1.2倍额定电压下每月中运行2次每次5min,在1.3倍额定电压下每月中运行2次每次1min。b电容器能在有效值为1.3倍额定电流下连续运行。
410KV线路无功补偿工程设计
4.110kV配电线路无功补偿安装工程霍尔果斯电网供电区的10kV配电线路共有48条线路安装,安装高压无功自动补偿装置48台,补偿容量4800kVar,补偿线路总长564公里。无功补偿容量具体分配如下:
4.2高压无功补偿装置该装置主要用于10kV架空线路,自动跟踪线路无功需求,以无功功率、线路电压、功率因数等综合数据判断电容器的投切,从补偿点就近向线路两侧输送无功,最大限度的减少无功流动,达到降低线损,提高线路末端电压,增加线路的输电能力。 高压无功自动补偿成套装置由若干组TBB-型自动补偿柜组成。每组自动补偿柜内含真空接触器(或断路器)、电压互感器、电流互感器、抗涌流或抗谐波的干式空芯(或干式铁芯)电抗器、电容器及相应控制、保护器件,一般为组装在一个柜体内的一体化装置。无功补偿装置是由一组自动补偿柜和一个控制器,单独成套,也可以是二至八组共用一个控制器,由内部母排连接后组成一套。
5工程建设的效益
5.1充分认识开展节能活动重大而深远的意义我们每天耗用的能源愈多,对空气的污染也越严重,气候变化对我们的不利影响越大,同时可留给未来使用的能源就愈少。所以,节约能源毫无疑问是功在当代、利在千秋的事业。
5.2开展节能活动,是落实科学发展观开展好节能活动、提高能源的利用率不但可以减轻能源开发压力,减少环境污染,提高经济增长的质量,树立和落实科学的发展观、促进人与自然和谐发展,也是实现全面建设小康社会目标的必然要求。
5.3加强电能利用力度,增强电能节约意识电能既是最重要的能源,又是消耗其它能源生产的能源产品。有资料显示,中国电力消耗量仅次于美国,已位居世界第二位,而由于节能节电意识淡薄造成的电能浪费占相当的比重。因此,增强人们的节电意识非常必要。在电力网的组成中,10kV供电线路是连接电力网和电力用户的桥梁。线路长度在电力网中占60%以上,其线损率在电力网的总线损中占80%以上。由于电网的线损主要是变压器损耗和线路损耗,所以配电网的降损节能,也就是对电网中所有的变压器和电力线路进行优化。由于负荷增长速度快而配电网无功建设投资滞后。
5.4加装无功补偿装置、提高质量又节能10kV配电线路存在电压过低或偏高问题,其原因除了电网结构不合理和导线过细外,主要是无功功率不足或过剩。系统的无功功率对电压影响极大,无功功率不足,将引起电网电压下降,而无功过剩将引起电网电压偏高。在电网运行中,因大量非线性负载的投运,它们除要消耗有功功率外,还要消耗一定的无功功率,负荷电流通过线路、变压器将会产生功率与电能损耗。要维持整个系统的电压水平,就必需有足够的无功补偿容量,实行无功分区分压就地平衡,同时要求有足够的无功调节能力,在允许的电压偏差范围内,采用调压与补偿电容器相结合的措施,实现高峰负荷时较高电压运行和低谷负荷时较低电压运行的逆调压要求。10kV供电线路损耗大的主要原因是线路的功率因数低,由于供电线路点多、线长、面广、负荷季节性强,加之大马拉小车等多种因数,致使功率因数有的竟低于0.7以下。实践证明,在受电端加装电力电容器是提高功率因数降损节电的行之有效的方法。加装电力电容器使无功分散补偿就地平衡,把电能损耗降低到最低限度。
5.5目前霍尔果斯电网用电负荷增长较快,电网的电能利用率较低、网损较大、功率因数较低、电压低。据统计到20末,霍尔果斯电网的综合网损率高达12%,35kV线路平均功率因数达到0.81,10kV线路平均功率因数达到0.63。全年供电量1.09亿度。该项目建成后,将使霍尔果斯电网的综合网损率降到9%以下,减少电能损耗400万度。
近年来,随着农村电网的进一步完善,工农业生产用电规模不断扩大,用电量的日益增长和用电结构的变化,使得电力供需矛盾越来越突出。电力的供不应求迫使人们在降损节能上多做文章,因此,人们根据电力网的运行特点,从无功传输过程消耗有功的角度,推行了无功补偿。
