《三角形的内角和》教学设计(冀教版四年级下册)

| 收藏本文 下载本文 作者:沐浴森林

这次小编在这里给大家整理了《三角形的内角和》教学设计(冀教版四年级下册)(共含16篇),供大家阅读参考。同时,但愿您也能像本文投稿人“沐浴森林”一样,积极向本站投稿分享好文章。

《三角形的内角和》教学设计(冀教版四年级下册)

篇1:《三角形的内角和》教学设计(冀教版四年级下册)

教学内容:冀教版《义务教育课程标准实验教科书数学》四年级(下册)

教材分析:

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

学生分析:

学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

教学目标:

1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°能运用这一规律解决一些简单的问题。

2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提动手操作能力和数学思考能力。

3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。

教学重难点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备:  多媒体课件、三角形、剪刀、三角板、量角器等。

教学流程:

一、游戏激趣,设置悬念

1、猜角游戏:学生任意报出两个角的度数,教师快速猜出第三个角的度数。

2、你们想知道游戏的秘密吗?这节课我们共同研究三角形的内角和,板书课题。

【设计意图:以学生感兴趣的游戏,来激发学生的学习兴趣,巧设悬念使学生以良好的状态进入新课的学习。】

二、探究新知,猜想验证

1. 猜想。 请同学猜一猜三角形的内角和是多少度?

2. 验证。 怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。 学生分小组活动,教师参与学生的活动,并给予必要的指导。

3、汇报     哪个小组先来汇报,你们是怎样验证的?

4、归纳。

通过刚才的活动,我们得出了什么结论?

板书:三角形的内角和等于180°。

小结:“猜想-验证”是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。

5.进一步感受三角形内角和与三角形大小的关系     教师出示一个直角三角形,问学生内角和是多少度?再出示一个直角三角形,问学生它的内角和是多少度?把这个完全一样的两个直角三角形拼在一起,大三角形的内角和是多少度?你有什么发现吗?

【设计意图:引发学生讨论争辩,让学生自己去发现问题,自己去解决问题。进一步感受三角形的内角和与三角形的大小没有关系。】

6、下面,我们来看看书中是怎样验证的。你还有什么疑问吗?

7、游戏的秘密:因为三角形的内角和等于180°,所以用180°减去已知的两个角的度数,就可以得到第三个角的度数。

【设计意图:学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。我觉得在课上不能停留在学生对方法的描述上,而应引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。】

三、师生互动,拓展提高

1.猜一猜:猜角游戏”

A已知两个角的度数,求第三个角的度数。     B给出一个角,求其它两个角的度数。     C等边三角形,求三个角的度数。

2.算一算:  四边形、六边形的内角和     用三角形内角和的知识知道了四边形内角和,六边形的内角和,七边形,八边形,N边形的内角和是多少度?有没有什么规律可循,希望同学们能用学到的知识和方法去探究问题,你还会有一些精彩的发现。

【设计意图:基本训练与技能训练相结合,在运用中提高学生解决问题的能力。使不同层次的学生得到不同的发展。】

四、师生交流,体验成功

今天你的收获是什么?你还有什么不明白的地方吗?

板书 三角形内角和等于180°

篇2:《三角形内角和》教学设计 (北师大版四年级下册)

《三角形内角和》教学设计

教学内容:北师版小学数学四年级下册《探索与发现(一)-三角形内角和》

教材分析:

《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。 教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

学情分析:

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

教学目标:

1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学重点:让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境 揭示课题。

1、复习

提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

2、引入

三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

播放课件,提问:它们在争论什么?

什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

(二)探索与发现

1、初步探索,提出猜想。

(1)量一量

①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②、小组合作。

③、汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在1800,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

2、动手操作,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)、小组合作,讨论验证方法。

(2)分组汇报,讨论质疑

学生可能会出现的方法:

A、撕拼的方法

把三个角撕下来,拼在一起, 3个角拼成了一个平角,所以三角形内角和就是1800,。

讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

B、折一折的方法

把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800,。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

C提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)课件演示:两种方法的展示。

(2)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生一定会高兴地喊:“1800!

(3)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(4)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

(三)、回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800,。(齐读)

三、巩固深化,加深理解。

1、 试一试:数学书28页第3题

∠A=180 °-  90 °- 30 °

2、练一练:数学书29页第一题(生独立解决)

∠A=180 °-  75 °-  28 °

3、小法官:数学书29页第二题

4、拓展创新

A           D                       G

B     C      E             F         H                 R

ABC的内角和是(   )

DEF的内角和是(    )

GHR的内角和呢?

