六年级数学《比的意义和性质》教案

| 收藏本文 下载本文 作者:dessan

以下是小编收集整理的六年级数学《比的意义和性质》教案(共含13篇),仅供参考,欢迎大家阅读。同时,但愿您也能像本文投稿人“dessan”一样,积极向本站投稿分享好文章。

六年级数学《比的意义和性质》教案

篇1:六年级数学《比的意义和性质》教案

六年级数学《比的意义和性质》教案

教学目标

1、加深认识比的意义和基本性质,能说出一个比的具体含义,能比较熟练的应用比的`基本性质。

2、进一步认识求比值与化简比的联系和区别,以及比与相关知识之间的联系与区别。

教学重难点

进一步认识求比值与化简比的联系和区别,以及比与相关知识之间的联系与区别。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 揭示课题

二、基本题练习

三、综合练习

四、课堂小结

五、作业

前两年级课我们学习了什么内容?

这节课,我们来练习比的意义和基本性质。

1、提问:比的意义是什么?比与除数、分数有什么联系?

2、提问:根据比与除法的关系和比值的意义,怎样求比值?

3、提问:比的基本性质是什么?比的基本性质有什么用途?

4、做练习十二题12

5、问:求比值和化简比的依据是什么?有什么区别?

1、做练习十二第13题

问:盐水是怎样配制的?盐水的重量是多少克?

在配制的盐水里盐的重量占几份,水的重量占几份?盐水的重量可以看成几份?

2、做练习十二第15题

问:哪几题的结果是相同的?为什么会相同?

3、口答题(见课件)

这节课练习了什么内容?通过练习你们进一步了解了哪些知识?

做练习十二第14、16题

课后感受

同学们能比较熟练的应用比的基本性质。

篇2:小学六年级数学:《比的意义和基本性质》试题

班级______姓名______

一、细心填写:

1、填写比、除法和分数的关系。

比的'前项

除法

除数

分数

---分数线

分数值

2、又叫做两个数的比。()叫做比值。

3、=:()=()÷()

4、在100克水中加入10克盐,盐和盐水的比是()。

5、男工人数是女工人数的,男、女工人数的比是()。

6、甲数是乙数的4倍,甲、乙两数的比是(),乙数与两数和的比是()。

7、甲数比乙数多,甲数与乙数的比是(),比值是()。

二、求比值:

12:80.4:0.12

5:4.5:0.9

::

0.75:4:

三、解决问题:

1、小明体重40千克,相当于小军的,小华的体重是小军的。小华体重多少千克?

2、计划生产1800个零件,第一天生产了计划的,第二天生产了计划的。还剩下计划的几分之几没生产?还剩下多少个没生产?

篇3:比的基本性质六年级数学上册教案

比的基本性质六年级数学上册教案

教学内容

比的基本性质

教材第50、第51页的内容及练习十一的第4~8题。

教学目标

1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

3、初步渗透事物是普遍联系的辩证唯物主义观点。

重点难点

重点:理解比的基本性质,推导化简比的方法,正确化简比。

难点:正确化简比。

教具学具

练习题投影片。

教学过程

一 导入

1、比与分数、除法的关系。

老师:我们已经学习了比的意义,知道比和分数、除法之间有着密切的联系,哪位同学愿意说说比和分数、除法之间有什么联系呢?

如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。

2、复习分数的基本性质和商不变的规律。

老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?

(指名学生发言)

二 教学实施

1、猜想。

老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。

汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证。

以小组为单位,讨论、验证一下刚才的猜想是否正确。

学生汇报。

3、小结。

经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

板书课题:比的基本性质

4、化简比。

老师:应用比的基本性质,我们可以把比化成最简单的整数比。

出示例1(1)。

老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。

学生反复读几遍。

提问:你怎样理解“最简单的整数比”这个概念?

学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

15∶10=(15÷5)∶(10÷5)=3∶2

180∶120=(180÷60)∶(120÷60)=3∶2

出示例1(2)。

学生尝试把下面各比化成最简单的整数比。

0、75∶2=(0、75×100)∶(2×100)=75∶200=3∶8或(0、75×4)∶(2×4)=3∶8

老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

5、反馈练习。

(1)完成教材第51页的“做一做”,集体订正。

(2)完成教材第53页练习十一的第4题。

提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?

