新人教版三角形的教学设计

| 收藏本文 下载本文 作者:kbwn

下面是小编给大家带来的新人教版三角形的教学设计(共含12篇),以供大家参考,我们一起来看看吧!同时,但愿您也能像本文投稿人“kbwn”一样,积极向本站投稿分享好文章。

新人教版三角形的教学设计

篇1:新人教版压强教学设计

【教学过程】

环节教师活动学生活动设计意图

创设情景提出问题播放一段风光片:金色的海滨,松软的沙滩,人们的身后是一串串大小不等、深浅不同的脚印。

让学生同时捏住圆珠笔的笔尖和笔帽,认真体验手的感觉。

3.鼓励学生从看到的、感觉到的现象中,提出自己想知道的问题。通过观察和体验,提出自己想知道的问题,如

问题一:沙滩上为什么会留下脚印?

问题二:脚印的深浅为什么不同?

问题三:捏住笔时,手为什么会感到疼痛?

问题四:为什么捏笔尖的手感觉更疼一些?

……之所以创设这样的教学情景,一是帮助学生消除压力都是由重力产生的、大小总等于重力的误区;二是调动学生的多种感官,感受压力的存在与作用效果的不同;三培养学生的问题意识。

自主探究解决问题1.解决初步问题

引导学生根据生活经验及知识储备,初步解决上述问题。

2.明确探究课题:

教师引导:既然上述现象都是由于压力在物体上产生的效果不同引起的,那么现在,你最想了解的问题是什么?

3.猜想假设

引导学生根据问题情境或生活经验进行猜想。

4.设计实验

引导学生回顾“探究滑动摩擦力大小与哪些因素有关”的实验,确定实验方法:控制变量法。

5.进行实验

巡回指导,鼓励学生从课桌上已备的器材或身边的一些物品中自主选择器材,来验证猜想。

6.分析论证

引导学生对实验现象进行分析。

7.交流评估

鼓励各小组展示各自的实验方案,并对自己及他人的实验提出评估意见。

8.教师小结

表扬各小组的创新设计,提出改进意见或期望,并板书实验结论。经讨论交流,使学生认识到沙滩上留下脚印是因为沙滩受到人的压力,手感到疼是因为手受到了笔的压力,而脚印的深浅不同,手的疼痛感觉不同,都是由于压力在物体上产生的效果不同。

提出探究课题:压力作用的效果跟哪些因素有关?

大胆猜想并交流

经讨论,明确实验方案:让受力面积一定,研究压力作用效果与压力大小的关系;让压力一定,研究压力作用效果与受力面积的关系。

相互切磋,合理分工,共同实验,研究发现。

分析归纳,得出结论。

各小组边演示边讲解, 相互交流、取长补短。

倾听、感悟。根据新课标的要求,这里不需对压力下定义。

层层引导、步步深入,学生从自己的求知愿望出发提出了探究课题,必能激发学生的探究热情。

培养学生的发散思维。

“授之以渔”,注重对学生进行方法指导

充分发挥学生的想象力和创造力,体验“瓶瓶罐罐当仪器,拼拼凑凑做实验”的乐趣。

培养学生的归纳分析能力

培养学生的合作交流意识及语言表达能力。

使学生充分体验成功的喜悦。

温故、知新

建立

概念1.围绕实验结论,引导学生思考:当物体表面受到的压力和受力面积均不同,将如何比较压力的作用效果?

2.引出压强的概念:

3.利用课件将速度的概念与压强概念进行对比,运用类比的方法找出压强的公式和单位。

4.简介帕斯卡在力学方面的突出贡献。

5.例题应用

课件出示课本例题,巡回指导,及时反馈小组讨论,寻找方法:比较单位面积上受到的压力。

理解基础上记忆。

思考并回答。

倾听并感悟。

学生独立解答。由浅入深,使学生逐步建立压强的概念。

渗透类比及比值定义的学习方法。

激发学生对科学家的崇敬和热爱之情。

加深对压强概念的理解。

学以致用指导生活1.引导学生将桌上的图钉按入木块,体验后,提出问题:你希望钉尖对木块的压强大些还是小些?希望钉帽对手的压强大些还是小些?

2.课件展示8组生活图片,引导学生分析:

(1)哪些生活场景需增大压强?人们通常用哪些方法增加压强?(2)哪些生活场景需减小压强?人们通常用哪些方法减小压强?