众所周知,电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件。没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动。但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。因此,如何减少无功电力的长距离输送,已成为电力部门和用电企业必不可少的研究课题。为此,我们根据用电设备消耗无功的多少,在负荷较集中、无功消耗较多的地点增设了无功电源点,使无功的需求量就地得到解决,这样不但减少了无功传输过程中造成的能量损耗和电压降落,而且提高了供用电双方和社会的经济效益,可谓一举两得。不过,虽然无功补偿能给企业和社会带来一定的效益,但补偿过程中还需要考虑很多问题,也就是说怎样进行补偿,才能收到最佳的效益呢?这就要求我们在补偿过程中必须遵守一定的原则、方法,做到科学合理的补偿,才能收到事半功倍的`效果。
1 无功补偿的原则
全面规划,合理布局,分级补偿,就地平衡,具体内容如下。
总体平衡与局部平衡相结合,既要满足全网的总无功平衡,又要满足分线、分站的无功平衡。
集中补偿与分散补偿相结合,以分散补偿为主,这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。
高压补偿与低压补偿相结合,以低压补偿为主,这和分散补偿相辅相成。
降损与调压相结合,以降损为主,兼顾调压。这是针对线路长,分支多,负荷分散,功率因数低的线路,这种线路最显著的特点是:负荷率低,线路损失大,若对此线路补偿,可明显提高线路的供电能力。
供电部门的无功补偿与用户补偿相结合,因为无功消耗大约60%在配电变压器中,其余的消耗在用户的用电设备中,若两者不能很好地配合,可能造成轻载或空载时过补偿,满负荷时欠补偿,使补偿失去了它的实际意义,得不到理想的效果。
2 根据补偿原则,确定无功补偿容量
按照上述的基本原则,根据无功在电力系统中的去向,确定几种主要的补偿方式及其容量。
变电站高压集中补偿:这种补偿是在变电站10(6)kV母线上集中装设高压并联电容器组,用以补偿主变的空载无功损耗和线路漏补的无功功率。目前,在农网上,除了大宗用户外,县局基本上采用这种补偿。比如:涉县各变电站在未进行人工补偿以前cosφ= 0.85,根据功率因数(0.85)调整电费标准,每月罚款为月总电费的2.5%,经过各站装设了电容器补偿后,平均cosφ=0.9,每月电费减少0.5%,一年下来,功率因数奖电费约为60万元,为企业增加了效益。
随线补偿:将电容器分散安装在高压配电线路上,主要补偿线路上的无功消耗,还可以提高线路末端电压,改善电压质量。其补偿容量一般遵循”三分之二"原则,即补偿容量为无功负荷的三分之二,而电压降为DU = (PR + QX)/Ue。
例1:一条10kV线路,长为5km,导线型号LGJ-70,其中g = 0.46W/km,X0 = 0.411Ω/km,所带负荷200 + j150,在线路末端补偿QC= 100kvar,求线路损耗和电压降。
①求线路上的损耗
补偿前:△P1 = 3×I2R = 3×( + 1502)/102×5×0.46 = 4313W。
补偿后:△P2 = 3×I2R = 3×[2002 +(150 - 100)2]/102×5×0.46 = 2933W。
则一年少损失电量:△A = (△P1 - △P2)T×10-3 = (4313 - 2933)×365×24×10-3 = 12089kWh。
②求电压降
补偿前:△U = (PR + QX)/U = (200×0.46×5 + 150×0.411×5)/10 = 77V。
补偿后:△U = (PR + QX)/U = [200×0.46×5 + (150 - 100)×0.411×5] /10 = 56V。
