这次小编在这里给大家整理了《归总应用题》三年级下册数学教案(共含17篇),供大家阅读参考。同时,但愿您也能像本文投稿人“up小马哥”一样,积极向本站投稿分享好文章。
《归总应用题》三年级下册数学教案
一、创设情景、构造例题:
1、播放一段鼓号队检阅的录象。(其中有队列变换的片段)
2、师:今年九月份,常熟市也要举行了鼓号队的比赛,现在各个学校都在抓紧训练,这是我们学校训练的场景。(出示图片)。
(1) 看了这个队形你有什么感觉?(很整齐);
(2) 看到这个长方形的队列你马上想知道什么?(一共有多少人);
(3) 怎样才能很快地知道一共有多少人呢?(出示每行12人,排成了4行);
(4) 这是他们出场时的队形,如果要能在比赛中取得好成绩,你能否给他们提些建议?(进行队形的变换)。
3、出示:
同学们进行鼓号队比赛,出场时每行12人,排成了4行。退场时如果每行排16人,_________ ?(学生补充问题:可以排几行?)
二、合作探究:
1、探究“退场时”的队形变换。
(1)启发猜测:
①不管队列怎样变换,什么是不变的?(总人数)
②在总人数不变的'情况下,原来每行12人,现在每行16人,那行数与原来相比是增加了还是减少了?
(2)独立尝试,小组内交流方法。
(3)交流汇报:
①求一共多少人?
12×4=48(人)
② 以排成几行?
48÷16=3(行)
答:可以排成3行。
(4)感知规律。
我们发现,在总人数不变的情况下,每行的人数从12人到16人是增加了,而行数从4行到3行,是减少了。你猜对了吗?
2、探究“比赛中”的队形变换。
(1)在比赛过程中,他们还可以变换成怎样的队形,你能否帮忙设计一下?
出示:同学们进行鼓号队比赛,出场时每行12人,排成了4行。比赛中 , ?
(2)学生自主编题,同桌讨论?
(3)出示:同学们进行鼓号队比赛,出场时每行12人,排成了4行。比赛中如果排成6行,每行排几人?
<<<12>>>
(4)猜测:在总人数不变的情况下,排的行数从4行到6行是增加了,那么每行的人数与原来相比应该是增加了还是减少了?
(5)计算验证。
(6)汇报交流:
①求一共多少人?
12×4=48(人)
②每行排几人?
48÷6=8(行)
答:每行排8人。
5、比较小结:
刚才,我们解决了鼓号队比赛中的两个数学问题。(板书:解决问题)这两道题有什么相同和地方?(都是先求出总数。)为什么要先求出总数呢?(求出总数后我们可以用总人数÷每行的人数=行数。用总人数÷行数=每行的人数。)
三、巩固应用:
其实象这样用先求出总数的方法来解决的问题在生活中还有很多很多。
1、请你解决。
(1)学校组织同学们参加夏令营,如果租每辆乘48人的大客车,刚好需要3辆。后来联系旅游公司,他们只能提供每辆乘36人的中客车,现在应该租几辆车? (学生解答、评讲。)
(2)学校给每辆车上的36人配了3箱“农夫山泉”饮用水,平均每人能分到几瓶?
① 学生尝试解答。(学生发现缺少条件,需要补充“每箱矿泉水多少瓶”)
② 怎样才能知道“每箱矿泉水多少瓶”呢?(打开看一看;看外包装)
③ 解答评讲。
2、请你参谋。
小明一家准备暑假里到北京去旅游,这是他了解到的信息。
坐汽车 每小时行80千米————15小时到达
坐火车 每小时行100千米————?小时到达
坐飞机 每小时行?千米 ————2小时到达
(1)你从图上知道了什么?
(2)学生选择相关信息解答。
(3)如果你是小明,你会选择哪种交通工具,说说你的理由?
3、请你当家。
双休日,小芳家来客人了,小芳帮妈妈去买水果,下面是了解到的市场信息。
XX市场水果价目表
品名 单价(元/千克)
香蕉 6
芒果 12
桂圆 8
芦柑 2
妈妈给我的钱刚好买4千克香蕉
小芳可以怎样买,正好把钱用完?
(1) 你从图上知道了什么?
(2) 独立思考,小组交流。
(3) 全班交流:
只买一种:(略)
买两种:(略)
买三种:(略)
(4)小结:不管怎样买,都应该先求出一共带了多少钱。
四、总结反思:
今天我们解决了很多问题,解决这些问题的方法有什么相同的地方?(先求出总数,再求出其他的问题。)
教学目标
1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).
2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.
3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.
教学重点
使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.
教学难点
学画线段图,并借助线段图分析题中数量关系.
教学过程
一、联系生活实际,以旧引新.
1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.
①单价×数量=总价
②路程÷时间=速度
③工作总量÷工效=工时
学生可能举例:
①一个足球50元,3个足球多少元?
②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?
③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?
2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?
此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?
教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试探索,学习新知.
1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?
学生们自由读题,理解题意.
教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.
学生可能提出:
题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?
这道题可以先求什么?(中间问题)为什么?
求出总数量后,再求什么?为什么?
经同学们思考(也可以小组讨论),师生共同解决.
全班重点讨论下面的问题:
a.线段图怎样画?题中什么数量变了,什么没变?
使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的').
b.要求几天修完,必须先求什么?为什么?
[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]
共同解题,说出解题方法.
(学生边回答教师边板书: 这条路全长多少米?
12 × 10 = 120(米)
几天修完?
120 ÷ 15 = 8(天)
综合算式: 12 × 10 ÷ 15
⑤请学生说一说怎样检验?
(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?
12×10÷20=6(天) 12×10÷30=4(天)
12×10÷40=3(天)
(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?
订正:这条路长多少米? 12 × 10 = 120(米).
每天应修多少米? 120 ÷ 6 = 20(米).
综合算式:12×10÷6
全班共同订正,说说你的解题思路,每一步算式的含义.
(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?
12×10÷5=24(米) 12×10÷2=60(米)
2.对比质疑,归纳概括.
教师提问:比较例5、改编题,它们有什么共同点和不同点?
使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.
教师说明:具有以上特点的应用题叫做归总应用题.(出示课题)
三、巩固练习,发展提高.
1.独立完成下题.
①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?
②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?
订正时说说解题的思路各是什么?
2.填表:
解放军列队出操.填出每行人数或行数.(说说解题思路)
每行人数
12
20
45
行数
15
10
四、课堂小结.
今天学习的是什么?你有什么收获?
五、布置作业.
1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?
2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?
板书:
探究活动
折纸条游戏
活动目的
学生通过手、脑、口多种感官参与认知活动,加深对“归总应用题”的认识;锻炼灵活的思维能力,提高数学素质.
活动准备
学生两人一组,每组准备1张较长的彩条,一张表格.
活动过程
1.规则:两人一组,甲任意将彩条折成2段(或几段),乙测量出一段彩条的长度并记录,接着两人互换任务,乙将彩条折成不同的段数请甲根据第一次的测量结果猜出现在每段彩条的长度并记录,互相检查(计算)猜对为赢;此为一局;每场游戏可定为4局,赢者一局加10分,输者记0分并送对方10分,最后分高者为胜.