3.小游戏:全体立正,如何迅速增大你对地面的压强?认真体验并交流

学生根据已有的生活经验,进行分类和归纳。

有的迅速改为单腿站立,有的脚尖踮地,有的迅速抱起桌上的书、书包等物品……使学生对生活中增大压强和减小压强的意义有了深刻的感知

充分体现了物理知识与生活的密切联系,培养学生热爱科学、热爱生活的情感。

既考查学生的知识迁移能力,又很好的调节了课堂气氛。

畅谈收获系统升华引导学生回顾本节课的学习过程,从知识与技能的获取、过程与方法的体验、情感态度价值观的提升三方面畅谈自己的收获和体会。一起交流,互相促进,共同提高。强化过程与方法的体验,促进情感的提升。

课后延伸思维拓展课件展示汽车超载、国道破坏的视频资料,引导学生课后通过采访、调查、网络查询等多种途径,收集相关数据和信息,分析道路破坏的原因,寻找解决问题的方法措施,以“国道不堪重负”(或其他)为题,写一篇科学小论文。培养学生获取和处理信息的能力,体现“从生活走向物理,从物理走向社会”的理念。

【板书设计】

第一节 压强

一、探究压力的作用效果

压力一定,受力面积越小

受力面积一定,压力越大三、增大压强:F大或S小

减小压强:F小或S大

二、压强

定义:单位面积上受到的压力

1Pa=1N/m2

新人教版压强教学反思

讲授了《科学探究:液体的压强》,在教后我体会很深,现结合这次课程培训,将教学体会总结如下:

在本节课中,体现了新课改教学的三维目标:知识与技能、过程与方法、情感态度与价值观,让学生经历了“观察----猜想----探究-----应用”的物理科学探究过程,在探究过程中我比较恰当的把握学生的经历水平、反应水平、领悟水平。在教学中基本做到了三讲三不讲,注重了规律、思路、技巧和方法的教学。特别是在科学探究方法上,注重了利用已有知识进行理论推导,又用实验验证结论的可靠性。结果是异曲同工,从而使得学生综合运用知识和分析解决问题的能力大大提高。

此外,我觉的在各个环节的过渡上基本做到了衔接紧密。

学生在学习过程中,学得相对轻松,能从兴趣出发,敢于发挥自己的想象力,敢于发表自己的见解,组内积极讨论,做到在交流中学习,在实验操作中认真谨慎,分析论证结论比较准确。

本节课的不足之处。

本节课的教学总体是成功的,但仍有不足之处:

1、在制作课件上不够完美。

2、在理论推导过程中应给学生再多一点时间,充分让学生进行展示。

3、在知识的应用,特别是拓展应用-----液体压强的传递这个环节,鼓励学生联系生活实际多举例,或老师提供给学生更多的素材。

4、在有些环节中我的语言不够简练。

5、这节课的内容比较多,在处理连通器和帕斯卡原理时时间比较紧张在授课时将本节课分为两节课,我自己觉得对这一部分处理的不太好。

努力的方向:

如果再让我讲这节课,我会进一步研究教材,充分了解学生的学情,从学生的兴趣和已有的更贴近的感知水平出发,设计更合理的教学环节,在教授过程中进一步完善“自主高效,多维互动”的开放式创新性课堂教学体系;删去无效课堂环节,进一步突出重点,突破难点,突出因材施教;使师生的合作学习活动更默契。加强自身素质的提高,为学生创设更感兴趣的情景,使学生从身边的生活实例中学习科学文化知识,再利用所学知识从物理走向社会。同时还要加强学生思维的发散,使之学习、掌握、应用多种科学探究方法,做到“授之一渔胜过授之一鱼”;在学生的探究实验中要加强对学生的实验指导,使学生在“做中学,学中做”的轻松气氛中学习;注意学生的差异,做到因材施教,全面提高课堂效益。

篇2:新人教版约分教学设计

【教学内容】

人教版五年级数学下册第四单元例3

【教材简析】

《约分》是人教版数学第十册第四单元第四部分的内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,积极实行启发式和讨论式教学;激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。

【教学目标】

1、使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分。

2、培养学生综合运用已有知识解决问题的能力。

3、渗透恒等变换思想。

【教学重点】

掌握约分的方法。

【教学难点】

很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

【教学用具】

多媒体课件、分数卡片

【教学过程】

一、情境导入,复习巩固,激发兴趣。

1、口算:3.8×2 = 12.5×0.8= 1.8÷9 =

5.4÷0.6 = 4-0.7 = 8.2+2=

2、【设计意图:孩子们对游泳有兴趣,以谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。】

二、理解最简分数及约分的意义

【设计意图:在提出了学生变分数的小组合作的要求后,老师参与其中,予以适当的点拨,让学生明确活动的要求,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,相互提点,发现约分的实际概念。让学生在老师例举中找到约分的概念,尝试着进行概括,并从观察的分子、分母能否再变小,提出了最简分数的概念,通过举例、练习达到巩固的效果,这样本课的重、难点就迎刃而解了。】

三、自主探索,合作交流,总结方法。

【设计意图:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。】

四、巩固练习。

【设计意图:创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。题目充满趣味性。在引导学生积极观察、思考、联想、诱发学生的创新因素时,应注意引导学生克服固定的思维模式,鼓励独创性地发现知识的规律和发表自己的独特见解。】

五、提升总结

现在我们来回顾一下,今天这节课你有什么收获?