所以补偿后电压由9.92kV提高到9.94kV,改善了电压质量。
3 随器补偿
将电容器安装在配电变压器低压侧,主要补偿配电变压器的空载无功功率和漏磁无功功率。一般情况下,农网配变负载率较低,轻载或空载时,无功负荷主要是变压器的空载励磁无功,因此配变无功补偿容量不易超过其空载无功,否则,在配变接近空载时可能造成过补偿,所以应按式Qb ≤ I0%Se/100(其中:I0%是空载电流百分数,从手册中可查出,Se是变压器的额定容量),但对于工业用户的变压器补偿,因其负荷率高,补偿时应从提高变压器出力的角度考虑。
例2:涉县良种场有一台变压器Se = 80kVA,cosφ= 0.8,带一抽水用电动机Pe = 75kW,P = Se×cosφ = 80×0.8 = 64kW < 75kW,可见变压器处于超载运行,若提高cosφ的方法提高变压器出力,设拟增cosφ = 0.95,则P = 0.95×80 = 76kW >75kW,由公式Qb = P×tgφ可知,应补偿无功Qb = 25kvar。
4 随电动机补偿
将电容器直接并联在电动机上,用以补偿电动机的无功消耗。据运行统计,县级农网中约有60%的无功功率消耗在电动机上,因此,搞好电动机的无功补偿,使其无功就地平衡,既能减少配电线路的损耗,同时还可以提高电动机的出力。一般对7.5kW以上电动机进行补偿时,确定容量应按QC ≤ 3UeI0。另外,对于排灌所带机械负荷较大的电动机,补偿容量可适当加大,大于电动机的空载无功,但要小于额定无功负荷,即Q0 ≤ QC ≤ Qe。
例3:涉县自来水公司,一条线路长1km,导线型号LGJ-70,其中g = 0.46W/km,X0=0.411Ω/km,带一抽水用电动机Pe = 95kW,实用负荷为100 + j60,由于长期超载,在电动机上补偿无功QC = 30kvar,求补偿前后线路的损耗和电动机的出力。
视在功率S=(1002+602)1/2= 116.26kVA
①求线路上的损耗
补偿前:△P1 = 3×I2R = (1002 + 602)/0.382×1×0.46 = 43.32kW。
补偿后:△P1 = 3×I2R = [1002 + (60 - 30)2]/0.382×1×0.46 = 34.72kW。
△P1 - △P2 = 43.32 - 34.72 = 8.6 kW,则一年少损失电量8.6×24×365 = 75.33MWh。
②求电动机出力
补偿前:PN = 95kW < 100kW,电动机处于超载运行。
补偿后:PN = 112kW >95kW,电动机运行正常,提高了电动机的出力。
5 低压集中补偿
在低压母线上装设自动投切的并联电容器成套装置主要补偿变压器本身及以上输电线路的无功功率损耗,而在配电线路上产生的损耗并未减少,因此,补偿不宜过大,否则变压器轻载或空载运行时,将造成过补偿,补偿容量应以变压器额定容量的30%~40%确定,即:Qb = (0.3 - 0.4)SN,或从提高功率因数的角度考虑Qb = P(tgφ1 - tgφ2),其中tgφ1 、tgφ2是补偿前后功率因数角的正切值。
6 补偿位置的确定
上述介绍了不同目的的补偿方法各不相同,但补偿位置在哪最合理呢?一般我们考虑把并联电容器安置在负荷较集中的地方或无功消耗严重的设备周围。
7 补偿后带来的经济效益
从提高功率因数上,还是以涉县电力局为例,功率因数由0.8提高到0.9左右,月电费罚3.7万元,到奖2.5万元,赢利7.2万元,给企业带来经济效益。
从电压质量上来说,如例1,末端电压由9.92kV提高到9.94kV,保证了产品质量,给用户带来了直接经济效益。
从降损节能上来说,降低了电能损耗,减少了电费的支出,同样给用户带来经济效益。如例3,年节能7.533万kWh,按电价0.5857元/kWh,年节约电费7.533×0.5857=4.4万元。