2.所填表格如下:
归总应用题
教学目标
1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).
2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.
3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.
教学重点
使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.
教学难点
学画线段图,并借助线段图分析题中数量关系.
教学过程
一、联系生活实际,以旧引新.
1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.
①单价×数量=总价
②路程÷时间=速度
③工作总量÷工效=工时
学生可能举例:
①一个足球50元,3个足球多少元?
②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?
③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?
2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?
此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?
教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试探索,学习新知.
1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?
学生们自由读题,理解题意.
教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.
学生可能提出:
题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?
这道题可以先求什么?(中间问题)为什么?
求出总数量后,再求什么?为什么?
经同学们思考(也可以小组讨论),师生共同解决.
全班重点讨论下面的问题:
a.线段图怎样画?题中什么数量变了,什么没变?
使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).
b.要求几天修完,必须先求什么?为什么?
[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]
共同解题,说出解题方法.
(学生边回答教师边板书: 这条路全长多少米?
12 × 10 = 120(米)
几天修完?
120 ÷ 15 = 8(天)
综合算式: 12 × 10 ÷ 15
⑤请学生说一说怎样检验?
(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?
12×10÷20=6(天) 12×10÷30=4(天)
12×10÷40=3(天)
(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?
订正:这条路长多少米? 12 × 10 = 120(米).
每天应修多少米? 120 ÷ 6 = 20(米).
综合算式:12×10÷6
全班共同订正,说说你的解题思路,每一步算式的含义.
(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?
12×10÷5=24(米) 12×10÷2=60(米)
2.对比质疑,归纳概括.
教师提问:比较例5、改编题,它们有什么共同点和不同点?
使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.
教师说明:具有以上特点的应用题叫做归总应用题.(出示课题)
三、巩固练习,发展提高.
1.独立完成下题.
①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?
②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?
订正时说说解题的思路各是什么?
2.填表:
解放军列队出操.填出每行人数或行数.(说说解题思路)
每行人数 12 20 45
行数 15 10
四、课堂小结.
今天学习的是什么?你有什么收获?
五、布置作业.
1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?
2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?
关于归总问题应用题及答案
1. 要修一条公路,原计划每天修450米,80天完成。现在要求提前20天完成,平均每天应多修多少米?
分析:要求平均每天多修多少米,必须知道实际每天修多少米,要求实际每天修多少米,又要先求出这条公路的总长和实际修多少天。
解:450×80÷(80-20)-450
=450×80÷60-450
=36000÷60-450
=600-450
=150(米)
答:平均每天应多修150米.
2. 农具厂生产一批农具,原计划每天生产120件,28天可以完成任务,实际每天多生产了20件,这样可以提前几天完成任务?
分析:要求提前几天完成任务,先要求出实际生产了多少天,要求实际生产了多少天,又要求出这批农具一共有多少件。
解:28-120×28÷(120+20)
=28-120×28÷140
=28-3360÷140
=28-24
=4(天)
答:可以提前4天完成任务.
3. 面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完,现在改用每辆装30袋的汽车6辆来运,几次可以运完?
分析:要求几次可以运完,先要求出运的这批面粉共有多少袋。
解:24×9×15÷30÷6
=216×15÷30÷6
=3240÷30÷6
=18(次)
答:18次可以运完.
4. 修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个工人,准备4天完成,这样每天要工作几小时?
分析:要求每天工作几小时,先要求出这条公路的总工作量,即由1个工人来做共需要多少小时,再求最后问题。
解:7.5×8×6÷4÷(8+2)
=7.5×8×6÷4÷10
=60×6÷4÷10
=360÷4÷10
=9(小时)
答:每天要工作9小时.
5. 一项工程,预计30人15天可以完成任务。工作4天后,又增加3人。如果每人工作效率相同,这样可以提前几天完成任务?
分析:要求提前几天完成任务,必须知道实际工作的天数。要求实际工作天数,又要先求工作4天后,余下的工作需要几天完成,求余下的工作量应用总工作量(15×30)减去4天的工作量(4×30).
解:15-〔(15×30-4×30)÷(30+3)+4〕
=15-〔(450-120)÷33+4〕
=15-〔330÷33+4〕
=15-〔10+4〕
=15-14
=1(天)
答:可以提前1天完成任务.
6. 一个工地上有120名工人,食堂为这些工人准备了30天的粮食。实际工作5天后,由于工期紧张,又调来30名工人,食堂原来准备的粮食只够吃几天?
分析:先要求出准备的'粮食共有多少,也就是1人能吃多少天,再求出5天后余下的粮食够用多少天。
解:(30×120-5×120)÷(120+30)+5
=(3600-600)÷150+5
=3000÷150+5
=20+5
=25(天)
答:食堂原来准备的粮食只够吃25天.
7. 一项工程原计划8个人每天工作6小时,10天可以完成。现在为了加快工作进度,增加2人,每天工作时间增加2小时,这样可以提前几天完成这项工程?
分析:要求可以提前几天完成,要先求现在这项工程需要多少天。要求现在完成这项工程需要多少天,又要先求这项工程的总工作量是多少。
解:10-6×10×8÷(8+2)÷(6+2)
=10-6×10×8÷10÷8
=10-60×8÷10÷8
=10-480÷10÷8
=10-48÷8
=10-6
=4(天)
答:可以提前4天完成这项工程.
教学内容
教科书第107~108页的例3、例4及“做一做”,练习二十四的第1、2题。
教学目的
1、使学生理解正、反归一应用题的数量关系、结构特征及解题关键。
2、初步学会用综合算式解答正、反归一应用题,培养学生分析和解决实际问题的能力。
教学重点
使学生了解归一应用题的基本结构和数量关系,会解答此类应用题。
教学难点
1、线段图的画法
2、检验方法
教具准备
投影片或教学课件
教学过程()
一、创设情境,自主探索
1、学习例3
(1)出示图片(画有5个书架,下面有一个问号),教师说:“学校想买5个书架,你知道需要花多少钱吗?想一想你能解决这个问题吗?”(学生产生疑问或说出需要先知道每个书架多少钱。)
(2)教师及时根据学生的回答出示图片(画有3 个书架,标出一共75元),教师说:“我告诉你买3个书架一共用了75元钱。现在你能解决了吗?”
(3)个人试做,小组交流并汇报小组的想法。
思路:要想求5个书架多少钱?先求每个书架多少钱?再求5个一共多少钱?(教师根据学生的回答及时进行点拨,并做主要的板书。)
(4)练习:教科书第107页“做一做”。让学生独立解答,指名说一说自己的想法。
2、学习例4
(1)出示例4:学校买了3个书架,一共用75元。照这样计算,200元可以买多少个书架?
(2)小组先讨论研究,再试着把它完成。
(3)小组间交流讨论,教师根据学生的回答完成板书。
(4)“做一做”中的题目,让学生独立分析题目,并解答完成。
3、比较例3和例4,你觉得有什么相同和不同的地方?(学生各抒已见)教师根据学生的回答做出小结:“遇到应用题,一定要根据题目的已知条件和问题来分析数量关系,然后再解答。”
二、运用知识,解决问题
出示图片(练习二十四的第1、2题),让学生独立解答。
2、老师用IC卡给家里打电话,时间用了4分,正好花了2元8角钱。想一想,如果打电话时间用了6分,又会用去多少钱呢?(学生独立思考)
“老师的IC卡里现在只有3元5角钱了,我必须在几分内把话讲完呢?