篇3:新人教版约分教学设计

新人教版约分教学设计(三)

教材简析与设计意图:

《约分》是人教版实验教材第十册内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,是数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。

在约分教学中,注重培养学生的学习情感,激发发展动机;创造机会,提供发展条件;因材施教,扩大发展层面;激活思维,深化发展效果。引导学生积极主动地参与全过程,从而体现“以学生发展为本”的原则。

教学目标:1、经历知识的形成过程,使学生理解约分和最简分数的意义,探索约分的方法。

2、掌握约分的方法,能根据实际情况正确进行约分。

3、培养学生的观察、比较和归纳等思维能力。

教学重点:掌握约分的方法

教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。

教学过程:

一、情境导入,猜测验证

1、创设游泳情境,提出问题

师:让我们一起到游泳场看一场激烈的百米游泳比赛

(播放游泳比赛录像,学生聚精会神地观看比赛过程)

师:游在第一位的运动员已经游了75米。

师:一共100米,已经游了75米,看到这两个条件你能想到什么?

学生积极思考,各抒己见汇报自己的想法:

生1:还有25米没有游;

生2:已经游了全程的75/100;

生3:还剩全程的25/100没有游;

生4:已经游了全程的3/4;

生5:还有1/4没有游。

师:已经游了全程的 75/100和游了全程的3/4是一回事吗?

生1:不是

生2:是一回事

师:你能运用已经学过的知识验证你们的结论吗?

2、运用已经学过的知识进行验证

学生进行激烈的小组讨论并汇报

生: 我们组认为75/100=3/4,因为75÷100=0.75 3÷4=0.75 所以75/100=3/4

师:这是我们曾经学过的什么知识呢?

生:分数与除法的关系

师:你们运用分数与除法的关系找到它们是相等的,还有其他的验证方法吗?

生:我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。

师追问:为什么同时除以25?

生:25是75和100的最大公因数

师:你们组不仅运用了分数的基本性质,而且还找到了75和100的最大公因数25,从而验证出相等,能学以致用,多好啊!

(板书:75/100=3/4)

3、根据验证过程引出最简分数的意义

师:通过刚才的验证我们知道75/100=3/4,还能说出一些和3/4相等的分数吗?

生:6/8、12/16、15/20、30/40 ------

师:这些分数中哪个最简单,为什么?

生:3/4最简单,因为3/4的分子和分母是一对互质数。

师:什么是互质数?

生:公因数只有1的两个数是互质数。

师:其他同学听出来了吗,有个词用得很好?

生:是“只有”

师:对,我们就把分子和分母只有公因数1的这样的分数就叫做最简分数。

(板书:最简分数)

师:在黑板上你还能很快找出一个最简分数吗?

生:1/4

师:说说理由。

生:因为1/4的分子和分母只有公因数1,所以它是最简分数。

师:那你现在知道1/4和25/100的关系了吗?

生:也是相等的。

师:很好,你们还能再举出一些最简分数的例子吗?

学生举例

教师总结:同学们通过刚才的观察、猜测、验证得出了最简分数的意义,大家表现的非常好,下面我们就来把一个分数化简称最简分数。

二、自主探索约分的方法

1、理解意义

出示例4 :把24/30化成最简分数

师:仔细读题,如何理解“化成最简分数”这句话。

生:就是把24/30变成和它大小相等,并且分子和分母的公因数只有1这样的分数。

师:同桌互相说一说该怎么做呢?

学生互说并汇报

生:24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5。

师:说说你是怎么想的?

生:先用24和30的公因数2去除,发现12/15不是最简分数,还有公因数3,再用3去除,最后得到最简分数4/5。

师:还有其他想法吗?

生:24/30=24÷6/30÷6=4/5 ,我是先找到24和30的最大公因数6,再用6去除分子和分母从而得到最简分数4/5。

师:同学们对比一下这两种方法,哪种更好一些呢?

生:找最大公因数的方法能更快地把一个分数化简成最简分数。

师小结:同学们运用分数的基本性质把24/30化简成最简分数,你们知道吗,刚才的这一过程叫做约分。(板书课题)

2、学生独立探究,尝试约分

学生看书P85,约分的一般方法

师:看完后,你能回答小精灵提出的问题“每一步中都是用分子、分母的哪个公因数去除的?“

学生边回答教师边演示约分的步骤及方法,并强调书写格式

师:在把一个分数化简成最简分数时,如果能很快找到分子和分母的最大公因数,就可以用最大公因数去约分,如果一下子找不到最大公因数,可以一步一步地用公因数去约分。下面请你仿照这一方法,把8/12进行约分。

学生自己完成

三、综合练习

1、情境中折纸表示8/32

出示蛋糕图

师:用你们手中的圆片代表蛋糕,并很快表示它的8/32。

学生积极思考,有的认真观察分数,有的急于动手折8/32,最终出现两种折法。

生1:我是把圆片对折了5次,平均分成了32份,再表示出其中的8份。

师:你很认真的折出了这个蛋糕的8/32,就是时间长了些,为什么有些同学却折得很快呢?