(3)完成教材第53页练习十一的第5题。

(4)完成教材第53页练习十一的第6~8题。

让学生说明理由,注意思维的逻辑性和语言的条理性。

三 课堂作业新设计

1、把下面各比化成最简单的整数比。

四 思维训练参考答案

课堂作业新设计

1、6∶7 3∶1 3∶8 5∶6 7∶5 4∶1 4∶5 10∶1

2、 (1)4∶5 (2)3∶2 (3)7∶4 (4)5∶2

思维训练

板书设计

比的基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简

单的整数比,叫做化简比。

备课参考教材与学情分析

比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想―验证―应用,让学生理解比的基本性质,应用性质化简比。

课堂设计说明

1、运用转化的思想,类推出比的基本性质。

我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。

2、教学中强调观察得出运用比的基本性质来化简比。

根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。

篇4:小学六年级数学《比的基本性质》教案

教学内容:

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

教学目的.:

使学生理解比的基本性质,掌握化简比的方法。

教学过程:

一、复习。

1.除法中的商不变规律是什么?

2.分数的基本性质是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

篇5:小学六年级数学《比的基本性质》教案

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

篇6:小学六年级数学《比的基本性质》教案

一、创设情境,导入新课

1、提问

师:除法、分数和比之间有什么联系?

2.做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

3.导入课题:

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

二、学习新课

1.教学例3比的基本性质。

(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

(4)师:你觉得哪些词语比较重要? 0除外你怎样理解得?

2.教学例4应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比

(1)12:18 (2) (3)1.8:0.09

(1)让学生试做第(1)题

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

(2)化简 (2)

师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

(4)化简(3)1.8:0.09

师:想一想如何化简小数比呢?

让学生独立在书上化简,指名板演

师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

三、巩固练习

1.练一练,填完整

2.做练习十三第5-8题。

3.补充练习

选择

1.1千米∶20千米=( )

(1)1∶20 (2)1000∶20 (3)5∶1

2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )

(1)20∶21 (2)21∶20 (3)7∶10

四、课堂小结

师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

篇7:小学六年级数学《比的基本性质》教案

师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

(4)化简(3)1、8:0、09

师:想一想如何化简小数比呢?

让学生独立在书上化简,指名板演

师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

三、巩固练习

1、练一练,填完整

2、做练习十三第5―8题。

3、补充练习

选择

1、1千米∶20千米=

(1)1∶20 (2)1000∶20 (3)5∶1

2、做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()

(1)20∶21 (2)21∶20 (3)7∶10

四、课堂小结

师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

篇8:小学六年级数学《比的基本性质》教案

教学内容:

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

教学目的:

使学生理解比的基本性质,掌握化简比的方法。

教学过程:

一、复习。

1.除法中的商不变规律是什么?

2.分数的基本性质是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

1.教学比的基本性质。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

篇9:小学六年级数学《比的基本性质》教案

一、教学目标

通过学生的自主探索,理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。让学生积极主动地探索,培养学生获取知识、解决问题的能力。增强学生研究探时的意识,追求创新的精神:

二、教学资源

1.实物投影仪―台。

2.每小组《验证表》一张。

验证表

举例

结论

3.比,除法,分数关系表:

前项相当于

后项相当于

比值相当于

除法

分数

4.卡片若干张。

(1)商不变的规律;(2)分数的基本性质;

(3)比的基本性质。

三、教学实施方案

教学内容:苏教版义教课标教科书数学六年级(上册)70―71页。

教学形式:小组合作,自主探究。

教学流程:创没情境――验证猜想――展示交流――意义构建――巩固拓展。

评价方法:目标评价、师生评价、组际交流评价。

教学重点:理解、掌握比的基本性质。

教学难点:理解比的基本性质中“0除外”的道理。

教学准备:实物投影仪、验证表,卡片等。

四、教学过程

1.创设情境,引发猜想。

目标:

(1)复习旧知,为学生发现问题、产生猜想奠定基础。

(2)启发学生大胆猜测,提出自己的假设。

过程:

(1)复习比和除法、分数的关系,通过填写比和除法、分数的关系表,让学生发现比、除法、分数有很多相似之处?