板书设计:
两步应用题
(1)先求每个书架多少钱? (2)先求每个书架多少钱?
75÷3=25(元) 75÷3=25(元)
5个书架多少钱? 200元能买几个书架?
25×5=125(元) 200÷25=8(个)
答:买5个要用不着125元。 答:200元可以买8个书架。
教学内容
教科书第112页的例5及“做一做”中的题目和练习二十五的第1~4题。
教学目的
1、使学生初步了解归总应用题的基本结构和数量关系,能够正确地解答这种应用题。
2、进一步提高学生分析问题和解决实际问题的能力。
教学重点
使学生掌握乘、除应用题的数量关系,结构特征和解答方法。
教学难点
学画线段图,并借助线段图分析题中数量关系。
教具准备
投影片或教学课件。
教学过程()
一、自主探索、领悟方法
1、学习例5(为了贴近学生生活,便于学生理解、计算,将例题进行了改编)。
(1)教师说:“小华读一本书,如果每天读9页,几天可以读完?”(学生各抒已见)。
(2)教师根据学生的回答告诉他们:“知道每天读12页,6天可以读完。现在你能解决这个问题了吗?”
(3)小组展开讨论,并独立列式试做。(教师注意巡视,及时发现学生出现的问题。)
(4)小组汇报自己的.想法,教师点拨,小组间相互质疑问难。
(5)教师根据小组的汇报情况,边小结边进行必要的板书:
先求这本书一共多少页? 12×6=72(页)
再求几天能读完? 72÷9=8(天)
(6)让学生根据分步算式,独立列出综合算式。
2、改编例题,引出题目:(如果小华8天读完,他每天读几页?)
(1)学生独立思考,并试着列式解答出来。
(2)请一名学生汇报。通过学生之间的质疑问难,教师根据出现的情况,及时进行小结:要求每天读几页?首先知道这本书一共有多少页?遇到问题,一定要分析清楚先求什么、再求什么。
(3)学生独立列出综合算式。
3、比较例题和改编的问题有什么相同点和不同点?
让学生说一说自己的想法,教师根据学生的回答,小结。相同点:都是先求这本书的总页数。不同点:例题是求几天读完,改编后的问题是求每天读几页。
4、教科书第112页“做一做‘的第2题和例5,让学生独立完成。
二、应用知识,解决问题
1、做练习二十五的第1题。
让学生认真读题,独立完成,并找出两个小题的异同点。
2、教师:小林从家往学校走,每分走100米,需要用8分走到学校。如果每分走80米,你知道需要用几分走到吗?
让学生说一说想法,然后独立列式解答。
3、做练习二十五的第3、4题。
让学生独立列式解答。做完后,集体订正。
三、课堂小结
通过师生交流,突出两步应用题的数量关系。
板书设计:
两步应用题
(1)先求这本书一共多少页? (2)先求这本书一共多少页?
12×6=72(页) 12×6=72(页)
再求几天能读完? 再求每天读几页?
72÷9=8(天) 72÷8=9(页)
答:8天可以读完。 答:每天读9页。
数学教案设计:归总应用题
教学目标
1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).
2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.
3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.
教学重点
使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.
教学难点
学画线段图,并借助线段图分析题中数量关系.
教学过程
一、联系生活实际,以旧引新.
1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.
①单价×数量=总价
②路程÷时间=速度
③工作总量÷工效=工时
学生可能举例:
①一个足球50元,3个足球多少元?
②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?
③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?
2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?
此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?
教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试探索,学习新知.
1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?
学生们自由读题,理解题意.
教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.
学生可能提出:
题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?
这道题可以先求什么?(中间问题)为什么?
求出总数量后,再求什么?为什么?
经同学们思考(也可以小组讨论),师生共同解决.
全班重点讨论下面的问题:
a.线段图怎样画?题中什么数量变了,什么没变?
使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).
b.要求几天修完,必须先求什么?为什么?
[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]
共同解题,说出解题方法.
(学生边回答教师边板书: 这条路全长多少米?
12 × 10 = 120(米)
几天修完?
120 ÷ 15 = 8(天)
综合算式: 12 × 10 ÷ 15
⑤请学生说一说怎样检验?
(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?
12×10÷20=6(天) 12×10÷30=4(天)
12×10÷40=3(天)
(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?
订正:这条路长多少米? 12 × 10 = 120(米).
每天应修多少米? 120 ÷ 6 = 20(米).
综合算式:12×10÷6
全班共同订正,说说你的解题思路,每一步算式的含义.
(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?
12×10÷5=24(米) 12×10÷2=60(米)
2.对比质疑,归纳概括.
教师提问:比较例5、改编题,它们有什么共同点和不同点?
使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.
教师说明:具有以上特点的.应用题叫做归总应用题.(出示课题)
三、巩固练习,发展提高.
1.独立完成下题.
①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?
②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?
订正时说说解题的思路各是什么?
2.填表:
解放军列队出操.填出每行人数或行数.(说说解题思路)
每行人数
12
20
45
行数
15
10
四、课堂小结.
今天学习的是什么?你有什么收获?
五、布置作业.
1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?
2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?
板书:
探究活动
折纸条游戏
活动目的
学生通过手、脑、口多种感官参与认知活动,加深对“归总应用题”的认识;锻炼灵活的思维能力,提高数学素质.
活动准备
学生两人一组,每组准备1张较长的彩条,一张表格.
活动过程
1.规则:两人一组,甲任意将彩条折成2段(或几段),乙测量出一段彩条的长度并记录,接着两人互换任务,乙将彩条折成不同的段数请甲根据第一次的测量结果猜出现在每段彩条的长度并记录,互相检查(计算)猜对为赢;此为一局;每场游戏可定为4局,赢者一局加10分,输者记0分并送对方10分,最后分高者为胜.
2.所填表格如下:
例1.要修一条公路,原计划每天修450米,80天完成。现在要求提前20天完成,平均每天应多修多少米?
例题解析:要求平均每天多修多少米,必须知道实际每天修多少米,要求实际每天修多少米,又要先求出这条公路的总长和实际修多少天。
解: 450×80÷(80-20)-450
=450×80÷60-450
=36000÷60-450
=600-450
=150(米)
答:平均每天应多修150米.
例2.农具厂生产一批农具,原计划每天生产120件,28天可以完成任务,实际每天多生产了20件,这样可以提前几天完成任务?
例题解析:要求提前几天完成任务,先要求出实际生产了多少天,要求实际生产了多少天,又要求出这批农具一共有多少件。
解: 28-120×28÷(120+20)
=28-120×28÷140
=28-3360÷140
=28-24
=4(天)
答:可以提前4天完成任务.
例3.面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完,现在改用每辆装30袋的汽车6辆来运,几次可以运完?
例题解析:要求几次可以运完,先要求出运的这批面粉共有多少袋。
解:24×9×15÷30÷6
=216×15÷30÷6
=3240÷30÷6
=18(次)
答:18次可以运完.
例4.修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个工人,准备4天完成,这样每天要工作几小时?