生2:我只折了它的1/4。

师:为什么?

生2:我发现8/32的分子和分母都有最大公因数8,约分后得到1/4。

师:多好啊!通过你的认真观察,运用今天学的知识-----约分,很快地找到了这个蛋糕的“8/32”,真是个善于动脑筋的孩子。

师小结:学习约分不仅可以分蛋糕,还可以运用到生活中的很多地方,只要你是个善于观察善于思考的孩子,你一定能做得最好、用得更好。

2、下面哪些分数没有化成最简分数,请把它们化成最简分数。

16/24=4/6 15/36=5/12 28/42=14/21 16/12=8/6

3、用最简分数表示小明每项活动占全天时间的几分之几?

4、我校六年级三个班在3.12的植树活动中,一班种了总数的17/30,二班种了总数的20/60,三班种了总数的7/30,你知道哪个植树最多吗?

生:20/60化简成10/30,在比较这三个分数的大小,发现哦一班种得最多。

师:你用约分的方法解决了生活中的实际问题,很好!完成了这道题后,同学们想说些什么呢?

生:看来约分不一定必须化简成最简分数,要根据实际而定。

师:说的多好啊!你们不仅会学以致用,而且还会根据实际情况灵活运用。

四、全课总结

师:今天这节课你有什么收获?

篇4:人教版三角形教案_小学数学教学设计

第三单元:三角形

第一课时:(认识三角形)

上课时间:3/10 累计课时:12

教学内容:苏教版《义务教育课程标准实验教科书数学》四年级(下册)第22~23页。

教学目标:

1、知识目标:通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。

2、能力目标:引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。

3、情感目标:激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。

教学重点:认识三角形的特征。

教学难点:探究三角形三条边之间的关系。

教学过程:

一、认识三角形的特征

1、(由课前“考眼力”游戏中,不见了三角形导入)三角形躲到哪儿去了?哦!它到我们的生活中来了,你找到了吗? (斜拉索和桥面形成三角形,桥柱和桥面形成三角形。)

2、你还在什么地方看到过三角形?(举例)

3、请同学们自己想办法利用老师准备的材料做一个三角形。

4、展示作品,说说你是怎样做的。

在汇报摆三角形时,说明每条线段都必须首尾相接,才能围成三角形。

5、老师把它画到黑板上来,教学三角形的边、角、顶点,请一位同学上来指一指三角形的边、角、顶点,下面的同学数一数三角形有几条边、几个角、几个顶点呢?请你们结合刚才做的三角形,同桌相互指一指、说一说。

6、我们知道了这些三角形的特征,那么我们就用这些特征来判断下面哪个图形是三角形?

二、认识三角形三边的关系

1、用三根小棒围三角形。

2、汇报。

3、实践操作,探索发现。

(1)(出示4种小棒)老师准备了这样4根小棒,请你任选3根小棒,看能否围成三角形;

(2)边操作边由小组长负责将实验结果记录在实验表中。

(3)小组讨论,能围成三角形的三条线段成怎样的关系?

第1根长度

(厘米) 第2根长度

(厘米) 第3根长度(最长)

(厘米) 能否围成

三角形

先由小组讨论汇报后得出结论。(出示结论)

4、验证结论。

三、实践应用

1、完成教材P24第2题。

2、判断如果有两根长度分别为2cm和5cm的木棒,

①用长度为3cm的木棒与它们能摆成三角形吗?为什么?

②用长度为4cm的木棒与它们能摆成三角形吗?为什么?

③要摆成三角形,第三边还可以是几厘米?(讨论后回答)

7厘米行吗?7厘米以上呢?

3、把一根14厘米长的吸管剪成三段,用线串成一个三角形可以有几种方法?为什么?

强调三角形两边之和大于第三边。

四、总结延升:

1、今天我们一起进一步认识了三角形,从中你又了解了三角形的哪些知识?

2、展示各种运用三角形图片。生活中有如此多的三角形仅仅是因为它的美吗?它对我们的生活有着怎样的影响呢?只要我们善于观察、善于思考、善于探索,就能发现三角形中更多的奥秘!

板书设计:

认识三角形

三角形两条边长度的和大于第三边

篇5:人教版三角形教案_小学数学教学设计

第二课时:(认识三角形的高)

上课时间:3/11 累计课时:13

教学内容:教科书第24―25页

教学目标:

1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高。

2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与现实生活的联系。

3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。

教学重点:认识三角形的高,并正确地画高。

教学准备:三角尺、学具盒等

教学过程:

一、复习引入

1、上一节课,我们学习了一些有关三角形的知识,你对三角形有了哪些了解。?