从提高变压器的处理上来说,由于减少了无功电流,所以提高了变压器的出力。如例2,良种场若不是进行无功补偿,变压器长期处于超载运行,会因长期过热而烧坏变压器,而新安装一台变压器(100kVA),需投资1.3万元,但经过补偿,只需要投资近1000元就解决了变压器超载运行的问题,给良种场增创了1.2万元的经济效益。
总之,无功补偿不仅能改善农网功率因数和电压质量,而且可以使无功负荷就地平衡,提高农网的经济运行水平,同时降低电费支出,减轻工农业生产的负担,所以进行无功补偿是利国利民的好事,我们应下决心去抓,真正让用户得到实惠。
低压网络无功补偿经验漫谈论文
摘要:农网改造及施工中提高供电质量,提高用户端的电压和功率因数COSφ,是一个要解决的重要问题,决定进行低压无功补偿
关键词:低压网络 无功补偿
山西省平顺县水电集团公司负责对全县水电自供区2乡1镇3.5万人口的农村电网进行全面改造,要求在6月底以前完成。过去,该农村电网中,由于负荷的不确定性,在春、秋收耕季节和浇地用电时段,负荷很重,而平时0~8时和白天基本无负荷,供电质量极不正常,用户端电压很不稳定,甚至使一些低压动力用户无法工作,老百姓颇有怨言。因此,在农网改造及施工中提高供电质量,提高用户端的电压和功率因数COSφ,是一个要解决的重要问题,决定进行低压无功补偿。
一、低压无功补偿的概念
低压无功补偿是指在配电变压器低压400(380)伏网络中安装补偿装置,包括随机补偿、随器补偿、跟踪补偿几种方式。
随机补偿:随机补偿就是将低压电容器经过熔断器与电动机并接,通过控制,保护装置与电动机同时投切。
随器补偿:随器补偿是将低压电容器经过熔断器固定接在配电变压器低压侧,以补偿变压器的励磁及漏磁无功损耗。
跟踪补偿:跟踪补偿是指以无功补偿投、切装置作为控制保护装置,将低压电容器组并接在大用户400伏母线上。这种补偿方式,相当于随器补偿的作用。另选几组低压电容器作为手动或自动投切,随时补偿400伏网络中变动的无功负荷。
二、农网无功负荷浅析
在我们现有10千伏送电系统中,往往是一条线路接有几台或十几台甚至二、三十台容量大小不等的配电变压器。由于用户分散,变压器容量又很小,75千伏安以下的变压器占70%以上,而且多数变压器每天有近15个小时接近空载运行,少数在额定容量的20%~40%之间运行,每逢栽插或收割季节,会出现无功不平衡。
在上述网络状态下,原有农网用户中,10千伏线路送出端或配电,变压器用户均没有配置补偿装置,致使10千伏送出端功率因数COSφ值很低。其主要原因是众多的小容量配电变压器时常在低负荷下运行,众多配变的空载及漏磁损耗、家用电器的无功耗用迭加起来占据了10千伏线路送出的大量无功功率,致使COSφ值达不到规定要求,线损也大大增加。
三、对功率因率COSφ值的要求
根据水电部《电力系统电压和无功电力技术导则》的规定和农网改造的技术要求,电力用户的功率因数应达到下列规定:
1.高压供电的工业用户和高压供电装有带负荷调整电压装置的电力用户功率因数为0.90以上;
2.其他100千伏安(千瓦)及以上电力用户和大、中型电力排灌站,功率因数为0.85以上;
3.趸售和农业用电,功率因数为0.80以上。
经过努力达不到以上规定者应装设必要的补偿装置。
原水电部《供用电规则》规定:高压供电的用户必须保证功率因数在0.9以上,其他用户应保持在0.85以上。
四、几种无功补偿方式的优劣比较
对于10千伏供电系统,在变电站10千伏母线上装设集中补偿方式的并联电容器组,只能增大变压器与10千伏母线之间及上一级电压等级线路的功率因数,对10千伏母线上首端的功率因数COSφ值不能改变,线路上各配电变压器所提供的无功功率仍需从这里送出,各送出线路上的线损不能降低。所以,对于10千伏供电系统的无功补偿,最好选择随线路上配电变压器装设低压无功补偿装置,进行分散补偿方式。这种方式易于根据无功负荷需要选择补偿容量,具有“哪里缺在哪里补,缺多少补多少”,都能把10千伏及其上一级电压等级的线路线损降低一部分的特点,且补偿效果好,经济效益高。