例题解析:要求每天工作几小时,先要求出这条公路的总工作量,即由1个工人来做共需要多少小时,再求最后问题。
解:7.5×8×6÷4÷(8+2)
=7.5×8×6÷4÷10
=60×6÷4÷10
=360÷4÷10
=9(小时)
答:每天要工作9小时.
例5.一项工程,预计30人15天可以完成任务。工作4天后,又增加3人。如果每人工作效率相同,这样可以提前几天完成任务?
例题解析:要求提前几天完成任务,必须知道实际工作的天数。要求实际工作天数,又要先求工作4天后,余下的工作需要几天完成,求余下的工作量应用总工作量(15×30)减去4天的工作量(4×30).
解:15-〔(15×30-4×30)÷(30+3)+4〕
=15-〔(450-120)÷33+4〕
=15-〔330÷33+4〕
=15-〔10+4〕
=15-14
=1(天)
答:可以提前1天完成任务.
例6.一个工地上有120名工人,食堂为这些工人准备了30天的`粮食。实际工作5天后,由于工期紧张,又调来30名工人,食堂原来准备的粮食只够吃几天?
例题解析:先要求出准备的粮食共有多少,也就是1人能吃多少天,再求出5天后余下的粮食够用多少天。
解: (30×120-5×120)÷(120+30)+5
=(3600-600)÷150+5
=3000÷150+5
=20+5
=25(天)
答:食堂原来准备的粮食只够吃25天.
例7.一项工程原计划8个人每天工作6小时,10天可以完成。现在为了加快工作进度,增加2人,每天工作时间增加2小时,这样可以提前几天完成这项工程?
例题解析:要求可以提前几天完成,要先求现在这项工程需要多少天。要求现在完成这项工程需要多少天,又要先求这项工程地总工作量是多少。
解:10-6×10×8÷(8+2)÷(6+2)
=10-6×10×8÷10÷8
=10-60×8÷10÷8
=10-480÷10÷8
=10-48÷8
=10-6
=4(天)
答:可以提前4天完成这项工程.
三年级下册应用题
1、我和3位同学共搬了360本书,平均每人搬了多少本书?
2、暑假里小利坚持每天写36个大字,八月份,她一共能写多少个大字?
3、三年级3个班同学,一起外出参加“我爱科学”活动,每个班平均分成4组,每组14人,三年级一共有多少人参加这次活动?
4、小明用150元买3个热水瓶,营业员找了6元,每个热水瓶多少元?
5.兰兰从 7月15日去夏令营,到下个月的9日回来,夏令营共有多少天?
6、一个化肥厂每天生产化肥150千克,7至9月份共生产化肥多少千克?
7、制伞厂要生产5000把雨伞,已经生产了12天,还剩2120把没完成,平均每天生产多少把雨伞?
8、副食店运来5箱色拉油共重150千克,每箱装6桶油,平均每桶油重多少千克?
9、一列火车每小时行75千米,9时从甲地开出,19时到达乙地。甲乙两地相距多少千米?
10、棉纺厂5天织布250千米,照这样计算,16天一共能织布多少千米?
11、小红和小华跳绳比赛,小红6分钟跳612下,小华5分钟跳520下,谁跳得快些?快多少?
12、学校准备用一些钱买奖品,买90支钢笔,每支5元,剩下100元买笔记本。如果用这些钱只买每个8元的文具盒,最多可以买多少个?
13、这个月的电费是82元,水费是37元。照这样计算,全年的水电费各是多少元?
14、大号运动服30元一套,小号运动服20一套。
(1)买25套大号运动服需付多少元? 列式计算:
(2)买45套小号运动服需付多少元? 列式计算:
(3)买15套大号运动服和12套小号运动服,一共要付多少元?
15、影院有25排座位,每排可坐24人。我们想组织600同学看电影,坐得下吗?你是怎么想的?
16、电影院有25排座位,每排可坐41人。我们想组织1000同学看电影,坐得下吗?你是怎么想的?
18、一个坏了的水龙头每分钟要白白流掉 68克水,1时浪费掉多少克水?
19、有18箱苹果汁,12箱橘子汁。每箱都是25瓶,一共有多少瓶饮料?
20、西丽小区新建了25栋楼房,每栋有6层,每层有8户。新建的楼房可住多少户人家?(用两种方法解答)
21、4瓶饮料20元,每人一瓶,48人要付多少元?
22、一个旅游团有48人,儿童36名。儿童票每张15元,成人票每张30元,。
(1)购儿童票需要多少元? 列式计算:
(2)购成人票需要多少元? 列式计算:
(3)一共花了多少元? 列式计算:
23、红领巾假日活动站,乒乓球组有98人,比篮球组的3倍还多2人,这两个小组共有多少人?
24、小平今年12岁,爷爷的.年龄比他的5倍多3岁。奶奶的年龄比他的5倍少2岁。爷爷今年多少岁?奶奶今年多少岁?
25、王老师要打一份20页的稿件,每页25行,每行28个字,这份稿件有多少个字?(用两种方法解答)
26、田丰庄园采摘香蕉820千克,已经运走420千克,剩下的每32千克装一箱,可以装多少箱?
27、废旧电池回收小组三天共收旧电池730个,前两天平均每天收240个,第三天收了多少个?
28、一面镜子长 12 分米、宽 5 分米。它的面积是多少平方分米?这种镜子的价格是每平方分米 2 元,买这面镜子需要多少元?
29、花园里有一个正方形的荷花池。它的周长是 64 米,面积是多少平方米?
30.课桌面的长是60厘米,宽是45厘米。课桌面的面积是多少平方厘米?合多少平方分米?
31.有732个羽毛球,每6个装1筒,一共可以装多少筒?
32.三年级有342人参加植树劳动。平均分成3组。每组有多少人?
33.今年养了9只鹅,225只鸭。鸭的只数是鹅的多少倍?
34.小芳和小英踢毽子,小芳2分钟踢了106下,小英3分钟踢了192下。谁踢的速度快一些?
35.一个正方形花坛的周长是424米,它的边长是多少米?
36.一个星期是7天,今年全年有多少个星期零几天?
37.每个书架有3层,3个书架上一共有360本书,平均每个书架每层放多少本书?
38.正方的的边长是3厘米。面积是多少平方厘米?
39.同学们去划船,三年级114人,四年级132人,每船坐6人。一共需要租多少只船?
40.济南到青岛全程340千米。一辆客车上午10:00从济南出发,下午2:00到达青岛。这辆客车平均每小时行驶多少千米?
41.小明8:00到校,从家到学校要用15分钟。要保证不迟到,最晚几点从家里走?
42.一辆电动自行车的价钱相当于8辆普通自行车的价钱。1辆电动自行车992元。1辆普通自行车多少元?
43.一件大衣420元,买一件大衣的钱可以买3件毛衣。一件毛衣比一件大衣便宜多少元?
数学教案-应用题
1. 一个车间,原来每月用煤150吨,改进技术后,每月用煤127.5吨,节约了百分之几?
2. 一块棉花地,去年收皮棉30吨,比前年增产了5吨。这块棉花地皮棉产量增长了几成?
3. 某连锁店十一月份营业额34.5万元,比十月份增加了4.5万元。十一月份营业额十月份增加了百分之几?
4. 一件商品,由原来的96元降到了84元。降低了百分之几?