(2)复习商不变的规律和分数的基本性质。

通过复习,引导学生联想:在除法中有商不变的规律,在分数中有分数的基本性质,那么比有没有类似的基本性质:

提出猜想:

(1)学生讨论比有没有类似的基本性质。让学生提出自己的见解,如:比和分数、除法有很多相似之处;一个比就可以写成分数的形式,看成一个分数,就可以遵循分数的基本性质等。最后得出比的基本性质。

(2)猜想比的基本性质的内容。引导学生根据商不变的规律和分数的基本性质的内容,猜测比的前项和后项同时乘或除以相同的数,比值不变。

2.小组合作,验证猜想。

目标:

(1)引导学生对验证猜想提出各自的想法与途径?

(2)组织实践活动,揭示知识本质,让学生自己获取知识,培养学生主动参与意识。

(3)营造协作学习氛围,组织讨论研究、合作探究,培养学生协作学习意识。

过程:

(1)小组讨论:这个猜想成不成立?是否具有普遍性?用什么方法来验证?

(2)小组代表发言,说出本组思路。

A组:我们想用一个比,用它的前项和后项同时乘或除以相同的数,得到新比,看比值变不变。

B组:我们想用一个比的前项和后项同时乘一个分数或者一个小数,看它的比值变不变。

C组:我们想把不同的比的前项和后项同时乘或除以相同的数,看它们的比值变不变。

通过学生发言,让学生互相启发,产生灵感,对验证猜想的方法进行比较,使自己的实践活动更加具有科学性,更严谨。

小组合作,试着验证:

每个小组根据自己的想法,用一个比或多个比进行验证,对验证结果进行初步总结。填写《验证表》。

3.展示交流,感受过程。

目标:

(1)理清知识脉络,构建良好的认知结构,培养学生获取知识、解决问题的能力。

(2)让学生感受到探究过程,使学生学到科学的研究方法、

(3)培养学生的条理性和语言表达能力。

过程:

(1)用实物投影展示各个小组的《验证表》。

(2)各小组代表发言,本组所得的结论。

(3)老师引导学生比较各组的结论。

(4)引导学生讨沦比的基本性质是否具有普遍性,有没有比的前项和后项同时乘或除以相同的数,比值变了的。如比的前项和后项同时乘0,比值会怎样。

4.意义建构,体验成功。

目标:

(1)通过整理归纳,提高学生的综合概括能力,提高学生的数学素质。

(2)让学生体验成功的快乐,提高学生学习数学的兴趣,增强信心。

过程:

(1)引导学生讨论哪个组的结论比较全面,怎样说更严谨。

(2)集体归纳,板书。

(3)体验成功:我们发现的这个数学规律就叫比的基本性质,许多科学家都是这样提出猜想、实践验证,发现了许多大自然的奥秘,还有许多奥秘需要我们去发现、创造。

5.巩固拓展,灵活运用。

目标:

(1)利用不同形式的练习使学生熟练应用比的基本性质、

(2)培养学生积极探究,勇于创新的精神。

过程:

(1)(出示)把下面各比化成最简单的整数比。(第71页练一练2)

边练习边讨论:怎样运用比的基本性质化简比,怎样化简最快最好。

(2)总结方法:联系旧知,灵活运用。

(3)灵活运用,抢答比赛。

五、教学反思

1.创设情境,让学生产生探究欲望。

苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。所以,应该在课堂教学中创设情境,把问题隐藏在情境之中,形成悬念,引起学生迫不及待地探索和研究。这样不仅能激发学生学习数学的兴趣,同时还能给学生提供自主探索的机会,让学生在自主探索中建构数学知识。如《比的基本性质》一课,传统的教学是:出示一组分数3/4、6/8、9/12,让学生发现3/4:6/8:9/12,接着把分数转化成比3:4=6:8=9:12,归纳出比的基本性质,接着是一层层的巩固练习。这个过程是老师讲,学生听,被动地接受。不说让学生感兴趣,就是对其内容,学生也是一知半解。在应用时,会出现比的前项和后项乘的不是同一个数,甚至会出现前项乘后项的笑话。这种以接受知识为目的教学显然不适应培养时代新人的要求,所以我在设计这节课时,没有采用教材中的例3进行引入,而是让学生先填表格复习比和除法,分数的关系,问学生:通过填这个表你发现厂什么?生:比和分数、除法有很密切的联系,它们很相似:再出示:18÷6=( )÷2=24÷( )、15/20=( )/4=9/( )=( )/6。问:这两题是根据什么规律和性质来做的?生:商不变的规律和分数的基本性质。师引导:在除法中有商不变的规律,在分数中有分数的基本性质,那么比有没有类似的性质呢?通过这样的引导,紧紧抓住了学生的心。他们很想弄清楚:比有没有类似商那样的规律和分数那样的性质,使他们产生强烈的探究欲望。

