以下是小编为大家准备的数学教案-教学内容:平移的妙用(共含9篇),欢迎大家前来参阅。同时,但愿您也能像本文投稿人“彩色糖果屋”一样,积极向本站投稿分享好文章。
教学目标 :
一、知识与能力目标
1、要求学生掌握平移的基本特征
2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。
二 、过程与方法目标:
1、引导学生概括平移的基本特征。
2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。
3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!
三、情感与态度目标:
1、 通过学生自己观察发现,培养学生对数学的兴趣。
2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。
3、让学生在生活中观察应用例子,从而让他们体会到数学中的图形美。
教学重点、难点及教学突破
重点:平移特征---------平移中的不变量
难点:对图形进行理解和平移
教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。
教学准备:学生复习近平移特征,准备纸笔和画图工具。
教师用小黑板准备例题。
教师活动
学生活动
活动说明
一、复习近平移的概念及特征;
教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的特征是什么?
1. 学生思考后,教师抽学生回答
学生:图形的平行移动叫平移
平移的二要素是:方向和距离
平移的特征:
平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化
如图:线段AB以如图所示的方向平移2cm.
教师活动
学生活动
活动说明
教师引导学生对阴影部分进行平移
教师讲解:
设道路宽为x米,则
(20Dx)(32Dx)=540
x2D52x+100=0
(xD50)(xD2)=0
x1=50(舍去)x 2=2
课堂作业 :
平移后的图形
设:道路宽为x米,引导学生表示出,除阴影部分外的小长方形的长为(32Dx)米,宽为(20Dx)米。
学生完成课堂作业
如图a,如果在问题三中,修筑同样宽的两条“之”字型路,如图所示,余下部分为耕地,要使耕地面积为540米2.道路宽是多少米?
解题方法由教师解,不必要求学生掌握(在以后的学习中再学)
教师活动
学生活动
活动说明
三、归纳与发现:
生活中的许多问题都可以用平移的'知识来解决,现平移有许多妙用。
学生讨论感受平移的妙用。
让学生体会平移的妙用,给同学们带来的方便与快乐。
四、再探索:
教师出示小黑板:
学生合作探索完成下面内容:
如图:△ABC是直角△,∠C=900.现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上。那么符合要求的矩形可以画出两个,矩形ACBD和矩形AEFB(如图)
解答问题:
① 设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2则S1______S2(填“>”“<”“=”)
② 如图③中,△ABC为钝角△时,按如图要求可以画出____个矩形,请利用③把它画出来。
③ 如图④中△ABC为锐角△,BC>AC>AB,按要求可以画出____个矩形,利用④把它画出来
④ 在④中,所画出的矩形哪一个周长最小?
教学内容:平移的妙用 - 初中数学第三册教案
教学内容:平移的妙用
乐至高寺中学 罗勇
教学目标 :
一、知识与能力目标
1、要求学生掌握平移的基本特征
2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。
二 、过程与方法目标:
1、引导学生概括平移的基本特征。
2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。
3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!
三、情感与态度目标:
1、 通过学生自己观察发现,培养学生对数学的兴趣。
2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。
3、让学生在生活中观察应用例子,从而让他们体会到数学中的`图形美。
教学重点、难点及教学突破
重点:平移特征---------平移中的不变量
难点:对图形进行理解和平移
教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。
教学准备:学生复习近平移特征,准备纸笔和画图工具。
教师用小黑板准备例题。
教师活动
学生活动
活动说明
一、复习近平移的概念及特征;
教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的特征是什么?
1. 学生思考后,教师抽学生回答
学生:图形的平行移动叫平移
平移的二要素是:方向和距离
平移的特征:
平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化
如图:线段AB以如图所示的方向平移2cm.
通过复习近平移的概念及特征,让学生更进一步加深对平移理解,为后面的探索作准备
二、创设情境,引出问题:
问题一、要在如图楼梯上铺设某种红地毯,已知,这种地毯每平方米售价为40元,楼梯梯道宽为3米,侧面如图所示。计算一下,购买这种地毯至少要多少钱?