在农网10千伏线路上,“T”接变压器一般较多,且变压器“大马拉小车”的现象极为普遍,多数时段接近于空载运行,10千伏线路首端的功率因数COSφ值一般只有0.5~0.75。配电变压器的'供电范围多以自然村为单位,一个村有一、二个动力加工作坊和电灌站,在上述情况下宜采用随器和随机补偿方式,即在变压器低压侧按空载电流计算选择并联电容器补偿,在加工作坊按电动机容量计算选择并联电容器补偿。补偿电容器采用手动投切方式,可大大降低投资(每千乏约30多元)。只有大范围的无功分散补偿,才能降低农网线路的线损,降低农村电价。
对于农村排灌站的用电特点,一是“季节性强”,每年用电累计时间为1~2个月。二是“电动机单机容量大”,一般为30~80千伏安。三是由于用电时间短,不重视无功需量,都没有装设补偿装置。另外农村众多的排灌站同时投运,造成系统无功电量不平衡。这些排灌站应根据电机容量计算选择并联电容器随机补偿,促进无功就地平衡。
五、补偿装置的接线
装置测量点的接线,主要是补偿装置的电容器组和电流的引入点,特别是电流的引入点,在实际接线中往往被忽视。电容器组的引入点,是指电容器组的总进线在被补偿系统中的“T”接点;电流的引入点,是指补偿装置使用的电流互感器在被补偿系统中的安装点。正确的方法是:以负荷的供电电源为参考点,电流互感器的安装点必须在电容器组的总进线“T”接点电源之间,即电流互感器测量的电流必须包含流过电容器组的电流。否则,在电容器分组投、切状态中,无功补偿装置测量显示的有功、无功功率和COSφ值都不会变化,造成无功补偿装置投、切效果无法判断。
六、无功补偿的效益评价
按国电公司有关规定,功率因数COSφ值达不到标准的应督促装设补偿装置,以降低线损。装设补偿装置,要从长远利益出发,克服当前资金匮乏困难。安装低压无功补偿装置,获益最大的是用户,其次是供电系统。我们对我公司所属农网用户,通过认真分析计算,精心设计,在自愿的基础上,为其加装了低压无功补偿电容器,从而彻底解决了用户电能质量不稳定的难题,取得了良好的社会效益,赢得了用户的好评。
摘 要:将目标函数确定为节点电压质量、无功补偿设备投资以及配电网电能损耗等,将配电网无功规划优化数学模型在最大负荷运行的方式下建立起来。针对配电网具有较多的待补偿节点和分支的特点,将一种具有最小无功电流损耗的算法提了出来,从而对补偿电容器的位置和个数进行优化,然后以此为基础与改进的遗传算法结合起来,使无功规划优化的效率和精度得到进一步的提升。
关键词:遗传算法;无功规划优化;配电网
并联电容器组是主要的配电网无功补偿设备,将电容器组的安装容量安装位置以及补偿点的个数科学合理地确定下来,可以确保实现提升电压质量和降低网损的目的。配电系统具有较大的负荷分散性,再加上具有较多的带补偿点和较长的供电半径,因此在无功配置方面具有较为独特的地方。为此,本文分析并介绍了基于遗传算法的配电网无功补偿优化规划。
配电网无功补偿的灵敏度分析法可以将几个具有较高灵敏度的节点选择出来作为待补偿点,从而使解空间得以减小,然而该方法在实际上往往是同1条支路相邻的几个节点具有较高的灵敏度,而且一般只有一个节点在这几个节点中属于真正的高灵敏度的节点,该节点也会影响到其他节点的灵敏度。与此同时,灵敏度分析法又很难将补偿点的个数确定下来。如果以节点无功裕度值大小为根据将补偿点确定下来,这种方法也存在着很难将补偿点个数确定下来的`问题。也有采用N点分散补偿的方法,这种方法利用等面积判据以及等长度判据为根据将补偿点的容量和个数等确定下来,然而这种方法需要保证负荷数据的精确性,从而对各负荷点峰值无功电流进行计算,但是配电网一般都具有实时数据不足的问题,因此在具体实施的时候这种方法存在着较大的困难。为此,在本次研究中将无功电流损耗最小的算法提了出来,这种方法可以将补偿点补偿容量、补偿点的个数和位置等确定下来,这样就能够使解空间的维数得以有效减少,随后再通过对改进的遗传算法的利用就能够将无功规划优化的解得出[1]。