2.猜想验证,让学生感受探究过程。

在激发学生认知需要和探究欲望后,怎样才能让学生的思维卷入知识发现的过程呢?这时教师要起到引导者的作用,引导学生自由思考,作出各种猜想,对猜想提出验证的方法。然后小组合作从不同的角度验证猜想,最后借助实物投影展示学生的研究思路与成果,通过这一系列的探究性的学习活动,让学生感受探究过程。这样不仅为学生自主发展提供了条件,让学生学到科学探究的方法,还培养了学生主动获取知识的能力、团结协作的精神,同时学生在活动中互相启发,产生灵感,使不同层次的学生都得到相应的发展。

如《比的基本性质》一课中,学生提出:比肯定也有类似除法那样的规律和分数那样的性质。老师引导大家讨论怎样验证。结果A组的意见是:我们想用一个比的前项和后项同时乘或除以相同的数,看它的'比值变不变B组的意见是:我们想用一个比的前项和后项同时乘一个分数或者一个小数,看它的比值变不变。C组的意见是:我们想把不同的比的前项和后项乘或除以相同的数,看它们的比值变不变。老师肯定了大家的这些想法好,要求同学们分组试试。学生反应十分活跃,小组成员分工合作,你写一个比来验证,我写一个比来试试,有的故意把数写得很大,有的用。来乘……几分钟后,学生们争先恐后地拿出自己的验证结果,同时也提出了验证过程中的疑问。

在整个活动过程中,都充分发挥了学生的潜能,让他们根据白己的需要实验验证,让学生感受知识产生和发展的过程,使学生在这个过程中完成新知的建构。

3.整理归纳,让学生体验成功。

归纳是课堂教学的一个重要组成部分,很多知识都可以让学生自己去归纳。通过归纳,能提高学生的综合概括能力,充分发挥学生的主体作用,发掘学生的聪明才智,提高学生的数学素质。

如在《比的基本性质》一课中,把学生验证的结果一一展示后,老师引导学生比较,比的这个特性是否具有普遍性,比的这个特性怎样归纳呢?有的说:比的前项和后项同时乘相同的数,比值不变。有的说:还应该加同时除以相同的数,比值不变。有的说:这还不完整,应加上0除外……这样有效地让学生通过分析、整理、归纳等科学研究方法得出结论,让学生体验到数学学科的严谨性,从而提高学生的分析概括能力、逻辑推 理能力。得出结沦后,告诉学生:你们太聪明了,发现的数学规律叫比的基本性质、学生感到获得了很大成功,信心十足,不仅增强了学习数学的兴趣,更让学生掌握主动获取数学知识的方法,学到主动参与数学实践的本领。

总之,“比的基本性质”是学生学习“商不变的规律”和“分数的基本性质”后安排的教学内容、由于比和分数、除法的关系,很容易让学生联想到比也应该有类似的性质,这为学生发现问题、产生探究欲望奠定了基础。同时由于上述学习内容的铺垫,为学生自主探究“比的基本性质”这一新的学习任务创造了必要条件。所以,我没有沿袭以往的教学思路及教材束缚,而是立足于学生已有的数学知识与经验,用探究性的学习方法,让学生在探究过程中建构新知识,解决新问题,获得新发展。

篇10:小学六年级数学《比的基本性质》教案

一、创设情境,导入新课

1、提问

师:除法、分数和比之间有什么联系?

2、做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

3、导入课题:

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

二、学习新课

1、教学例3比的基本性质。

(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变、

(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?

2、教学例4应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比

(1)12:18(2)(3)1、8:0、09

(1)让学生试做第(1)题

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

篇11:六年级数学《比》教案

单元教学目标:

1、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。

2、在实际情境中,体会化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

单元教材分析:

这部分内容是在学生已经学过分数的意义以及分数与除尘的关系的基础上学习的。本单元学习的主要内容有:生活中的比、比的化简、比的应用。本单元教材编写力图体现以下特点:

1、提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。

2、注重引导学生利用比的意义解决实际问题。

教学课时:12课时

内容

课 时数

生活中的比

比的化简

比的应用

练习三

机动

篇12:六年级数学《比》教案

学材分析

已抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系应该用比,体理解比与除法、分数的关系会引入比的必要性以及比在生活中的广泛存在。

学情分析

学生理解比的意义比较困难。应密切联系学生已有的生活经验和学习经验。掌握求比值的方法。解比的意义,建立比的概念。

学习目标

1、理解的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

导学策略

教学准备

教师活动

学生活动

一、谈话引入

在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们继续学习新的比较方法,比。

二、讲授新课

(一)教学补充例1

一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?