学生采取小组合作学习,共同寻找解决此题的办法,教师引导学生应用平移知识进行平移
一通过平移发现,楼梯长实际就是
AA’+A’M=2.8+6.2=9米
这样便可计算出购买这种地毯至少要
(2.8+6.2)×3×40=1080元
平移是难点,教师引导学生平移,注意对平移后图形的理解
教师活动
学生活动
活动说明
问题二、从县城到石桥镇有两条路可走, 请你判断一下哪条路长一些?
教师提问:第①、②条路横向距离一样吗?纵向距离呢?
学生亲自动手平移。
学生回答:道路①的横向距离的和等于道路②的横向距离的和,道路①的纵向距离的和等于道路②的纵向距离的。
结论:①、②两条路一样长。
学生从表面上看总认为②比①要长。
因此,引导学生平移是难点,教师注意引导。
教师:从以上两个问题发现:平移在生活中是很重要的,生活中的许多问题可以应用平移的知识来解决。
学生相互讨论后得出:平移是有妙用的!
问题三、如图,在宽为20米,长为32米的长方形地面上修筑同样宽的两条互相垂直的道路余下的部分作为耕地,要使耕地面积为540米2.道路宽为多少米?
学生合作学习,讨论怎样解决这个问题,(可以用小学的方法解)
允许学生应用小学思维来解
教师活动
学生活动
活动说明
教师引导学生对阴影部分进行平移
教师讲解:
设道路宽为x米,则
(20Dx)(32Dx)=540
x2D52x+100=0
(xD50)(xD2)=0
x1=50(舍去)x 2=2
课堂作业 :
平移后的图形
设:道路宽为x米,引导学生表示出,除阴影部分外的小长方形的长为(32Dx)米,宽为(20Dx)米。
学生完成课堂作业
如图a,如果在问题三中,修筑同样宽的两条“之”字型路,如图所示,余下部分为耕地,要使耕地面积为540米2.道路宽是多少米?
解题方法由教师解,不必要求学生掌握(在以后的学习中再学)
教师活动
学生活动
活动说明
三、归纳与发现:
生活中的许多问题都可以用平移的知识来解决,现平移有许多妙用。
学生讨论感受平移的妙用。
让学生体会平移的妙用,给同学们带来的方便与快乐。
四、再探索:
教师出示小黑板:
学生合作探索完成下面内容:
如图:△ABC是直角△,∠C=900.现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上。那么符合要求的矩形可以画出两个,矩形ACBD和矩形AEFB(如图)
解答问题:
① 设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2则S1______S2(填“>”“<”“=”)
② 如图③中,△ABC为钝角△时,按如图要求可以画出____个矩形,请利用③把它画出来。
③ 如图④中△ABC为锐角△,BC>AC>AB,按要求可以画出____个矩形,利用④把它画出来
④ 在④中,所画出的矩形哪一个周长最小?
教学内容:平移的妙用
乐至高寺中学 罗勇
教学目标 :
一、知识与能力目标
1、要求学生掌握平移的基本特征
2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。
二 、过程与方法目标:
1、引导学生概括平移的基本特征。
2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。
3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!
三、情感与态度目标:
1、 通过学生自己观察发现,培养学生对数学的兴趣。
2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。
教学目标 :
一、知识与能力目标
1、要求学生掌握平移的基本特征
2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。
二 、过程与方法目标:
1、引导学生概括平移的基本特征。
2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。
3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!
三、情感与态度目标:
1、 通过学生自己观察发现,培养学生对数学的兴趣。
2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。
3、让学生在生活中观察应用例子,从而让他们体会到数学中的图形美。
教学重点、难点及教学突破
重点:平移特征---------平移中的不变量
难点:对图形进行理解和平移
教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。
教学准备:学生复习近平移特征,准备纸笔和画图工具。
教师用小黑板准备例题。
教师活动
学生活动
活动说明
一、复习近平移的概念及特征;
教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的特征是什么?