小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。

四、回顾课堂,渗透数学方法。

1、总结:猜想-验证-归纳-应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索--多边形内角和

板书设计:

探索与发现(一)

三角形内角和等于1800。。

猜想      验证     得出结论     应用

篇3:冀教版四年级下册教学设计

[教学目标]

1、有感情地朗读课文。

2、通过阅读,感受森林对环境保护的重要作用,充分认识破坏森林给人类自身带来的危害,培养学生的环保意识。

[教学重难点]

1、理解课文内容,了解森林的重要。

2、凭借具体的语言材料,对学生进行增强环保意识的教育。

[教学准备]

多媒体课件

[教学时间]

2课时

第二课时

一、复习回顾,导入新课

1、今天我们继续学习。还记得小云雀在妈妈面前许下了什么心愿

2、出示课文第14-15自然段。我们再来重温一下,你们扮小云雀,老师扮云雀妈妈。

二、默读课文,自主学习

1、上节课同学们提出小云雀为什么认为 “森林实在是太重要了”,还记得吗让我们随着小云雀和他的妈妈一起到沙漠、大河、森林去看看吧!

2、请同学们打开书,默读课文第二到十三自然段,看看你从哪些地方感受到了森林实在是太重要了,用笔画出来,在空白处写下自己的的感悟。

三、细读课文,交流感受

(一)关于森林能够防止土地沙漠化。(2—4节)

1、你还从哪儿感受到森林实在是太重要了(第4自然段)

2、理解“贫瘠”,板书:贫瘠。贫瘠的沙漠是什么样的呢书上是怎么描写的“漫天飞舞”什么意思一齐读读这句话。

小云雀喜欢这儿吗它是怎么说的请你埋怨地说一说。

3、同学们看一看,(“贫瘠的沙漠”和“茂密的森林”的对比图片)为什么会有这种讨厌的变化

板书:乱砍滥伐 (出示图片)看了图,你知道“乱砍滥伐”的'意思了吗

4、看到昔日茂密的森林,如今已变成贫瘠的沙漠,你有什么感受难怪云雀妈妈会心疼地说______,齐读第4自然段。

5、听了云雀妈妈的话,你觉得森林重要吗为什么

板书:土地贫瘠的沙漠

篇4:冀教版四年级下册教学设计

目的要求:

1、能正确、流利、有感情地朗读课文。

2、凭借课文中的语言材料,体会天鹅勇敢果断、团结拼搏的精神。

3、充分展开想象,浮现天鹅破冰的场面,培养学生观察能力和语言表达能力。

重点难点:

抓住重点词句,体会文章的内在思想。

课时安排:

2课时

教学过程:

第一课时

一、谈话引入,自主质疑。

1、同学们,你们喜欢听故事吗?你们听过有关天鹅的.故事吗?

2、揭示课题,齐读。你想了解什么?

3、学生质疑。(天鹅会有什么故事?等)

二、初读课文,抓住重点。

1、自由读课文,提出要求:

(1)读准字词,读通句子,想象每个自然段的内容。

(2)课文讲了一个关于天鹅的什么故事?是谁说的?故事中给你印象最深的在什么地方?

2、检查自读情况:

(1)出示生字词读一读,纠正读音。

落座 塌陷 顽强 一无所获

扫兴 扩大 颤动 腾空而起

(2)回答提出的问题。(大概内容即可)

板书:原因、经过、结果

三、细读课文,领悟中心。

1、你印象最深的地方在哪里?(5、6小节)

2、学生细读课文4、5、6小节,为什么觉得印象深?找出你感兴趣的段落来读一读,并说说自己的理解。

3、小组讨论自己的见解。

4、全班交流:

(1)第五小节的段落理解:

①什么叫腾空而起?你所见过一般在什么情况下会腾空而起?