5. 一块土地,用第一台拖拉机10小时可以耕完,用第二台拖拉机耕8小时可以耕完.现在用两台拖拉机一同耕了1小时20分,耕了这块地的百分之几?
6. 六年级学生参加植树活动。一班应到42人,实到42人。二班应到45人,实到44人。求两班的出勤率。
7. 一袋小麦共磨出面粉80千克,出麸皮20千克。出粉率?
8. 一个机器厂原计划每天生产40台机器,20天完成任务,如果要16天完成,每天要完成原计划日产量的百分之几?
9. 一项工程,甲独做用15天完成,结果提前5天完成了任务,甲的工作效率提高了百分之几?
10. 甲数是80,比乙数少40,少百分之几?
11. *夏令营举行射击比赛,有50人参加,每人3发子弹,命中105发,算算这次比赛的命中率。
12. 3800千克的甜菜可以榨糖418千克,求出糖率。
13. 花生仁的出油率是42%,有1600千克花生仁,可榨油多少千克?
14. 小麦的出粉率是85%,要磨出170千克面粉,需多少千克小麦?
15. 一块小麦实验田,去年产小麦24.5吨,今年增产了二成。这块实验田今年产小麦多少吨?
16. 一块地,去年产水稻12吨,因为水灾比前年减少二成五。这块地前年产水稻多少吨?
17. 一件衣服打八五折后就可以少花61.2元。这件衣服原价多少元?
18. 王刚买一台录像机花了2400元,已知这台录像机是打八折出售的。王刚少花了多少元?
19. 一桶油,用去20%,还剩32千克,这桶油原有多少千克?
20. 李强体重33千克,比去年增加10%,去年他的`体重是多少千克?
21. 六年级有学生112人,五年级比六年级多25%,五年级有多少人?
22. *第一机床厂,今年生产机床891台,比去年增产10%,今年比去年增产多少台?
23. 一个工厂由于采用了新工艺,现在每件产品的成本是37.4元,比原来降低了15%,原来每件成本是多少元?
24. 一个养殖场,养鸭的只数比养鸡的只数少20%,养的鸡比鸭多1000只。这个养殖场养鸭多少只?
25. 一小区有1225户拥有电视机,电视机普及率达到98%,这个小区有多少户?
26. 学校买来一些球。其中排球占20%,足球占3/4,买来足球15个,学校买来排球多少个?
27. 某校六年级人数的4/5恰好是全校人数的1/12,已知六年级有150人,全校有多少人?
28. 一块长方形钢板,长是5/6米,宽是长的3/5,求面积。
29. 一桶油,第一次取出20%,第二次取出的比第一次少5千克,这样桶里还剩20千克,这桶油有多少千克?
30. *一个长方形周长50米,宽是长的三分之二,这个长方形的长是多少米?
31. *甲乙两队合修一条路,甲队完成全长的62%,比乙队多修360米,这条路全长多少米?
32. 一项工程,甲队独干需9天,乙队独干需6天。两队合干多少天完成?
33. *一项工程,甲队独干需9天,乙队独干需6天。两队合干多少天还剩全部工程的4/9?
34. 修一条路,甲队独修8天完成,乙队独修10天完成,甲队独修了3天后,剩下的甲乙两队合修,还需要几天完成?
35. *修一条路,甲队4天的工作量等于乙队6天的工作量。如果甲队独修16天完成,乙队每天完成全路的几分之几?如果乙队独修几天完成?
36. *一个水池可容水84吨,有两个注水管注水,单开甲管8小时可将水池注满,单开乙管6小时可注满.现在同时打开两个水管,注满水池时,乙管注入水池多少吨水?
37. *李师傅和王师傅同时加工一批零件,两人合作6小时完成,已知李师傅每小时加工50个,王师傅独自干需要11小时完成,王师傅每小时加工多少个?
38. *AB两地有一条公路,小车行完全程要7小时,大车行完全程要9小时。现在大车从A地先开出全程的3/7,小车才从B地相对开出,两车同时行驶1小时可以行全程的几分之几?两车同时行驶几小时后两车相遇?
39. *两辆汽车分别从AB两地同时出发,在距中点40千米处相遇,甲行全程需10小时,乙行全程需15小时。求AB两地距离。(用多种方法解答)
40. 李英把5000元人民币存入银行,定期三年,年利率是2.70%。到期时,李英应得利息多少元?(利息税为20%)
41. 张晶在银行存了30000元人民币,定期五年,年利率是2.88%。到期时交纳利息所得税20%后,银行应付给张晶本金和利息一共多少元?
42. *一年定期存款的年利率是2.25%,一年后张师傅去银行取款,如果不计利息税,他可得8180元,一年前,张师傅存入的本金是多少元?
教学内容:课本第47--48页。
教学目标 :
1、掌握解答应用题的一般步骤,能用综合算式解答一般应用题;
2、培养分析问题和解答问题的能力。
学习指导:
应用题解答的关键步骤,是分析数量关系和线段图比较。线段图比较直观,可以
把 一道应用题的条件、问题以及它们之间的内在联系清晰地反映出来。画线段图既是
一 个审题过程,同时也是一个分析应用题的数量关系过程,线段图画正确了,应用题
的 数量关系也就清楚了。应用题的解题思路也随之而出,问题迎刃而解。
学习重点、难点:
解答应用题的一般步骤 ;利用线段图帮助学生理解数量关系。
教学过程 :
一、创设情景,导入 新课。
(网上连接电子信箱出示画面)服装工厂的工人正忙碌地生产着衣服。一个工厂的
生产必须制订一定的计划,然后按照计划去生产。在生产过程中还需要对计划的完成
情况进行计算了解。下面让我们一起来帮这个工厂的计划生产完成情况计算一下:(出
示简单的应用题)
1、根据线段图口头列式。
(1)服装厂计划做一批衣服,平均每天做75套,5天做多少套?
?套
每天做75套
(2)服装厂计划做660套衣服,已经做了375套,剩下的要3天完成,平均每天做多少套?
计划做660套
已经做了375套 平均每天做?套
二、主动探究,学习新知。
1、亮出目标。
指导学生阅读课本47页第一、二行。
提问:谁能说一说这节课的学习目标?(学习解答应用题的一般方法。)(投影)
2、 板书课题:一般应用题(一)
3、 教学例1。出示例题。
(同学们:如果我把练习(2)中“已经做了375套”换成“已经做了5天,平均每
天 做75套。就得到我们今天学习的例1,请同学们打开课本47页,一起阅读例1。”
一个服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的3天做完。
平均每天做多套?
(阅读后,请带着“你是按照怎样的步骤去完成例1的解答的呢?”这个问题去自
学课本47页和48页)
学生回答后,教师板书:
1、理解题意; 2、分析题里的数量关系;
3、列式计算; 4、检验,写出答案。
⑴审题,弄清题意。(板书)
想一想(A)
A、可以用什么方法来帮助理解题意呢?
答:可以用两种方法来帮助理解题意:
一种是摘录条件和问题。
另一种是线段图:
计划做660套衣服
前5天做好的 后3天要做的
每天做75套 每天?套
想一想(B)
B、问题中的.“平均每天做多少套”是指哪些天的平均数?