1. 学生思考后,教师抽学生回答
学生:图形的平行移动叫平移
平移的二要素是:方向和距离
平移的特征:
平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的`形状与大小都没有发生变化
如图:线段AB以如图所示的方向平移2cm.
通过复习近平移的概念及特征,让学生更进一步加深对平移理解,为后面的探索作准备
二、创设情境,引出问题:
问题一、要在如图楼梯上铺设某种红地毯,已知,这种地毯每平方米售价为40元,楼梯梯道宽为3米,侧面如图所示。计算一下,购买这种地毯至少要多少钱?
学生采取小组合作学习,共同寻找解决此题的办法,教师引导学生应用平移知识进行平移
一通过平移发现,楼梯长实际就是
AA’+A’M=2.8+6.2=9米
这样便可计算出购买这种地毯至少要
(2.8+6.2)×3×40=1080元
平移是难点,教师引导学生平移,注意对平移后图形的理解
教师活动
学生活动
活动说明
问题二、从县城到石桥镇有两条路可走, 请你判断一下哪条路长一些?
教师提问:第①、②条路横向距离一样吗?纵向距离呢?
学生亲自动手平移。
学生回答:道路①的横向距离的和等于道路②的横向距离的和,道路①的纵向距离的和等于道路②的纵向距离的。
结论:①、②两条路一样长。
学生从表面上看总认为②比①要长。
因此,引导学生平移是难点,教师注意引导。
教师:从以上两个问题发现:平移在生活中是很重要的,生活中的许多问题可以应用平移的知识来解决。
学生相互讨论后得出:平移是有妙用的!
问题三、如图,在宽为20米,长为32米的长方形地面上修筑同样宽的两条互相垂直的道路余下的部分作为耕地,要使耕地面积为540米2.道路宽为多少米?
学生合作学习,讨论怎样解决这个问题,(可以用小学的方法解)
允许学生应用小学思维来解
教师活动
学生活动
活动说明
教师引导学生对阴影部分进行平移
教师讲解:
设道路宽为x米,则
(20Dx)(32Dx)=540
x2D52x+100=0
(xD50)(xD2)=0
x1=50(舍去)x 2=2
课堂作业 :
平移后的图形
设:道路宽为x米,引导学生表示出,除阴影部分外的小长方形的长为(32Dx)米,宽为(20Dx)米。
学生完成课堂作业
如图a,如果在问题三中,修筑同样宽的两条“之”字型路,如图所示,余下部分为耕地,要使耕地面积为540米2.道路宽是多少米?
解题方法由教师解,不必要求学生掌握(在以后的学习中再学)
教师活动
学生活动
活动说明
三、归纳与发现:
生活中的许多问题都可以用平移的知识来解决,现平移有许多妙用。
学生讨论感受平移的妙用。
让学生体会平移的妙用,给同学们带来的方便与快乐。
四、再探索:
教师出示小黑板:
学生合作探索完成下面内容:
如图:△ABC是直角△,∠C=900.现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上。那么符合要求的矩形可以画出两个,矩形ACBD和矩形AEFB(如图)
解答问题:
① 设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2则S1______S2(填“>”“<”“=”)
② 如图③中,△ABC为钝角△时,按如图要求可以画出____个矩形,请利用③把它画出来。
③ 如图④中△ABC为锐角△,BC>AC>AB,按要求可以画出____个矩形,利用④把它画出来
④ 在④中,所画出的矩形哪一个周长最小?