②老天鹅是在什么情况下出现这一举动的?(带学第4小节)

③你对老天鹅这一举动有着哪些认识?(勇敢、果断)

④老天鹅为什么像石头?跟前面的动作有什么联系?(因果关系)让你感受到什么?(朗读此句话,领悟老天鹅用力之重。)

⑤冰会有什么变化呢?找出冰变化的句子。颤动了多少次?你是怎么知道的?从中你了解到了什么?裂了吗?(了解省略号的内容后加以朗读)

(2)第六小节的段落理解:

①你领悟到了什么?

a、这位顽强的破冰勇士在慢慢地扩大。

破冰勇士指谁?说明了什么?(老天鹅不怕疼痛,不怕牺牲)

b、想象天鹅破冰的场面,仿佛听到了什么?

看图描述,根据天鹅的表现发挥想象,描述具体。

②破冰壮举该怎么读?热闹的场面该怎么读?

③看了图,你想说什么?

四、课堂总结,指导写字。

1、本节课,我们重点了解了什么?你懂得了什么?

2、哪些字要注意?

俄 斯 杰 脆 瞪 塌 扩

五、布置作业,促进内化。

1、抄词。

2、组词。

瞪斯()鹅()塌()

澄()期()俄()蹋()

3、根据提供的开头,将天鹅破冰的热闹场面写具体。

在老天鹅的带动下,百十来只天鹅都投入了破冰战斗。你看,它们干得

附板书设计:

7 天 鹅 的 故 事

发生 冰封湖面

破冰 发展 重重扑打 勇敢果断

继续扑打 团结拼搏

结果 冰破了

篇5:人教新课标四年级下册《三角形内角和》教学设计

一、说教材

北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。

二、说目标

1.知识目标:掌握“三角形内角和定理的证明”及其简单的应用。

2.能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。

3.情感、态度、价值观:

在良好的'师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。

4.教学重点、难点

重点:三角形的内角和定理的证明及其简单应用。

难点:三角形的内角和定理的证明方法的讨论。

三、说学校及学生现实情况

我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。

四、说教法

根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。

五、说教学设计

〈一〉、创设情景,直入主题

一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。

〈二〉、交流对话,引导探索

1、巧妙提问,合理引导

证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。

2、恰当示范,培养学生正确的书写能力

在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。

3、一题多解,放手让学生走进自主学习空间

正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。

4、展示归纳,合理演绎

利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。

5、反馈练习

用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。

〈三〉、课堂小结

采用让学生感性的谈认识,谈收获。设计问题:

(1)、本节课我们学了什么知识?

(2)、你有什么收获?

六、说教学反思

本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。

篇6:人教新课标四年级下册《三角形内角和》教学设计

教学内容:

人教版四年级下册《三角形的内角和》(P67)。

教学目标:

知识技能

1、通过操作活动,使学生自主探究发现三角形内角和是180°。

2、会利用三角形的内角和求三角形中 未知角的度数。

3、使学生能在知识应用的过程中能力得到进一步的发展。

过程与方法

通过操作实验培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。

结合实际生活,体验数学和生活的联系,培养学生学习数学的兴趣。

教学重难点

重点:理解掌握三角形的内角和是180°。

难点:运用三角形的内角和知识解决实际问题。

教具、学具准备:

教具:教学课件、硬纸片制作的各种三角形、三角尺。

学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。

教学过程

(一)创设情境 导入新课

1、课件出示两个三角形的对话,引出学习内容(板书:三角形的内角和)

2、课件出示:

两个直角三角形,算算他们的内角和分别是多少?(师生共同活动)

3、师:同学们我们来猜一猜,想一想,

(1)大小、形状不同的三角形,它们的内角和一样吗?都是180吗?

(2)三角形按角分,可以分为哪几类?

(二)探究新知:

根据学生回答,课件依次出现锐角三角形 、钝角三角形、直角三角形。

师述:通过测量的方法可以验证三角形的内角和是180°,但是由于形状不同的三角形有无数多个,我们不可能通过测量的办法一一验证。测量总有特殊性,不可能说明全部三角形的内角和都是180。为了能够准确的论证“三角形的三个内角的和等于180°”这一命题的正确性。我们需要寻找一种能证明任意一个三角形的内角和等于180°的方法。

1:活动一:量一量

合作要求:

(1)小组分工

(2)用量角器测量你们小组内的三角形每个内角的度数。

(3)最后要求计算出三个角的和是多少?填在表格里。

(4)汇报、总结、发现规律:不同形状的三角形内角和都是180°。

2、撕一撕,拼一拼

(1)师:你还有什么方法证明三角形的内角和是180°吗?把三角形撕成几个部分?把角拼起来看看能拼成什么呢?