答:问题中平均每天做多少套,是指剩下3天的平均每天做多少套,不是指全部数
量的平均数。
⑵根据刚才的题意分析,你能说说这道题的分析思路图吗?(板书:分析数量关系)
⑶根据分析思路图中的数量关系你们知道第一步先算什么?第二步再算什么?第三步算什么?并列出综合算式:(教师板书:列式计算)(请你们阅读课本47页,并完成第三步的算式,再写成综合算式)
㈠ 已做了多少套? (板书) 综合算式:
75×5=375(套)
㈡ 后3天还要做多少套?
660-375=285(套)
㈢ 平均每天做多少套?
285÷3=95(套)
(老师:答案已经求出来,但我还不知道解答得对不对呢?有谁能教教我应用题
怎样检验解答得对不对呢?)
⑷怎样检验解答得对不对呢?(板书:检验,写出答案)
(同位讨论,指名回答)
可以按照以下两种方法来检验:
① 按照题目的条件和问题,依次重新检查列式和计算对不对。
②把得数当作已知数,根据题里的数量关系一步一步地计算,看得到的得数是不是符合题里的一个已知条件。
(你们会不会用第二种方法来检验一下解答得对不对,请你们做一回老师,判断
一下下面的方法那些是对的,那些是错的?)
检验: (660-95×3)÷5 75×5+95×3 660-95×3
=(660-285)÷5 =375+285 =660-285
=375÷5 =660(套) =375(套)
=75(套)
4、归纳小结:(老师提问:这道应用题我们解答完了,有谁能回顾一下刚才的解题过程是按照怎样的步骤来进行的呢?)
⑴ 弄清题意,并找出已知条件和所求问题;
⑵ 分析题里的数量关系,确定先算什么,再算什么……最后算什么;
⑶ 确定每一步该怎么算,列出算式,算出得数;
⑷ 进行检验,写出答案。
三、巩固练习。
1、应用题:
1、食堂买来大米3袋,面粉4袋,共370千克,每袋大米90千克,面粉每袋多少
千克?
2、综合题: 课本48页“做一做”
四年级和五年级要给500棵树浇水,四年级每天浇50棵,浇了4天;剩下的由五
年级来浇,浇了5天。五年级平均每天浇多少棵?(解答并检验)
(解答完后,提问:是按照怎样的步骤进行解答的?答:我是这样的步骤来解答
的:一、找出题目里的条件和所求问题;二、分析条件和问题之间的数量关系,确定
计算顺序;三、进行列式计算;四、检验结果,写出答案。)
3、小测验:
⑴、根据线段图写出运算顺序:
1、求
2、求
3、求
⑵、列式计算:
印刷厂计划20天装订课本48000本,实际每天比原计划多装订600本。根据题
意,列出综合算式不计算:
⑴计划每天装订多少套
⑵实际每天装订多少本?
⑶实际几天完成任务?
四、归纳总结解答应用题步骤。
解答应用题要分4个步骤,重点分析题目中的数量关系,确定先算什么,再算
什么,然后正确地列出算式,进行解答。
检验这一步,不能忽视,做完题要养成检验题目的好习惯。分析题意的方法,
可用摘录条件和问题或画线段图等。
五、布置作业 。
第49页 练习十二第1、2、3题
板书设计 :
一 般 应 用 题
计划做660套衣服 解答应用题的步骤:
前5天做好的 后3天要做的 1、找条件和问题;
2、分析数量关系;
每天做75套 每天?套 3、列式计算;
4、检验写出答案。
教学目的
1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.
2.通过教学,进一步提高学生分析和解答应用题的能力.
3.探索知识间的内在联系,激发学生的学习兴趣.
教学重点
掌握简单应用题的结构,正确解答简单应用题.
教学难点
掌握简单应用题的数量关系.
教学过程
一、基本训练.
1.口算.
2.2+3.57 × ×1.2
1.4- +0.5 11.3-8.6
( + )×12 (0.18+ )÷9 7.75- -
2.下面各题只列式不计算.
(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?
(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?
(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?
(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
(6)五年级有学生136人,其中 是女生,女生有多少人?
二、归纳整理.
揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)
(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?
教师提问:这道题有哪几个已知条件?
问题是什么?
问题与已知条件有什么关系?
你为什么要这样回答?
教师总结:
这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.
(二)变式练习.
1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?
①某工厂男工和女工一共有455人,男工有364人,女工有多少人?
②某工厂男工和女工一共有455人,女工有91人,男工有多少人?
③某工厂有女工91人,男工比女工多273人,男工有多少人?
④某工厂女工比男工少273人,女工有91人,男工有多少人?
⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?
⑥某工厂有男工364人,女工人数是男工人数的 ,女工有多少人?
⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?
⑧某工厂有女工91人,女工人数是男工人数的 ,男工有多少人?
教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?
教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.
(三)复习已经学过的一些常见的数量关系.
通过例1我们已经研究了一些简单应用题的数量关系,下面我们再来复习一些常见的数量关系.(出示下表)
数量关系
数量关系式
收入、支出、结余
收入-支出=结余
单价、数量、总价
单产量、数量、总产量
速度、路程、时间
工作效率、时间、工作总量
本金、时间、利率、利息
1.请你们以小组为单位,先举例说明数量关系的意义,在填出每组数量中最基本的数量关系式.
2.根据这些数量关系式你能够各编出三道不同的`应用题吗?
三、巩固反馈.
1.解答下面的应用题.解答后,再利用原题中的数量关系,编出两道与原题相连的应用题.
(1)某电视机制造厂平均每天制造电视机800台,20天能够制造电视机多少台?
(2)学校用102元买来120个练习本,平均每个练习本多少元?
2.给下面各题补充上一个条件或者问题成为一步计算应用题,再解答.
(1)一批货物,运走10.5吨,_____________. 这批货物原来有多少吨?
(2)修一条长3800米的水渠,_____________.平均每天修多少米?
(3)白羊只数的 相当于黑羊的只数,_____________.黑羊有多少只?
(4)一列火车7小时行驶420千米,_____________?
3.解答下列应用题.
(1)一种毛线,每千克的价格是66.5元,买0.5千克应付多少元?
(2)肖师傅一天共生产250个零件,经检验有225个是一级品,求一级品率.
四、课堂总结.
通过今天的学习,你有什么收获吗?
五、家庭作业 .
1.丰华农场种玉米120公顷,种小麦的面积是玉米的 倍.种小麦的面积是多少公顷?
2.丰华农场种小麦165公顷,种玉米的面积是小麦 .种玉米多少公顷?
3.丰华农场种小麦165公顷,种小麦的面积是玉米的 倍.种玉米多少公顷?
4.丰华农场种玉米120公顷,种玉米的面积是小麦的 .种小麦多少公顷?
六、板书设计
简单应用题
根据数量关系解决问题
例1 某工厂有男工364人,女工91人.这个工厂的男工和女工一共有多少人?
364+91 =455(人)
答:这个工厂的男工和女工一共有455人.
改编:
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
教学目标
1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).
2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.
3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.
教学重点
使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.
教学难点
学画线段图,并借助线段图分析题中数量关系.
教学过程
一、联系生活实际,以旧引新.
1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.