坐标轴的平移
一、教材分析
1、坐标变换是化简曲线方程,以便于讨论曲线的性质和画出曲线的一种重要方法。这一节教材主要讲坐标轴的平移,要求学生在正确理解新旧坐标之间的关系的基础上掌握平移公式;并能利用平移公式对新旧坐标系中点的坐标和曲线的方程进行互化。这就是本节课的教学目的之一。
2、本教材的重点是平移公式的推导及其简单应用。为了解决重点,教学中先以圆(x-3)+(y-2)=5化为x+y=5这个例子引入来说明,虽然点的位置没有改变曲线的位置、形状和大小没有改变,但是由于坐标系的改变,点的坐标和曲线的方程也随着改变,而且适当地变换坐标系,曲线的方程就可以化简,以此指明平移坐标轴的意义和作用,并由此引出平移的定义,导出平移公式。在推导平移公式时,先从特殊到一般,通过观察、归纳、猜想和推导,得出平移公式,还引导学生运用代数中刚学过的复数的几何意义来证明,既开阔视野,沟通学科知识,又培养学生的思维能力,同时还可通过一组练习,让学生正用、逆用、变用平移公式,达到进一步加深理解、熟练掌握公式的目的,进而培养学生的发现、推理能力和教学思想方法。
3、本节教材的难点是平移公式两种形式何时运用,学生易产生混淆,教学中应通过实例让学生自己领会,并及时加以小结,掌握其规律,加强公式的记忆并培养灵活运用知识的能力。
4、本节寓德于教的要点,主要是通过事物变化过程的内在联系,认识变与不变的矛盾对立统一规律,对学生进行辩证唯物主义的教育。
二、教学过程
(一)提出问题
教师先在黑板上画出图形,让学生观察、思考并提问以下问题:
1、如图,点O和○O关于坐标系xoy的坐标和方程各是什么?点O和○O关于坐标系xoy的坐标和方程各是什么?两个方程,那一个较为简单?
(学生回答,教师在黑板上板书:)
直角坐标系 点O的坐标 ○O的方程
<在xoy中 (3,2); (x-3)+(y-2)=5
在xoy中 (0,0) x+y=5
两个方程,显然后一个方程简单。
(二)引入新课
(继续提问)
1、从上面的例子可以看出什么?
(答) (1)对于同一点或同一曲线,由于选取的坐标系不同,点的坐标功曲线的方程也不同。
(2)把一个坐标系变换为另一个适当的坐标系,可以使曲线的方程简化,便于研究曲线的性质。
教师继续提出新的话题,即如何把一个坐标系变换为另一个适当的坐标系呢?我们再从上面的例子来观察坐标系
xoy与xoy有何异同点呢?(提问)
(答)(1)坐标轴的方向和长度单位都相同――不变
(2)坐标系的原点的位置不同――变
(教师归纳) 这种坐标系的变换叫做坐标轴的平移,简称移轴。
(让学生打开课本阅读移轴的定义,教师在黑板上板书)
(板书) 坐标轴的平移
(三)讲授新课
(板书)1、坐标轴平移的定义
2、坐标轴平移公式
思路:(1)以特殊到一般,在已画出的图形上任取四个点(分别在第一、二、三、四系限或坐标轴上)让学生分别写出在新、旧坐标系里的坐标,并观察、分析出它们的关系。
(答) 坐标平面上任意一点在原坐标系中坐标和在新坐标系中的坐档,归纳出来有如下关系:
(板书) 原系横坐标x=新系横坐标 x+3
原系纵坐标y=新系纵坐标y+2
现在把(3,2)推广到一般(h,k)能否得出 x=x+h
y=y+k
这个公式呢?(让学生自己动手证明)
思路(2)第一步用有向线段的数量表示x,y,h,k,x,和y,
第二步据图进行推导
第三步由推出的公式 x=x+h (1)再推出 x=x-h
y=y+k y=y-h
小结:这两个公式都叫做平移(移轴)公式。同学们还可以运用代数中学过的向量加、减法则,建立复平面来证明(留给学生课后自己作练习)
3、平移公式的应用
(1)利用平移公式求在新坐标内点的新坐标
例与练:①平移坐标轴,把原点平移到O(-4,3),求A(0,0), B(4,-5)的新坐标;C(5,-7) , D(4,-6)的旧坐标。