2、画一个类似于人字梁的三角形(只要外面的三条边)

说说三角形的组成:三条边、三个角、三个顶点。

二、教学新课

(一)认识三角形的底和高

1、我们刚才说到三角形有三条边,这节课我们将要来认识关于这个三角形神秘的第四条线段。

2、同学们,看看这个图形知道它像什么吗?(介绍人字梁)

3、我们要最出这幅人字梁的高,应该从哪儿量到哪儿呢?

学生讨论。

指明:人字梁的高度就是从这个三角形的顶点到它对边的垂直线段。

4、画一个锐角三角形后,提问:数学中三角形的高是什么意思呢?

从三角形的一点到对边的垂直线段。

5、示范画高。

边画边讲:现在要找它的高,就是从顶点画出这条边底边垂直线段。从顶点画下来的这条垂线用虚线画一画。 指出:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,既然是垂直线段,画完后还要要注意标上直角标志。

学生在作业本上,模仿板书也画一画。

6、同学们想一想,一个三角形可以几条这样的高呢?

让学生自己试一试。

指出:三角形有三个顶点,可以向对边画三条垂直线段。也就是可以作三条高。

分别请学生来用三角板摆一摆另两条高的位置。学生在作业本上完成三条高。

引导观察该图:一个三角形可以画出它的3条高;这3条高应相交于同一个点。如果你画的三条高没有相交于同一个点,那么你的高肯定是画得不够准确。

(二)巩固新知

出示三角板,问:我手里的这个三角板和刚才画的三角形,有什么不用?(有一个直角)

描画出三角板中的三角形,并标出其中的一个直角。

提问:这个三角形,你也能像刚才那样找到3条高吗?怎么找?

结合学生的回答,使大家明白:三角形中有一个角是直角,那么这两条直角边可以互相看作是一底一高,不用另外画;只有当把斜边当作底的时候,它的高要另外画;3条高相交于原来的直角处。

三、完成书上的练习

1、试一试,分别量出下面每个三角形的底和高各是多少厘米。

2、想想做做第1题:画出每个三角形底边上的高。

注意:图上以规定了底,只要画出指定的一条高就可以了。交流的时候,重点说说第三个三角形:它的高是哪一条?为什么?

3、把一根14厘米长的吸管剪成三段,用先串成一个三角形,除了书上举例的5厘米、3厘米和6厘米外,还可以怎样剪?

说说你的方法?有没有有序思考的方法?

4、想想做做第3题,请你说说为什么这个三角形的高的长度一定比小棒短? (可引导学生回忆:从直线外一点到这条直线的所有线段中,垂线最短。所以这条高要比小棒短。)

四、介绍“你知道吗?”

学生分别用学具盒里的3根小棒,搭成一个三角形,轻轻捏住其中的一个角,敲其他的边或角,发现:这个三角形的形状、大小不变。

再用4根或5根甚至更多的小棒,围起来,得到一个多边形,也捏住它的一个角,轻轻地敲,发现:它非常容易得变成其他模样。

指出:三角形具有稳定性。

利用三角形的稳定性,生活中有广泛的应用。学生看书,说说这些图中哪些地方有三角形?还有什么地方也有三角形的结构?

篇6:人教版三角形教案_小学数学教学设计

第三课时:(三角形的分类)

上课时间:3/14 累计课时:14

教学内容:教科书第26――27页。

教学目标:

1、让学生在给三角形分类的探索活动中发现和认识锐角三角形、直角三角形、钝角三角形。

2、让学生在实际操作中发展空间观念。

3、激发学生的主动参与意识、自我探索意识和创新精神。

教学重、难点:会按角的大小给三角形分类。

教学准备:课件

教学过程:

一、复习引新

谈话:你学过哪几种角?小于平角的角可以分为哪几类?(锐角、直角和钝角)怎样判断一个角是直角、锐角或钝角?那么三角形可以分为几类呢?又有哪几类呢?今天老师和小朋友就一起来研究一下三角形的分类。(板书课题:三角形的分类)

二、师生互动,引导探索

1. 出示书本上6个三角形

提问:请小朋友仔细观察每个三角形的内角,说说他们各有几个锐角、直角或钝角。

指定几个学生回答。、

出示表格,根据学生的回答填写①号三角形。

① ② ③ ④ ⑤ ⑥

锐角个数

直角个数

钝角个数

提问:你会照样子填一填吗?

学生独立完成表格,并交流.

2.三角形的分类

提问:观察上表,这些三角形可以分为几类?怎样分?在四人小组内讨论。

交流讨论结果。

学生可能出现的分类:三个角都是锐角的三角形,一个钝角两个锐角的三角形,一个直角两个锐角的三角形。

再次组织学生讨论:你们分成的三类三角形有没有相同的地方?(都有两个角时锐角)有什么不同的地方?(另一个角有的是锐角,有的是钝角,有的是直角)我们抓住不同处来分类,你认为可以怎样分?