①单价×数量=总价
②路程÷时间=速度
③工作总量÷工效=工时
学生可能举例:
①一个足球50元,3个足球多少元?
②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?
③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?
2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?
此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?
教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试探索,学习新知.
1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?
学生们自由读题,理解题意.
教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.
学生可能提出:
题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?
这道题可以先求什么?(中间问题)为什么?
求出总数量后,再求什么?为什么?
经同学们思考(也可以小组讨论),师生共同解决.
全班重点讨论下面的问题:
a.线段图怎样画?题中什么数量变了,什么没变?
使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).
b.要求几天修完,必须先求什么?为什么?
[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]
共同解题,说出解题方法.
(学生边回答教师边板书: 这条路全长多少米?
12 × 10 = 120(米)
几天修完?
120 ÷ 15 = 8(天)
综合算式: 12 × 10 ÷ 15
⑤请学生说一说怎样检验?
(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?
12×10÷20=6(天) 12×10÷30=4(天)
12×10÷40=3(天)
(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?
订正:这条路长多少米? 12 × 10 = 120(米).
每天应修多少米? 120 ÷ 6 = 20(米).
综合算式:12×10÷6
全班共同订正,说说你的解题思路,每一步算式的含义.
(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?
12×10÷5=24(米) 12×10÷2=60(米)
2.对比质疑,归纳概括.
复习归一、归总应用题
教学内容:教科书第115页第4题,练习二十六的第5―8题。教学目的:使学生通过对比练习加深对归一、归总应用题数量关系的认识,提高解答这两种应用题的能力。
教具准备:将第115页的第4题分别写在几块小黑板上。
教学过程():
(一)对比练习
1、教师挂出写有第4题的第(1)小题的小黑板。让学生自己默读题后,指名回答题目的已知条件和问题,再让学生独立解答。做完后教师分别让学生说解体思路和列式理由。
教师挂出第4题第(2)小题的小黑板。让学生比较第(1)、(2)题的相同点和不同点,引导学生回答第一、二个条件是相同的,第三个条件不同,第(2)题的第三个条件正好是第(1)题的得数。让学生独立解答。
教师让学生说明这两道题解法上的异同点,引导学生回答:它们都是先求出每人要摆多少盆花。再根据第三个条件的不同,求一共要摆多少盆花或求需要多少人。
2、教学第4题的第(3)、(4)题。
教师让学生说明这两道题解法上的异同点和不同点,引导学生回答:它们都是先求出一共要摆多少盆花,再根据第三个条件的不同,求需要多少人或每人摆多少盆花。
教师要求学生看第115页上的'第4题,想一想这四道题有什么联系和区别?引导学生回答:这四道题说的是同一件事:同学们摆花盆。由于已知条件和问题的变化,第(1)、(2)题与第(3)
(4)题分为两组应用题。每一组应用题的第一、二个条件是相同的,不同的是第一组要先求每人要摆多少盆花,第二组要先求出一共要摆多少盆花。然后再根据第三个条件求出得数。
二、课堂练习
1、做练习二十六的第5题。
教师让学生把得数写在题目的后面,做完后集体订正。
2、做练习二十六的第6题。让学生认真审题,再列式计算。
3、做练习二十六的第7题。
学生读题后,教师问:这道题实际上给出几个已知条件?(摆一个正方形要用4根火柴棒,摆一个三角形要用3根火柴棒,实际给出了三个已知条件。)
4、做练习二十六的第8题。
北师大版三年级下册数学教案
【教学目标】
知识与技能:
1.结合生活实例,通过判断、举例等感知平移与旋转现象,体会平移和旋转的特点,并会直观地区分这两种现象。
2.通过观察推断、操作验证等,正确判断平移的方向和距离,初步感悟平移的本质。
3.能在方格纸上画出一个简单图形沿水平方向、垂直方向平移后的图形,感受平移的几何特征。
过程与方法:在学习的过程中培养学生善于观察的习惯及动手实践、发挥想象的能力。
情感态度价值观:在解决实际问题中使学生体验学习数学的乐趣和应用价值。
【教学重点】
正确区分平移和旋转现象
正确判断平移的方向和距离,初步感悟平移的本质。
【教学难点】
正确判断平移的方向和距离,初步感悟平移的本质。
【教具、学具准备】
教学课件,学具纸
【教学流程】
『一』谈话导入,初步感知生活中的平移和旋转
师: 在我们的生活中有着许多丰富多彩的运动画面,今天老师就给大家带来了一些,你们想看吗?
生:(想)
师:不过呀,在没有看画面之前,老师有个小小的要求,就是认真观察的同时要开动你聪明的脑筋思考:它们的运动方式也就是运动的样子一样吗?同学们还可以边看边用手势表示出它们运动时的样子。好,下面请同学们仔细观察,
(出示课件:火车,电梯,缆车,轮船,风扇,钟摆)
(学生认真观察)
师:那你能根据它们不同的运动方式,也就是运动时的样子分分类吗?同桌之间交流一下,你们是怎么分的?为什么要这样分?
根据学生的回答:火车,电梯,缆车的运动分为一类,它们的运动路线都是直的;这些物体都是沿着直线移动的,这样的现象叫做平移(板书:平移)轮船,风扇,钟的指针的转分为一类,它们都是转动的。这些物体都绕着一个点或一个轴转动这样的现象,我们把他叫做旋转
(板书:平移、旋转)
师:这节课我们就来学习有趣的“平移和旋转”。(把课题补充完整)
游戏:
『二』 初步了解平移和旋转的特点。
师:同学们,我们已经初步了解了平移和旋转的特点,根据这些特点你能正确判断出下面的哪些是平移,哪些是旋转吗?
(出示课件:判断平移和旋转)
师:在我们的日常生活中你还见过哪些平移和旋转的现象呢?(指名举例)。
师:同学们通过你们刚才的学习,你能用自己的.动作把平移和旋转做出来吗?
师:平移和旋转在生活中随处可见,细心的同学一定会发现它的,同学们猜想一下,大楼在现实中会平移,旋转吗?
师:刚才有的同学说会,有的说不会;下面老师就领着大家一起去看一下工程师们是如何让整栋大楼平移的。具有悠久历史和文化的上海音乐厅,始建于1930年,是当时上海的一流电影院,1959年改成音乐厅。为了更好的保护它,上海市政府决定对它整体平移,20xx年从原址向东南整体平移了约66米,使得上海音乐厅终于重放光彩。我们一起来看一下具体的过程。
师:同学们,听了这件事,你们说神奇不?
师:是啊,真是太神奇了!这体现了人类的智慧,这就是知识的力量!只要我们学好数学,用好数学,就能为我们的生活服务,让我们的生活更美好。下面让我们也来研究研究平移吧!
『三』:探究平移的方向和距离
1.认识平移的方向和距离。
(1)创设情境,感知平移的距离。
情景:请同学们看大屏幕,老师要给图中的这座房子搬家,请同学仔细的观察小房子是在做什么运动?(平移)向哪边平移的?(右边),你们能判断一下这小房子到底是平移了几格吗?