2 无功规划优化的数学模型分析
2.1 无功规划优化的目标函数分析 以配电网的实际情况为根据采用罚函数的方式处理状态变量的约束条件,从而将与遗传算法相适合的无功优化目标函数构造出来,其中主要包括无功补偿装置设备年等值费用、系统有功网损年等值费用以及节点电压越限罚函数。
Fmin=KcQci+Ckf+Nc+CeTlPLass+KVΔV
在该公式中,投资单位容量电容器的费用用Kc来表示,节点i无功补偿容量用元/kvar,Qci来表示,电容器无功补偿点集合用 kvar,NQ来表示,电容器在每个节点的固定安装费用用Ckf来表示;无功补偿点的个数用Nc来表示,电能单价用Ce来表示,年最大负荷损耗时间用Tl来表示,最大负荷方式下的有功网损用ΔP来表示,节点电压越限罚因子用KV来表示。
2.2 无功规划优化的数学模型求解 以配电网无功规划优化的特点为根据,本文选择了遗传算法。在进行配电网无功优化的时候遗传算法可以这样描述:利用目标函数在电力系统环境下评价各种条件约束的初始潮流,淘汰掉其中具有较低评价值的,只有具有较高评价值的才可以向下一代遗传自己的特征,这样就能够不断的趋向于优化。所以如何能够以配电网无功优化的问题为根据编码变量,并且将终止判据确定下来、对适应度函数进行设计以及开展遗传操作,这是解决配电网无功规划优化的非常重要的问题[2]。
2.2.1 编码方式。按组对无功补偿进行投切,为了使控制变量的个数和染色体的长度相等,可以使用十进制编码的方式。假设一个电容器节点有6组可投切,那么要对投切的电容器组数进行表示,就可以选择0至6中的任何一个整数。该节点不投切电容器则可以用数字0来表示。
2.2.2 设计适应度函数。可以使用目标函数还表示配电网的无功规划优化。在对配电网的无功优化进行计算时可以使用遗传算法。对目标函数进行转化可以得到适应度函数。最小化问题可以通过目标函数进行求解,因此需要转换目标函数。
2.2.3 遗传算法的选择。在遗传操作中,对遗传算法进行选择是非常重要的。如果没有选择合适的算子,就会使子代和父代具有接近的相似度,从而对种群的多样性造成破坏。这样的后果就是进化停滞,从而出现早熟的现象,对算法的全局寻优能力造成了严重的影响。因此要对各种选择方法进行深入的研究。本文选择的是基于轮盘赌的非线性排序法作为配电网无功运行优化的选择方法。使用基于轮盘赌的非线性排序法,先要对每个个体的适应度函数值进行计算,再从大到小的排列各个个体的适应度值,从而以排列的顺序为依据来对个体进行选择。
2.2.4 变异和交叉算子。使用固定的变异率和交叉率来进行简单的遗传算法是不符合适应性搜索过程和遗传算法动态的。这就需要在简单遗传算法中选择自适应的变异率和交叉率。在保障自适应遗传算法的群多样性的前提下,还要对遗传算法的收敛能力进行保障,从而使遗传算法的优化能力得到提高[3]。
2.2.5 终止判据。在不改变最优个体的适应度以及使用最大进化代数maxgen的基础上,结合最小保留代数来作为终止判据。如果在连续代内,最优值没有找到其他的解法来代替,那么就将其作为求解问题的最优解来结束计算。假设以一定的遗传代数限定为范围,没有解能够满足最优个体的最小保留代数,那么就将次优解输出,结束计算。这是为了尽量控制因素控制准则中存在的缺陷,使进化收敛的速度得到提高。
3 结语
目标函数中以经济技术的综合效益为最大,包括节点电压质量、无功补偿设备投资和配电网电能损耗等等。针对配电网的无功规划优化进行建模。该方法还要对补偿点的位置和个数进行确定,并与改进的遗传算法相结合,来对电容器的容量进行优化。总体而言,该算法具有较高的实用性和有效性,能够使初始种群的无效解减少,并有效地解决了遗传算法中存在的欺骗和早熟等问题。这样一来,配电网的无功规划优化的效率和精度也能够得到进一步的提高,从而有效地对配电网的无功规划进行优化。
参考文献:
[2]李世伟,葛珉昊,金育斌.小水电集中上网对电网的影响分析[J].中国农村水利水电,(08).