谈话:三角形按角可以分为锐角三角形、钝角三角形、直角三角形三类。

提问:那么什么样的三角形是锐角三角形?什么样的三角形是直角三角形?什么样的三角形是钝角三角形?

出示各类三角形的定义:

三个角都是锐角的三角形是锐角三角形;

有一个角是直角的三角形是直角三角形;

有一个角是钝角的三角形是钝角三角形。

2. 练习巩固,深化概念

(1) 判断一下说法对吗?

3个角都是钝角的三角形是钝角三角形。

直角三角形中只有一个直角。

有一个角是锐角的三角形是锐角三角形。

谈话:三角形的3个角中只可能有一个钝角或一个直角,至少有两个锐角;3个角一个角大了,另两个角就小了。

(2) 教师出示一次三角形,用纸挡住两个角,让学生根据露在外面的一个角,猜一猜这个三角形属于哪种三角形。

只露出一个直角;只露出一个钝角;只露出一个锐角。

组织学生讨论。

在学生回答的基础上小结:第(1)题是直角三角形,第(2)题是钝角三角形,你们回答的非常准确。第(3)题只露出了一个锐角可能是锐角三角形,可能是直角三角形,也可能是钝角三角形,因此无法判定是什么三角形。

3. 用集合图表示分类结果。

(1) 出示一个椭圆,谈话:如果我们用这个圈表示三角形这个整体,你能把它分成几部分,填写出每部分的名称吗?要求学生尝试着在集合图中表示分类的结果。

(2) 出示学生填写的分类集合图,并说说对图意的解释:把所有的三角形看作一个整体,锐角三角形、直角三角形和钝角三角形都是这个整体的一部分。

三、巩固深化,拓展提高

1. 做想想做做第1题

让学生任意画一个三角形,指导学生用三角尺上的直角去比一比,从而判断画出是什么三角形。

提问:你在用三角尺比三角形的角是,是3个角都比的吗?如果不是,你是怎样比的?

谈话:只要量出三角形中最大的一个角是什么角,就能判断这个三角形是什么三角形。

2. 做想想做做第2题

(1) 独立完成,展示部分学生的答案,共同校对。

(2) 提问:你在判断图中的三角形时使用的什么办法?(有的凭观察,用的用三角尺去比量)

(3) 谈话:判断一个三角形是哪一类三角形时,一般情况下凭观察就可以作出判断,如果三角形中有一个角接近直角时,就要用三角尺的直角去比量一下,再准确地作出判断。

3. 做想想做做第3、4、5题

组织学生动手做一做,再展示部分学生的操作结果,共同评议。

4. 做想想做做第6题

学生各自动手画,展示学生的答案。

提问:你画出的线段是三角形的什么?

5. 做想想做做第7题

先让学生独立作图,再在小组内交流。

师生共同小结:可以分别从3个顶点向对边画线段,把它分成两个三角形。其中从直角顶点向对边画线段,可以分成两个直角三角形,也可以分成一个锐角三角形和一个钝角三角形。从其他两个顶点向对边画线段,只能分成一个钝角三角形和一个直角三角形。

四、总结提高,课后延伸

谈话:通过这节课的学习你知道了什么?还想知道哪些有关三角形的知识?自己可以通过阅读书籍、上网查阅来获得更多的知识。

篇7:人教版三角形教案_小学数学教学设计

第五课时:(等腰三角形和等边三角形)

上课时间:3/16 累计课时:16

教学内容:教科书第30――32页。

教学目标:

1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

教学重点:认识等腰三角形和等边三角形以及它们的特征。

教学难点:发现等腰三角形和等边三角形角的特征。

教学准备:例题中的三角形;一张长方形纸,一张正方形纸,剪刀。

教学过程:

一、复习:关于三角形,你有那些知识?

1、按角分成三种三角形

2、三个内角和是180度

算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减……

二、认识等腰三角形:

1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)

有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)

指出:像这种两条边相等的三角形,我们叫它“等腰三角形”

2、折一折、剪一剪:

取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开

观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。)

除了两条边是相等的,还有什么也是相等的?你是怎么知道的?

(还有两个角也是相等的,因为也是重合的。)

3、画一画:

讨论一下,如果我要把这个等腰三角形画下来,应该怎么画?