②平移坐标轴,把原点平移到O( )使A(2,4)的新坐标为(3,2); B(-4,0)的旧坐标为(0,3)
(2)利用平移公式化简方程
例与练:(课本例)平移坐轴,把原点移到O(2,-1),求下列曲线关于新坐标系的方程,并画出新旧坐标轴和曲线。
(x-2)
① x=2 ②y=-1 ③ (x+2) /9+(y+1)/4=1
分析:解①②时 用分别把x=2,y=-1代入公式
(2) 得x=0 y=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y-1代入原方程得出新方程x/9+y/4=1 (引导学生正确作出图)
小结: 从例中可以看出,要把方程(x-2)/9+ (y+1)/4
化为简单的方程x/9+y/4 =1 ,可把 x-2=x y+1=y,得出应
把坐标原点平移到(2,-1),由此可推广,形如(x-h)/a+(y-k)/b的`方程如何化简。
选择题1.坐标轴平移后,下列各数值中发生变化的是( )
(A)某两点的距离 (B)某线权中点的坐标
(C)某两条直线的夹角 (D)某三角形的面积
答案选(C) 从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。
选择题2:曲线x+y+2x-4y+1=0在新坐标系中的方程是x+y=4,则新坐标系原点在旧坐标系中的坐标是( )
(A) (-1,2) (B) (1,-2) (C)2,-1) (D) (-2,1)
分析:把x+y+2x-4y+1=0配方为(x+1)+(y-2)=4
由x+1=x===h=-1 y-2=y===k=2 故应选(A)
(四)教师小结:今天讲的主要内容是坐标轴平移的意义,平移公式及其简单应用。移轴的目的在几何上是使曲线图形的中心(或顶点)与原点重合,使图形“居中”,而在代数上则是将一般二元二次方程通过代数变形(变量代换),消去其中的一次项,从而使方程简化,这个问题,下一节课将作更具体深入的研究与探讨。
平移公式的两种形式何时应用较好方便,一般说来,由点的旧坐标求其新坐标时用(2)较方便,而由曲线的原方程求其新方程时用(1)较方便,但这也不是固定不变的,如例2中把方程x=2化为新方程,直接代入(2),马上就可求出x=0这个新方程。
平移坐标轴,可以简化曲线的方程,但不含改变曲线原来的性质与不变,可以看出其中的辩证关系和内在规律。
(五)布置作业 (略)
三、课后附记
1、本节课曾在福州市教育学院组织的青年教师培训班的观摩课上讲授,反映较好,从学生的作业 反馈及下节课的复习提问,利用坐标轴的平移化简二元二次方程中,引用平移公式进行运算,学生都能较熟练掌握,在半期考中,关于平移公式的应用题得分率在90%以上,说明本节课的效果较好,但因本教材在整个圆锥曲线教材内容中占的分量不重,公式较少使用,容易出现反生与遗忘,因此在平时教学中可适时加以引用。
2、本节课的设计遵照“一体三重五环节”的福八中数学教学的特色,重视发挥学生的主体与教师的主导作用,重视“过程”的教学,尽量做到:提出问题,循循诱导;疏通思路,耐心开导;解题练习,精心指导;存在不足,热情辅导;掌握过程,尽心引导;真正体现重情善导的教风与特色。
说课,作为一种教学、教研改革的手段,最早是由河南省新乡市红旗区教室于1987年提出来的。实践证明,说课活动有效地调动了教师投身教学 改革,学习教育理论,钻研课堂教学的积极性。是提高教师素质,培养造 就研究型,学者型青年教师的最好途径之一。
我市的说课活动是1994年开始的,在不断的实践探索中,我们完善了说课的理论,改进了说课的方法,取得了令人满意的成绩。现在说课已经在我 市的教学研究、职称评定、年度考核、教师比武等许多方面广泛运用。