(2)学生动手操作,交流、汇报。

(3)得出结论。(实验证明:三个角拼起来变成了平角。平角是180°,所以三角形的内角和是180°

3:折一折,拼一拼

师示范:把三类三角形纸片,分别把三个角都折起来,结果会怎样呢?

实验发现:三个角都折起来最终闭合,组成一个平角,180°,所以说:三角形的内角和是180°。

归纳总结:三角形有3个内角,内角和是180°。

(三)巩固应用(课件出示P67做一做)

1. 完成书中85页“做一做”。

2.数学书69页第1、2、3题

(四)、梳理反思,全课总结

这节课你都学习了哪些内容?

我们通过测量法、剪拼法和折叠法,一起研究和验证三角形,不管大小、形状是否相同,内角和都是180°。

篇7:《三角形内角和》教学设计 (人教新课标四年级下册)

《三角形的内角和》教学设计

勐腊县第二小学      白文英

【教学内容】:人教版义务教育课程标准试验教科书数学四年级下册第67页。

【设计理念】

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

【学情分析】

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

【学习目标】

1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

【教学重点】

探索和发现“三角形的内角和是180°”。

【教学难点】

运用三角形的内角和解决实际问题。

【教学准备】

教师:多媒体课件、剪好的不同类型的三角形。

学生:量角器、剪刀、剪好的不同类型的三角形。

【教学过程】

一、创设情景,引出问题

1.猜谜语。

师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

师:打一几何图形。猜猜看!

学生猜谜语。

根据学生的回答,课件出示谜底。

师:真是三角形,同学们的反应真快!

2.复习三角形的内容。

其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

指名学生回答。

(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

3.引出课题。

师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

(板书课题:三角形的内角和)

二、探究新知

1.讨论、交流验证知识的方法。

师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

学生汇报:①用量的方法;②用拼的方法;③用折的方法...

2.操作验证。

师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

3.学生汇报。

师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

学生汇报,教师适时板书。

①用量的方法:

指名学生汇报度量的结果,教师板书。(指两名学生汇报)

教师白板演示测量方法,并计算和板书出结果。

教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

②用拼的方法

a.学生汇报拼的方法并上台演示。

我这里也有一个钝角三角形,请两名同学上台演示。

b.请大家四人小组合作,用他的方法验证其它三角形。

c.展示学生作品。

d.师课件展示。

师:我们用量、拼得到了180度,还有什么方法?

③用折的方法

师:还想向同学们请同学们看一看他是怎么折的(课件演示)。

师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

教师根据学生板书:(任意)三角形的内角和是180度。

④数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

三、巩固练习

数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

1.课件出示:我是小判官(对的打“√”错的“×”。)

强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

教师:为什么不是360°?学生回答。

2.接下来我要奖励你们一个游戏:《帮角找朋友》

3.求未知角的度数。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

①课件出示第一个三角形,学生尝试独立完成,教师巡视。

教师:刚才,我们利用了三角形的什么?

②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。

教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

四、拓展延伸

师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

接着让学生尝试求5边形和6边形的内角和。

小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

五、课堂总结。

师:这节课你有什么收获?

学生自由发言。

师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

六、作业布置

完成教材练习十六的第1、3题。

七、板书设计:

( 任意)三角形的内角和是180°

∠1+∠2+∠3=180°

度量      剪拼       折拼

【教学反思】

这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。但还受课本资源的限制,不能大胆突破教材,充分利用生活资源。例如:可以出示一块被打烂了的三角形玻璃板(如图: ),向学生提出挑战性的问题:老师今天不小心把这块三角形的玻璃板打烂了,要重新买与原来同样大的一块,可老师不知道尺寸,怎么办呢?谁能帮老师解决这个问题呢?让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。

教学《三角形的内角和》这一课时,我在教学中根据学生的认知特点,设计了从游戏“猜角”来引入课题。通过师生猜角活动,学生对内角及内角和的概念有了初步的认识。学生很有兴致地去数去观察三角形内角及内角和。学生正在好奇之时,我适时激疑:“三角形有三个内角,那么他们的内角和是多少度呢?”一切都在顺利地按我的预定设计进行。请同学们四人一组,利用有关的学具进行验证。”学生饶有兴致地去探究,或数或量或折或比较,在讨论交流中完整地得到了“三角形内角和的知识”......课堂气氛十分热烈,学生学得积极主动。反思整个教学过程,给我如下启发:我想通过本节课的学习让学生体会到与人合作的必要性和培养动手操作的能力以及创新精神。所以课堂上体现了以下几点 :