从一个顶点出发,分别画两条同样长的边,这样就确保有两条边是相等的,然后再连接这两条边,就得到了一个等腰三角形。

师生共画等腰三角形。板书:等腰三角形

4、教学各部分名称:

读“等腰三角形”,想一想,这名字是什么意思?(两条腰相等的三角形)

在图上标出:这两条相等的边,我们就叫它“腰”;这第三条边和它们是不相等的,我们叫它“底”

在底边上的这两个角是相等的,就可以共用一个名字“底角”;剩下的这个角,称之为“顶角”。

三、认识等边三角形:

1、刚才有的同学画的等腰三角形,看上去三条边都是相等的。如果真是那样,那它还有一个名字,叫“等边三角形”。

2、为了确保三条边都相等,我们可以这样折:取一正方形形纸,边折边示范,并讲清楚为什么要这样折?

剪下后,量一量每条边是不是真都一样长?在量的过程中,你还有什么发现?(3个角也都相等,都是60度)

3、画等边三角形:很容易保证两条边相等,但保证三条边都相等有一定的困难,所以等边三角形不好画。你有什么办法?

方法一:根据角度来画。比如先画一条长3厘米的线段,然后分别画出60度的角,如果两边正好会合,正好都是3厘米,那就说明画得很准确。

方法二:根据高来画。比如先画一条3厘米的线段,然后在1.5厘米处画高,从端点出发到高量出3厘米,并画下来,再画另一条,就得到了等边三角形。

学生动手画一画。

四、完成想想做做:

1、下面物体的面,哪个是等边三角形,哪个是等腰三角形?

指名说一说,并说明理由。

2、用一张正方形纸,沿对角线剪开。剪出的两个三角形是等腰三角形吗?是直角三角形吗?www.

分别请学生说说判断的理由。指出:三角形可以按角来分也可以按边来分,这是两种不同的依据可得到不同的结果。

3、画出下面每个图形的另一半,使它成为一个轴对称图形,并说说这几个轴对称图形都是什么三角形。

指出:既然是对称的,那肯定有两条边是相等的,那就是等腰三角形。

4、在点子图上画出有一个角是直角的等腰三角形,再画出每个角都是锐角的等腰三角形。

老师注意巡视检查,也可请几个学生说说自己怎么画的,怎么想的?

5、教学你知道吗?

五、课堂作业:

第32页第5、6、7题。在写之前可先组织学生说说各题是怎么思考的。

板书设计:

等腰三角形和等边三角形

两条边相等的三角形是等腰三角形

三条边都相等的三角形是等边三角形

[人教版三角形教案_小学数学教学设计]

篇8:三角形教学设计

三角形教学设计

在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的.各边长, 为半周长。

1.正弦定理: =2R(R为△ABC外接圆半径)。

推论1:△ABC的面积为S△ABC=

推论2:在△ABC中,有bcsC+ccsB=a.

推论3:在△ABC中,A+B= ,解a满足 ,则a=A.

正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC= ;再证推论2,因为B+C= -A,所以sin(B+C)=sinA,即sinBcsC+csBsinC=sinA,两边同乘以2R得bcsC+ccsB=a;再证推论3,由正弦定理 ,所以 ,即sinasin( -A)=sin( -a)sinA,等价于 [cs( -A+a)-cs( -A-a)]= [cs( -a+A)-cs( -a-A)],等价于cs( -A+a)=cs( -a+A),因为0< -A+a, -a+A< . 所以只有 -A+a= -a+A,所以a=A,得证。

2.余弦定理:a2=b2+c2-2bccsA ,下面用余弦定理证明几个常用的结论。

(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2= (1)

【证明】 因为c2=AB2=AD2+BD2-2ADBDcs ,

所以c2=AD2+p2-2ADpcs ①

同理b2=AD2+q2-2ADqcs , ②

因为 ADB+ ADC= ,

所以cs ADB+cs ADC=0,

所以q×①+p×②得

qc2+pb2=(p+q)AD2+pq(p+q),即AD2=

注:在(1)式中,若p=q,则为中线长公式

(2)海伦公式:因为 b2c2sin2A= b2c2 (1-cs2A)= b2c2 [(b+c) -a2][a2-(b-c) 2]=p(p-a)(p-b)(p-c).

这里

所以S△ABC=

篇9: 三角形教学设计

表现内容:

通过一些带有圆形,三角形,正方形,长方形组成的小房子图片作为启发点,让孩子学习认识这些形状。

教案编辑:

数学教研张老师

内容出处:

沭阳县青少年广场幼儿园

【教案目的】

1、认识圆形、三角形、正方形、长方形

2、体验成功的快乐。

【教案准备】

1、小鸡圆形房子、小鸭三角形房子、小猫正方形房子、小狗长方形房子若干。

2、圆形、三角形、正方形、长方形饼干若干。

【教案流程】

1、幼儿参观各种形状的饼干,请他们说一说饼干的形状。教师小结饼干的外形特征。

2、教师简单讲述饼干的制作过程。

3、幼儿品尝饼干说一说饼干形状和味道。

4、出示小鸡、小鸭、小猫、小狗木偶出来玩闻到了香味说:“我聞到饼干的香味了,我的`肚子饿得咕咕叫了,饼干在哪呢?”