一、什么叫说课
那么,什么叫说课呢?应该说到目前为止还没有一种具体的科学的定义。按红旗区的说法,说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。我们在说课实践中认识到,这个定义是不全面的。根据我们的理解,说课既可以是针对具体课题的,也可以是针对一个观点或一个问题的。所以我们认为,说课就是教师针对某一观点、问题或具体课题,口头表述其教学设想及其理论依据。说得简单点,说课其实就是说说你是怎么教的,你为什么要这样教。
二、说课的意义
说课活动的好处很多,从不同的角度去看,有不同的答案。根据我们的实践和理解,说课活动有以下几个方面的意义:
1、说课有利于提高教研活动的实效
以往的教研活动一般都停留在上几节课,再请几个人评评课。上课的老师处在一种完全被动的地位。听课的老师也不一定能理解授课教师的意图。导致了教研实效低下。通过说课,让授课教师说说自己教学的意图,说说自己处理教材的方法和目的,让听课教师更加明白应该怎样去教,为什么要这样教。从而使教研的主题更明确,重点更突出,提高教研活动的实效。另外,我们还可以通过对某一专题的说课,统一思想认识,探讨教学方法,提高教学效率。
2、说课有利于提高教师备课的质量
我们检查了很多教师的备课笔记,从总体上看教师的备课都是很认真的。但是我们的老师都只是简单地备怎样教,很少有人会去想为什么要这样备,备课缺乏理论依据,导致了备课质量不高。通过说课活动,可以引导教师去思考。思考为什么要这样教学,这就能从根本上提高教师备课的质量。
3、说课有利于提高课堂教学的效率
教师通过说课,可以进一步明确教学的重点、难点,理清教学的思路。这样就可以克服教学中重点不突出,训练不到位等问题,提高课堂教学的效率。 4、说课有利于提高教师的自身素质
一方面,说课要求教师具备一定的理论素养,这就促使教师不断地去学习教育教学的理论,提高自己的理论水平。另一方面,说课要求教师用语言把自己的教学思路及设想表达出来,这就在无形中提高了教师的组织能力和表达能力,提高了自身的素质。
5、说课没有时间和场地等的限制
上课听课等教研活动都要受时间和场地等的限制。说课则不同,它可以完全不受这些方面的限制,人多可以,人少也可以。时间也可长可短,非常灵活。
三、说课的类型
说课的类型很多,根据不同的标准,有不同的分法。
按学科分:语文说课、数学说课、音体美说课等;按用途分:示范说课、教研说课、考核说课等;但我们从整体来分,说课可以分成两大类:一类是实践型说课,一类是理论型说课。实践型说课就是指针对某一具体课题的说课。而理论型说课是指针对某一理论观点的说课。
四、说课的内容
说课的内容是说课的关键。不同的说课类型说课的内容自然也不同。这也是我们这几年主要研究的问题。
根据我们的实践,实践型说课主要应该有以下几个方面的内容: 1、说教材 主要是说说教材简析、教学目标 、重点难点、课时安排、教具准备等,这些可以简单地说,目的是让听的人了解你要说的课的内容。
2、说教法就是说说你根据教材和学生的实际,准备采用哪种教学方法。这应该是总体上的思路。
3、说过程这是说课的重点。就是说说你准备怎样安排教学的过程,为什么要这样安排。一般来说,应该把自己教学中的几个重点环节说清楚。如课题教学、常规训练、重点训练、课堂练习、作业 安排、板书设计 等。在几个过程中要特别注意把自己教学设计的依据说清楚。这也是说课与教案交流的区别所在。 理论型说课与实践型说课有一定的区别,实践型说课侧重说教学的过程和依据,而理论型说课则侧重说自己的观点。一般来说,理论型说课应该包含以下几个方面的内容:
1、说观点理论型说课是针对某一理论观点的说课,所以我们首先要把自己的观点说清楚。赞成什么,反对什么,要立场鲜明。