1、激发学生探究知识的欲望。教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。

2、教师的教学方式要适应学生的学习。在教学过程中,我给学

生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。

3、联系生活实际,感受数学的作用。数学来源于生活,又高于生活,应用于生活。因此,数学教学要紧密联系学生的生活实际。学生学习的目的也就是让他们在生活中学有所用。在本课的教学中,我设计了让学生“量一量”、“撕一撕”、“折一折”“算一算”等活动,贴近了学生的生活,降低了学习难度。同时还拓展学生的想像,让他们自已来设计三角形房架等活动,注重学生们的动手实践,亲身去体验去感悟。

4、存在问题。本节课在教学时还存在一些设计的意愿与实际的教学存在差距的问题。往往在设计教学环节的时候是从教材出发的。而忽视了学生的实际。所以在备课的同时更要备学生。而且在本课的活动中,由于有一些胆怯的孩子还处在配合中,很少主动发现问题,在今后的教学中,我应更加关注他们,让每一个孩子都能主动地参与到活动中来。

篇8:四年级《三角形内角和》教学设计

教学目标:

1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:

课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、课件出示三角形的争吵画面

锐角三角形:我的内角和度数最大。

直角三角形:不对,是我们直角三角形的内角和最大。

钝角三角形:你们别吵了,还是钝角三角形的内角和最大。

师:此时,你想对它们说点什么呢?

2、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和(课件)

师:内角和指的是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

2、看一看,算一算。

师:算一算两个三角尺的内角和是多少度?(课件)

学生计算

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

师:此时,你想对争论的三个三角形说些什么呢?

5、小结。

三角形的内角和是180度。

三、解决相关问题

1、在能组成三角形的三个角后面画“√”(课件)

2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)

3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)

四、练习巩固

1、看图,求三角形中未知角的度数。(课件)

2、求三角形各个角的度数。(课件)

五、总结。

师:这节课你有什么收获?

六、板书设计:

三角形的内角和是180°

篇9:四年级《三角形内角和》教学设计

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的'生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

篇10:四年级《三角形内角和》教学设计

知识与技能

1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

情感态度与价值观

3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点:

1、探索和发现三角形三个内角和的度数和等于180o。

2、已知三角形的两个角的度数,会求出第三个角的度数。

教学难点:

已知三角形的两个角的度数,会求出第三个角的度数。

方法与过程

教法:主动探究法、实验操作法。

学法:小组合作交流法

教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

教学课时:1课时

教学过程

一、预习检查

说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。

二、情景导入呈现目标

故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

三、探究新知

自主学习

1、活动一、比一比2、活动二、量一量

(1)什么是内角?

(2)如何得到一个三角形的内角和?

(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。

(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

3、说一说,做一做。

(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。

四、当堂训练(小黑板出示内容)

1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

3、三角形具有()性。

4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

6、交流学案第三题。 先独立做,最后组内交流。

五、点拨升华

任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

六、课堂总结

通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

七、拓展提高

妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。

板书设计:

三角形的内角和

测量三个角的度数求和:结论:

教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

篇11:四年级《三角形内角和》教学设计

【教材分析】:

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

【教学目标】

知识与技能

1.理解和掌握三角形的内角和是180度。

2.运用三角形的内角和的知识解决实际问题。

过程与方法

经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

情感态度与价值观

在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

【教学重点】

重点:理解和掌握三角形的内角和是180度。

突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

【教学难点】

用三角形的内角和解决实际问题。

突破方法:推理分析计算。运用推理,正确计算。

教法:质疑

【教学方法】

引导,演示讲解。

学法:实践操作,小组合作。

【教学准备】:

多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

【教学时间】

一课时

【教学过程】

一.创设情境,引入新课

师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?

生:三类,分别为锐角三角形,直角三角形,钝角三角形。

师:嗯,真好,那么对边的分类呢?

生:俩类,分别为等腰三角形,等边三角形。

师:老师想让同学们帮老师画一个三角形,能做到吗?

生:能。

师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?

生:想。

师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)

二.探究新知

师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。

生1:锐角三角形。

生2:直角三角形。

生3:钝角三角形。

师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?

生:里面的三个角,可以用角1,角2,角3来表示。

师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?