5、小动物们寻找饼干:“哇,原来在这呢,有这么多漂亮的饼干呀。”小鸡说:“我最喜欢吃和我房子一样形状的饼干。”小鸭、小猫、小狗同上。

6、教师:“小动物们都想吃和他们房子形状相同的饼干,请宝宝们为它们把饼干送到家里去吧。

7、幼儿操作:给小动物送饼干,要求每一种饼干都要送到形状相同的小动物家里去。教师巡回指导。

【活动结束】

带着小动物到草地上去玩。

篇10:《三角形内角和》教学设计

教学目标:

1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。

2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、导入

师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。

师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?

师:还有一个关键字“和”,什么是三角形的内角和?

师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?

师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿?

生:量一量的方法。

师:光量就知道了?还要算一算。

师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。

验证:量角、求和

小组汇报

生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。

生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。

生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。

师:从刚才的交流中,你发现了什么?

生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。

师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号)

师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧!

师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。

师:你们小组每个同学都动脑筋了,谢谢你们。

师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗?

师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。(擦别的)

师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。

师:这几种方法都足以说明三角形的内角和是180度。(结论)

师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么?

请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度?

师:看来只要大家肯动脑筋,面对同一问题就会有不同的解决方法。

师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊?

生:能。

二、迁移和应用

(一)点将台:

下面哪三个角是同一个三角形的内角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我会算

1、已知∠1,∠2,∠3是三角形的三个内角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73° 求∠1

2、已知∠1和∠2是直角三角形中的两个锐角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一个底角是70°,它的顶角是多少度?

(三)。变变变!

(1)一个三角形中, ∠1 、∠2、∠3。

(2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢?

(3)如果再把∠2剪掉,剩下图形的内角和是多少度呢?

三、全课小结

师:通过一节课的探索,你有什么收获?

生答(略)

我的几点认识:

结合《三角形的内角和》这节课,我对空间与图形这一部分内容,简单的谈一下自己的认识。

空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法:

1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。

在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗?

你们怎么知道的?能自己证明么?这样学生从被动学习者的角色,

立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。

2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得到知识情感价值的升华。

在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。

总之,在教学空间与图形的内容时,一定要让学生看到“图形”,让学生想象"空间”。

篇11:《三角形内角和》教学设计

教学内容

人教版小学数学第八册第五单元第85页例5

任务分析

教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想―验证―结论的过程,来认识和体验三角形内角和的特点。

学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

教学目标

1、通过实验、操作、推理归纳出三角形内角和是180°。

2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

3、通过拼摆,感受数学的转化思想。

教学重点

探究发现和验证“三角形的内角和180度”。

教学难点

验证三角形的内角和是180度。

教学准备

多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

教学过程

一、复习旧知,学习铺垫

1、一个平角是多少度?等于几个直角?

2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解规律

1、说明三角形的三个内角和

说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

板书课题:“三角形的内角和”。

揭示课题:今天我们一起来探究三角形的内角和有什么规律。

2、探究三角形的内角和规律

探究1:量一量,算一算

以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

生讨论汇报,并引导学生发现:三角形的内角和接近180°。

师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

探究2:摆一摆,拼一拼

引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

如图:

(1)

锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

(2)

让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

(3)

让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

引导学生归纳:三角形的内角和是180°。

是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

板书:三角形的内角和是180°

三、巩固练习,应用规律

1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展练习,深化规律

1、求出下面各角的度数。

(1) (2)

2、判断

(1)三角形任意两个内角的和大于第三个角。( )

(2)锐角三角形任意两个内角的和大于直角。( )

(3)有一个角是60°的等腰三角形不一定是等边三角形。( )

3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

( ) ( )

五、课堂小结,分享提升

1、谈谈这节课你有什么收获?

2、课后思考题

三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

板书设计

篇12:《三角形内角和》教学设计

探索三角形内角和的度数以及已知两个角度数求第三个角度数。

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

三。自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

2.师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四。巩固练习,知识升华。

1.完成课本第28页的“试一试”第三题。

2.想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

试一试,看谁算得快。

师:谁来说说自己的计算过程?

角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是 180 度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生: ……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

开始吧!(学生研究,师巡回指导)预设时间:5 分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

( 预设: 如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师: 那请你说一下你度量的结果好吗?

( 生汇报度量结果)

师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

生:180 度。

师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180 度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生 1 :量的不准。

生 2 :有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180 度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

三角形教学设计

三角形的教学设计

全等三角形教学设计

认识三角形教学设计

三角形三边关系教学设计

三角形的面积教学设计

《认识图形三角形》教学设计

认识三角形人教版教学设计

人教版认识三角形教学设计

三角形的认识教学设计

新人教版三角形的教学设计(共12篇)

欢迎下载DOC格式的新人教版三角形的教学设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档