2、说实例理论观点是要用实际的事例来证实的。说课中要引用恰当的、生动的例子来说明自己的观点,这是说课的重点。
3、说作用说课不是纯粹的理论交流,它注重的是理论与实践的结合。因此我们要在说课时结合自己的教学实践,把该理论在教学中的作用说清楚。
说 课 的 研 究
五、说课的范例
实践型说课的例子:
例1 《我家的小院》
“我家有个小院子。院子里种着许多花草树木,一年四季都有迷人的景色。初春,迎春花开出金灿灿的小黄花,最先迎来了春天月季花像一张张笑得合不拢嘴的小脸。地上长着厚厚的苔藓,像铺上一层绿色的地毯。 盛夏,茉莉花散发着阵阵清香。海棠开着耀眼的红花。葡萄架上的绿叶,一片挨着一片,密密层层。站在葡萄架下,抬头可见一串串快要成熟的葡萄像珍珠似的挂满了藤架。深秋,枯黄的树叶像飞舞的黄蝶从树上一片片飘落下来。可是,万年青的叶子仍旧碧绿碧绿的,显得格外精神。一盆盆菊花正开得茂盛。隆冬,鹅毛般的大雪纷纷扬扬,给万物披上了银装。那些娇惯的花草都住进了温暖的屋子,腊梅花却昂首挺胸,迎着风雪,无所谓惧。”
说课问题: 1、本课的教学目标 如何确定,如何落实这些目标? 2、本单元的重点训练是读懂长句子。请你说说如何教学文中划线的两个长句子。 3、请你写出本课的板书设计 ,并说说你设计的思路。
理论型说课的例子:
例2:学法迁移是我们教学中经常运用的一种方法,请你结合自己的教学实践,举例说如何在课堂教学中利用正迁移,克服负迁移,提高教学效率。
例3:新课导入 的好坏直接影响着课堂教学的效率。请你结合自己任教的学科,举一个成功的例子和失败的例子,分别说说。
例4:要把素质教育落实到课堂。在教学关系上,必须突出学生的主体地位,即学生自身发展的主体,其自主性、能动性和创造性应当充分受到尊重,给予其展现的机会。请你结合自己的实践,谈谈体会。
例5 :要把素质教育落实到课堂。在教学方法上,必须体现教与学的交融,重视教法与学法的相互转化。教师的教是教学生去学,教是为学服务的,教是为了“不教”。在具体操作中,要重视课堂训练,通过语言文字训练,来培养学生的能力,提高课堂教学的效率。请你结合自己的实践,谈谈体会。
四年级数学教案《图形的平移》
教学内容:教科书p.1-2
教学重点:将图形按水平或竖直方向平移到指定位置。
教学难点:正确判断平移的距离。
教学目标:
1、让学生进一步认识图形的平移,能在方格纸上把简单图形沿水平(或竖直)方向平移。
2、让学生进一步积累平移的学习经验,更充分地感受观察、操作、实验、探索等活动本身的独特价值,增强对数学的好奇心。
3、让学生在认识平移的过程中,产生对图形与变换的兴趣。
教学准备:挂图,尺等
教学过程:
一、教学例题
1、复习有关平移的知识。
(出示例题图)问:下面的小船图和金鱼图分别是怎样运动的?它们的运动有什么相同点和不同点?
学生思考
同桌交流
交流:“小船向右平移9格”你在操作时是怎么想的.?(注意对应点之间的数格子。)
小结:我们三年级时学习过平移,知道了可以把一个图形向上、下、左、右四个方向平移。具体平移的格数要通过数对应点或线之间的格子数。
再说一说金鱼图向右移动了几格?
同桌互相说一说,数一数
小结:判断一个图移动几格,我们要首先确定一个点为0点,然后向相对应的点去数。
二、完成试一试
画出平行四边形向下平移3格后的图形
学生独立完成,教师巡视指导。
强调注意点:把一个图形平移,有的同学可能出现平移后,图形变形的现象,为防止这外现象,我们在平移时,要尽可能多确定几个点,用字母做上标识。
三、完成练一练:
1、看图数一数,哪个三角形向右平移10格得到红色三角形?。
在书上画一画,再说一说。
2、看图填空
同桌互相说一说,你是怎样数的?