生:三角形的内角和是180度。

师:那么我们能不能一起用一些好的办法来验证一下呢?

生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

师:还有其他的办法吗?

生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

生3:我可以用折的方法,把三个角的度数折在一起。

师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

三.总结任意三角形的内角和是180度并做适当练习。

四.板书设计

三角形的内角和

量一量锐角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

钝角三角形:120度+38度+22度=180度

拼一拼图形呈现

折一折图形呈现

篇12:冀教版四年级教学设计

【教学目标】

知识与能力:

1、正确、流利、有感情地朗读课文。

2、复述课文。

过程与方法:

1、查找资料的方法,与自身相结合的方法,阅读、讨论、谈话等方法。

2、理解课文内容。

情感态度与价值观:

1、鼓励学生多读书,读好书。培养课外阅读的习惯。

2、鼓励学生通过多种方式查找资料,了解水浒人物故事与同学交流,感受阅读的快乐。

【教学重难点】

从语言文字中体会“我”爱读《水浒传》

第二课时

一、导入新课

1、读词语,并用这些词语来说说课文的主要内容。

出示:特别 百听不厌 破涕为笑 迫不及待 津津有味

2、齐读课题。

二、学习课文

学习第一部分(1-3自然段)想看《水浒传》

1、请你们自由朗读课文的第1-3自然段,思考:“我”如何爱上读《水浒传》的?课文中的哪些句子让你感受到了“我”对《水浒传》的深深喜爱之情呢?读完后用笔画出相关的句子。

指导学生体会:

a)小时侯听邻居老大爷讲故事,初次接触水浒故事就被深深吸引住了,对于武松打虎更是百听不厌。

b)写在家里找到一套《水浒传》,虽然看不懂,却盼望能读像《水浒传》这样有趣的书。

c)写当心爱的书被大火吞没了后,哭着要《水浒传》,直到妈妈答应了才破涕为笑,更表明了“我”想看《水浒传》的心情。

师根据学生的回答,指导朗读相关的部分。

师:通过这几件事情,我们不难看出“我”爱上了读《水浒传》。

我想你一定有自己的体会了,现在请带着自己的感情来读一读1-3自然段。

自由读,指名读。

2、齐读1-3自然段。

带着自己的感受和体会,我们一起来读读1-3自然段。

学习第二部分(4、5自然段)爱看《水浒传》

1、默读4、5自然段,想一想:“我”是怎么读《水浒传》的?

2、学生带着问题默读4、5自然段后汇报学习成果。

3、指名朗读,让学生想象画面,深入体会“爱读”。

a)师:我“迫不及待”地读起来,谁能说说“迫不及待”的意思?“我”是怎么“迫不及待”地读的?(早上……晚上……放学路上……)

b)师:“我”还怎么读呢?(还读了“武松打虎”)

4、品读“武松打虎”的细致描写,以第5自然段的描写为剧本,小组排演“武松打虎”小短剧。

a)自由朗读这个自然段。

b)请小组合作排演武松打虎的小短剧,可以加上对话,看看哪个小组最精彩?

c)再次朗读。

5、感情朗读,读出“我”的'痴迷和喜爱,感受“我”阅读《水浒传》的喜悦。

带上自己的感情读读这两个自然段。指名读、齐读

学习第三部分(6自然段)读了《水浒传》后的收获

师:自由读这个自然段,看看这个自然段又说了什么?

师:你们自己读书的时候,有没有象文中的“我”这样,有自己的收获呢?和你的同桌说一说。

全班交流。

师:谁来说给大家听听?

师:我们再一起读读文中“我”的收获。

三、总结拓展

1、学到这里,我们知道了文中的“我”童年读《水浒传》的故事,经历了三个过程:想看《水浒传》——爱看《水浒传》——读《水浒传》有的收获,请你快速浏览一遍课文,结合老师的板书,复述课文。

2、《水浒传》是本极有魅力的书,还有许多英雄好汉等着我们。课后请同学们阅读《水浒传》,完成以下作业:

a.准备一个水浒英雄人物的小故事,在班上说给同学听。

b.办一期以“水浒英雄人物”为主题的手抄报。

c.写一篇论水浒英雄的小练笔。

板书:

15 童年读《水浒传》

篇13:《三角形内角和》教学设计

教学目标:

1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。

2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、导入

师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。

师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?