板书:32==23=

1.32表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

2.23表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

3.小结

4.练习

有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

(二)教学例2

例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

1.求的是什么?谁除以谁?也就是谁和谁进行比较?

2.汽车行驶路程和时间的比是100比2表示什么?

3.思考:单价可以说成是谁和谁的比?

4.小结

通过刚才的例子可以看出,

(三)归纳总结

教师板书:两个数相除又叫做两个数的比.

(四)练习

1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是,柳树和杨树棵树的比是()

2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是().

3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是(),青菜和萝卜单价的比是().

(五)比的各部分名称和求比值的方法

1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

例如:3比2记作:3∶2

2比3记作:2∶3

100比2记作:100∶2

2.∶叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

板书:

3.提问:比的前项和后项能随便交换位置吗?为什么?

4.练习:求比值

教师说明:求比值不写单位名称.

(六)比、除法、分数之间的关系(演示课件比、除法、分数的异同)

1.教师提问

(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

(2)为什么要用相当于这个词?能不能用是?

(3)在除法中,除数不能是零,那比的后项呢?

2.比的分数形式

(1)教师:比还有一种表示方法,就是分数形式.例如:

板书:3除以2可以写成2∶3,仍读作2比3

(2)思考:比和分数有什么关系?

三、巩固练习

(一)填空

(三)思考题

四、课堂小结

今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?

五、课后作业

篇13:新课标六年级数学上册《比的意义》教案

新课标六年级数学上册《比的意义》教案

教学内容:

教材第48-49页的内容及相应的“做一做”。

教学目标:

1、理解比的意义,掌握比的读、写及各部分的名称。

2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

教学重点:

理解比的意义,求比值。

教学难点:

理解比和分数、除法之间的关系。

教学过程:

一、创设情境

1、播放“神舟”五号顺利升空课件。

播报:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)

2、提问:我们可以怎样表示它们长和宽的关系呢?

(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。

(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。

3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)

二、自学互动,适时点拨

【活动一】比的意义

学习方式:独立自学、汇报交流

学习任务

1、同类量的比。

(1)启发:除了用已经学过的这些方法来表示长和宽的关系外,我们还可以怎样表示这两个数量之间的关系?

(2)自学课本第48页的内容。

(3)长和宽的比是15比10,宽和长的比10比15。

(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。

2、不同类量的比。

(1)出示数据,列式求飞船的速度:42252÷90。

(2)用比来表示路程和时间的关系。

提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)

(3)提问:路程和时间是不是同类的量?

(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

3、概括比的`意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。

【活动二】比的读写方法和各部分的名称

学习方式:独立自学、汇报交流

学习任务

1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?

2、汇报交流:15 : 10 =15÷10 =3/2

前项 比号 后项 比值

3、比值。

(1)什么是比值?怎么求比值?

(2)比值可以怎样表示?(分数、小数、整数)

(3)讨论:比值和比有什么联系和区别?

【活动三】比与除法、分数的关系

学习方式:小组讨论、汇报交流

学习任务

1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?

区别:除法是一种运算,分数是一种数,比表示两个数的关系。

2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)

三、达标测评

1、完成课本第49页的“做一做”,集体订正。

2、完成第52页练习十一的第1题。

四、课堂小结

这节课我们一起研究了比,回顾一下你有什么收获。

比的意义和基本性质教学反思

小学六年级数学《比的意义》优秀教学教案

五年级数学下册《分数的意义和性质》教案优质

比的意义教案

小学六年级数学比的意义教案优秀范文2020

六年级数学比的教案15篇

六年级上册数学比教案15篇

比和比的性质教学反思

比的基本性质(人教版六年级教案设计)

比和比例的基本性质说课稿

六年级数学《比的意义和性质》教案(精选13篇)

欢迎下载DOC格式的六年级数学《比的意义和性质》教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档