[3]李世伟.小水电上网对配电网的影响[J].电气传动自动化,2012(04).
动态无功补偿技术航空工业节能论文
1.应用效果
技改项目完成,对其中1个变电站无功自动补偿器投切前后的数据进行现场测试。采用无功功率补偿后,主要技术经济效益如下。
(1)减少了线路电压降,使线路稳态电压升高,提高了供电质量。测试数据见表2,补偿后,终端电压提高,设备效率和功率因数均得到提高,共节约有功功率81.4kW。1年工作时间按8000h、负载率按0.7计算,全年节电455840kWh,公司采用峰谷电价,平均电价为1元/kWh,全年节省电费455840元。
(2)降低变压器铜损耗。降低的变压器铜损耗由10kV/0.4kV变压器和110kV/10kV变压器减少的铜损耗组成。由于110kV/10kV变压器受高压测量设备的限制,无法测量,故仅计算10kV/0.4kV变压器节约的'铜损耗,相关测试数据见表3。合计降低变压器铜损耗1764W,全年电9878kWh,全年节省电费9878元。
(3)减少线损。减少线损主要组成:
①从补偿器到10kV/0.4kV变压器供电线路减少的线损;
②从10kV/0.4kV变压器到110kV/10kV变压器供电线路减少的线损。为衡量无功功率补偿的经济效益,在无功功率补偿领域引入“无功功率经济当量”概念,其含义是指每补偿1kvar无功功率在整个电力系统中减少的有功功率损耗,用符号k表示,单位kW/kvar。k值与负荷点到电源的“电气距离”、电能成本和负荷运行状况等因素有关。为简化计算,国家标准GB/T12497—2006《三相异步电动机经济运行》规定了不同供电方式的无功功率经济当量估算值。前文已测算了从两台补偿器向下到终端设备及10kV/0.4kV变压器节能情况,对于高压变压器110kV/10kV节约的铜损及输电线路减少的线损,因受高压测量设备制约,故采用无功功率经济当量估算的方法。从补偿器向上节能情况,无功功率经济当量按最保守的0.03kW/kvar计算,两台补偿器无功功率合计减少318.1kvar,则可折算节省有功功率9.54kW,全年节电76320kWh,全年节省电费76320元。
(4)增加电功率(扩容)。增加的电功率,合计增加视在功率80kVA。
(5)其他效益。可减轻电器、开关和供电线路负荷,减少维修量,延长使用寿命,提高安全可靠性。
2.结束语
低压变电站采用DGB动态跟踪式无功功率自动补偿装置进行节能改造,效果显著。功率因数平均提高到0.96以上,增加了输配电设备供电能力。设备使用过程中未因投入补偿装置而引起某次谐波的谐振过电压、过电流。在线实时跟踪,随着负载变化,补偿装置实时跟踪系统功率因数并快速等量补偿。DGB快速投入与退出,不会引起过补和欠补,投入运行后,系统稳定,对电网无干扰。通过运行测试,DGB可完全替代同类国外进口无功补偿设备,特别适合功率因数低的场合。
★ 信息管理系统论文
★ 工厂供电论文