四、完成部分练习P7练习一1-2。
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的'划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
初中数学教案 母子相似形的妙用
资源名称:初中数学教案 母子相似形的妙用 资源分类:初中其它教案 “一母生两子,两子皆似母。”直角三角形斜边上的高将原直角三角形分为两个小直角三角形,这两个小直角三角形都和原直角三角形相似,这种基本图形我们不妨形象地叫做母子相似形。在母子相似形中有三个重要的结论(如图1): 母子相似形的'妙用 TITLE=初中数学教案 母子相似形的妙用 TITLE=初中数学教案 其应用十分广泛,有些几何命题,虽然条件中没有给出这种基本图形,但可以根据题目特征,构造出母子相似形,巧妙地运用三个结论,从而达到灵活解题的目的。坡头镇安王小学
主备人:李光辉
教学要求:
1、学会解决简单的数学问题。
2、巩固“8”和“9”的加减法。
教学重点:
巩固“8”和“9”的加减法。
教学准备:小图片
教学时间:1-2课时
教学过程:
一、创设情境,导入新课
1、出示境图,介绍图中的景物。
2、观察图,你发现了什么?
二、讨论、解决问题
1、指名说说你发现了什么?有什么疑问?
2、讨论解决提出的问题,并理解图中的大括号、问号各表示什么?
3、学生独立做题。
4、集体交流反馈。
三、试一试,尝试练习
1、拿出小图片,让学生自己动手分一分。
2、完成表格的填写。
四、练习
1、口算,生独立完成。
2、看图列式计算。先观察说说图意,再列式计算。
3、说一说,填一填。先同桌说一说,再指名说,不局限于一种填法。
五、数学游戏
1、说清游戏的玩法。
2、同桌或四人小组玩一玩,师巡回指导。
坡头镇安王小学
主备人:李光辉
教学要求:
1、通过游戏活动,学会“7”和“6”的加减法。
2、初步培养学生有条理地思考问题的能力。
教学重点: 学会“6”和“7”的加减法。
教学准备:小豆
教学时间:1-2课时
教学过程:
一、猜数游戏
1、拿出各自准备好的小豆,同桌两做游戏。
2、边做游戏边完成书上的题目。
3、集体交流。
4、整理板书。
二、想一想
1、讲故事引入题目。
2、观察图,说说图意,独立完成书上的两组题。
3、想像:说一说还可能会有什么情况发生,生说师板演。
三、练一练
1、连一连。根据图示独立完成。
2、做一做。先独立看题,完成题目,再同桌说说算式表示的意思。
3、计算。看谁算得又对又快。
四、数学游戏
1、知道怎么玩。
2、玩一玩。
3、回家后,找家里人玩一玩这个数学游戏。
教学内容:跳绳 P34
教学要求:
1、在具体的情境中,学会“8”和“9”的加减法。
2、指导学生有条理地思考和表达。
教学重点: 学会“8”和“9”的加减法。
教学准备:投影
教学时间:1-2课时
教学过程:
一、创设情境,导入新课
出示情境图,说说你从图上看到了什么,发现了什么?
二、提出问题,讨论
1、观察图提出问题。
2、指名回答,列出算式。
3、分小组交流算法。
三、画一画
1、同桌两人一组,一人涂色,一人记录算式。
2、组织全班交流,整理出算式。
四、练一练
1、说一说,填一填,先学生独立填写,再指名回答,并说出这样列的理由。 2、口算,看谁算得又对又快。
3、凑成9,先指导学生看明白题目的意思,再连一连,同桌检查连好的结果。
五、拓展练习,数学故事
组织学生分组讨论,猜一猜八戒吃了几块西瓜,说一说自己是怎么想的,师巡回指导。
六、课外延伸
放学后,想一想写一写有关“8”和“9”的加减法算式,能写几个就写几个。
★ 教学内容设计
★ 平移说课稿
★ 《平移》说课稿
★ 平移教案
★ 教学内容改革总结
★ 教学内容怎么写
★ 平移教学设计