师: 好的,同学们,先别说出答案,请你拿出你们手中的这两张卡片,自己动手移一移,移动一格,数一格,然后说出这个房子是向右平移了几个格呢?也可以两个人商量商量看,好,现在开始。
师:同学们小房子向右移动了几个格子。(6个)
师:同学们,其实要看一个房子平移了几格,你看的这个点不能变,你不能说一会看这个点,一会看那个点。
师:同学们看老师来演,我们先在原来小房子上找到一个定点,然后在移动后的小房子上找到这个点,这个点平移了几格,这个图形就平移了几格。
(2)动手实践,理解平移的距离。
师:好的同学们,这个问题咱们搞明白了,如果给你一幅图让你来判断它们分别向哪平移几格,你能准确的作出判断吗?
生:能
师:请同学们看大屏幕。移一移,数一数。
【四】. 画出平移后的图形。
师:刚才孩子们又能移,又会数,如果请你们在纸上把平移后的图形画出来你们会吗?
师:比如说我想请你把这个三角形向右平移6格之后的图形画出来,你们能吗?
生:能
师:别急着动笔;请同学们仔细观察,老师来演示。
师:先找到图形中的一个点把它平移,再找到其余各个点,把它们平移到相应的格子,然后把各个点连接起来,就可以得到平移后的图形。
师:请大家把平行四边形向下平移5格后的图形,画出来,自己用刚才的方法画画看
(学生动手画图)
『五』总结
师:随着钟表指针的旋转,这节课也即将结束,孩子们我们来回顾一下,今天这堂课我们学习的是( ),谁能用自己的话说一说像什么样的运动方式是平移,像什么样的运动方式是旋转呢?
(学生自己总结,老师补充)
师:生活中还有很多平移和旋转的例子,希望同学们在以后的学习,生活中做一个有心人,拥有一双发现美的眼睛去发现身边更多有趣的数学问题,好吗?课堂的最后让我们一起伴随着优美的音乐欣赏一下有平移和旋转得到的美丽的图案,去感受一下平移和旋转带来的艺术之美吧!
教学重点:
被除数中间不够商1怎么办。
教学难点:
掌握三位数除以一位数时商中间有0的笔算方法。
教学过程:
一、复习
1、口算:32÷8 45÷5 63÷7 42÷6 54÷9 25÷5
13÷4 26÷8 33÷6 52÷8 46÷9 61÷8
2、列竖式计算,并和同桌说说你是怎么算的。
760÷4 405÷2
3、被除数末尾或中间有0时怎么办?
二、新授
1、出示例7:星光小学832名学生分4批去参观天文馆,平均每批有多少人?
⑴读题,做什么方法,为什么做除法?怎么列式?
⑵ 832÷4=?自己列竖式算一算,再和同桌说说你是怎么算的,请两个学生板演
⑶汇报:你是怎么算的?3÷4不够商1,怎么办?为什么要写0,不写行不行?还有没有不同的写法?
⑷打开书31页,看看书上的两种写法,你认为哪种好?为什么?
2、做一做:615÷3 624÷6 218÷2 525÷5
⑴同桌任选一题列竖式计算,再同桌交换检查,说说算法。
⑵请学生板演
⑶集体订正
3、判断对错33页,第2题
⑴这些计算对吗?把不对的改正过来。
⑵集体订正
4、总结:今天这节课你有什么收获?还有什么问题吗?
一、教学目标
(一)知识与技能
掌握同分母分数的简单加、减计算方法。
(二)过程与方法
通过直观操作,理解简单分数加、减法的算理,发展学生的思维能力。
(三)情感态度与价值观
渗透数形结合的思想,进一步发展学生的数感。
二、教学重难点
教学重点:利用几何直观,使学生会计算简单的同分母分数加、减法。
教学难点:理解简单的同分母分数加、减法的算理。
三、教学过程
(一)复习旧知,引入新课
1.让学生任意说说想到的分数,师随机板书这些分数。
2.根据板书,让学生说一说这些分数里分别包含几个几分之一。
【设计意图】由学生之前已经学过有关分数的知识引入新课,不仅进行了有效的复习,而且由问题引发学生猜测推想,渗透新课所要运用的知识,为探究新知打下基础。
(二)动手操作,探索交流
1.提出问题
(1)课件出示分西瓜的情境图。
将一个西瓜平均分成8块,哥哥吃了2块,弟弟吃了1块。(2)从上面的图中,你知道了什么?(引导学生用数学语言描述:哥哥吃了西瓜的,弟弟吃了)
(3)根据这两个信息,你能提出什么数学问题?
(预设)问题1:哥哥和弟弟一共吃了这个西瓜的几分之几?
问题2:哥哥比弟弟多吃了几分之几?
问题3:西瓜还剩下几分之几?
……
2.探究同分母分数的加法
(1)教师有意识地选择第1个问题,要求学生列出算式。
(2)同桌讨论:+等于多少?
(3)操作验证答案。
如果出现这种答案,教师不忙于下结论,而再询问:有不同的答案吗?
如果出现这种答案,要追问:你是怎样想的?
集体验证:
(预设)方法1:把○平均折成8份,先涂了2份,又涂了1份,合起来涂了3份,也就是;
方法2:是2个,2个加1个是3个,也就是
……
在学生交流的同时,教师用课件进行示范。
(4)引导辨析:+的结果为什么不是?
【设计意图】在教学同分母分数的加法时出现了两种思路,第一种思路停留在直观感知层面,第二种思路是根据分数的意义从抽象的加法关系进行分析的。显然,让学生的思维仅仅停留在直观感知的层面是不合理的,这时,要发挥好教师的引导作用,并给学生足够的时间去思考、比较,不要急于在此时的教学中就把学生的思路统一起来,可以在后面的练习中进一步引导学生对两种方法进行比较、优化。
2.探究同分母分数减法
(1)观察课件:哥哥比弟弟多吃了几分之几?
(2)猜一猜:-等于多少?
(3)小组讨论:-等于多少?
(4)汇报算法,思路可能有:
方法1;把一个西瓜平均分成8份,其中的2份比1份多1份,也就是;
方法2:2个减掉1个还剩1个,也就是;
……
教师结合学生的回答用课件演示计算的过程。
(5)讨论:爸爸吃了,同学们想想,他们一家人共吃了这个西瓜的几分之几?可以用几种不同的结果表示?(1,)
【设计意图】通过“他们一家人共吃了这个西瓜的几分之几?”这一问题的讨论,既巩固练习了前面的分数加法,又为后面学生自学1减几分之几这一环节中对于“1”的理解做好了铺垫。
3.探究1减几分之几
(1)自学第97页例3,把你不明白的问题记录下来。
(2)汇报交流时让学生说出怎样想的,是把“1”看作多少来减的?
(3)“1”还可以看成分母是几的分数?请写出几个。
(4)巩固练习(指名让学生板演)
1-1-1-
计算并思考,这几道题中的1分别应该看作多少来计算?
【设计意图】通过练习让学生明确:1在不同的算式中表示的分数不同,意义亦不同。
(三)课堂练习,巩固新知
(1)完成第97页“做一做”第1、2、3题。
(2)完成练习二十一第1、2题。
【设计意图】检查教学效果,了解学生掌握知识的情况,从而对自己的教学活动进行相应的调整,以达到预期的教学目标,为组织后续教学打下基础。
(四)全课总结,升华新认识
(1)通过这节课的学习,你有哪些收获?
(2)在计算同分母分数加减法时,你是怎样计算的?