师:还有一个关键字“和”,什么是三角形的内角和?

师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?

师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿?

生:量一量的方法。

师:光量就知道了?还要算一算。

师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。

验证:量角、求和

小组汇报

生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。

生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。

生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。

师:从刚才的交流中,你发现了什么?

生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。

师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号)

师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧!

师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。

师:你们小组每个同学都动脑筋了,谢谢你们。

师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗?

师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。(擦别的)

师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。

师:这几种方法都足以说明三角形的内角和是180度。(结论)

师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么?

请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度?

师:看来只要大家肯动脑筋,面对同一问题就会有不同的解决方法。

师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊?

生:能。

二、迁移和应用

(一)点将台:

下面哪三个角是同一个三角形的内角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我会算

1、已知∠1,∠2,∠3是三角形的三个内角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73° 求∠1

2、已知∠1和∠2是直角三角形中的两个锐角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一个底角是70°,它的顶角是多少度?

(三)。变变变!

(1)一个三角形中, ∠1 、∠2、∠3。

(2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢?

(3)如果再把∠2剪掉,剩下图形的内角和是多少度呢?

三、全课小结

师:通过一节课的探索,你有什么收获?

生答(略)

我的几点认识:

结合《三角形的内角和》这节课,我对空间与图形这一部分内容,简单的谈一下自己的认识。

空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法:

1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。

在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗?

你们怎么知道的?能自己证明么?这样学生从被动学习者的角色,

立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。

2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得到知识情感价值的升华。

在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。

总之,在教学空间与图形的内容时,一定要让学生看到“图形“,让学生想象”空间”。

篇14:《三角形内角和》教学设计

教学内容

人教版小学数学第八册第五单元第85页例5

任务分析

教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想―验证―结论的过程,来认识和体验三角形内角和的特点。

学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

教学目标

1、通过实验、操作、推理归纳出三角形内角和是180°。

2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

3、通过拼摆,感受数学的转化思想。

教学重点

探究发现和验证“三角形的内角和180度”。

教学难点

验证三角形的内角和是180度。

教学准备

多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

教学过程

一、复习旧知,学习铺垫

1、一个平角是多少度?等于几个直角?

2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解规律

1、说明三角形的三个内角和

说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

板书课题:“三角形的内角和”。

揭示课题:今天我们一起来探究三角形的内角和有什么规律。

2、探究三角形的内角和规律

探究1:量一量,算一算

以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

生讨论汇报,并引导学生发现:三角形的内角和接近180°。

师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

探究2:摆一摆,拼一拼

引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

如图:

(1)

锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

(2)

让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

(3)

让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

引导学生归纳:三角形的内角和是180°。

是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

板书:三角形的内角和是180°

三、巩固练习,应用规律

1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展练习,深化规律

1、求出下面各角的度数。

(1) (2)

2、判断

(1)三角形任意两个内角的和大于第三个角。( )

(2)锐角三角形任意两个内角的和大于直角。( )

(3)有一个角是60°的等腰三角形不一定是等边三角形。( )

3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

( ) ( )

五、课堂小结,分享提升

1、谈谈这节课你有什么收获?

2、课后思考题

三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

板书设计

篇15:《三角形内角和》教学设计

探索三角形内角和的度数以及已知两个角度数求第三个角度数。

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

三。自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

2.师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四。巩固练习,知识升华。

1.完成课本第28页的“试一试”第三题。

2.想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

试一试,看谁算得快。

师:谁来说说自己的计算过程?

角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是 180 度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生: ……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

开始吧!(学生研究,师巡回指导)预设时间:5 分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

( 预设: 如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师: 那请你说一下你度量的结果好吗?

( 生汇报度量结果)

师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

生:180 度。

师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180 度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生 1 :量的不准。

生 2 :有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180 度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

篇16:三角形内角和教学设计

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]

三、自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

2、师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

2、想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

五、总结延伸

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

四年级三角形内角和教学反思

三角形内角和的教学设计

三角形内角和 教案教学设计

三角形内角和教学设计人教版

三角形内角和

北师大版三角形内角和教学设计

三角形的内角和教学设计一等奖

三角形内角和教学课件

三角形内角和教学反思

三角形内角和说课稿

《三角形的内角和》教学设计(冀教版四年级下册)(精选16篇)

欢迎下载DOC格式的《三角形的内角和》教学设计(冀教版四年级下册),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档