比的基本性质(人教版六年级教案设计)

| 收藏本文 下载本文 作者:meisha

下面小编给大家整理了比的基本性质(人教版六年级教案设计)(共含12篇),供大家阅读参考。同时,但愿您也能像本文投稿人“meisha”一样,积极向本站投稿分享好文章。

比的基本性质(人教版六年级教案设计)

篇1:比的基本性质(人教版六年级教案设计)

教学目标

1.使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质。

2.能够正确地运用比的基本性质把比化成最简单的整数比。

3.通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重点和难点

1.理解比的基本性质。

2.正确运用比的基本性质把比化成最简单的整数比。

教学过程设计

(一)复习准备

1.复习商不变的性质。

(1)谁能很快地直接说出 41÷25的商?

(2)说一说,你是怎样想的?(41÷25=(41×4)÷(25×4)=164÷100=16.4)

(3)你这样做根据的是什么?(商不变的性质)它的内容是什么?

2.复习分数的基本性质。

(1)把下面各分数约分:

(2)通分练习:

(3)我们进行约分和通分根据的是什么?(分数的基本性质)它的内容是什么?

3.求比值的练习。

8∶4=  48∶12=  16∶8=

24∶18=  40∶16=  15∶5=

(二)学习新课

1.导入新课。

我们以前学过商不变的性质和分数的基本性质,联系这两个性质想一想:在比中又有什么规律可循?下面,我们就一起研究研究。

2.概括比的基本性质。

(1)创设情境。

2∶4根据比与除法的关系可以写成2∶4=2÷4,再想想,2∶4等于4∶8吗?你是怎么想的?(2∶4=2÷4=(2×2)∶(4×2)=4÷8=4∶8)

(2)概括比的基本性质。

①小组讨论:看看上面的两个例子,想一想:在比中有什么样的规律?

②概括出比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

强调“同时”、“相同”、“0除外”这几个重点的关键词语。

(3)出示课题,这就是比的基本性质。(板书课题:比的基本性质。)

3.应用比的基本性质化简比。

(1)引出比的基本性质的作用。

例  一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?

请同学回答:有的同学说是45∶40,有的同学把45∶40化简成9∶8。

讨论:一年级和二年级学生人数的比是写成45∶40好呢,还是写成9∶8好?(写成9∶8能使数量间的关系更加简明。)

(2)解释什么是最简单的整数比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

(3)化简比。

应用比的基本性质可以把比化成最简单的整数比。

例1  把下面各比化成最简单的整数比。

这是一个整数比,但不是最简单的整数比,请你在练习本上把它化成最简单的整数比。

讨论:化简整数比的方法是什么?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止。)

这个比的前、后项是什么数?(分数)

18)这里为什么要同乘以18?(使学生清楚地认识到,只要把比的前后项都乘以它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化成最简单的整数比。)

讨论概括:怎样把分数比化成最简单的整数比?(一般先把比的前、后项同时乘以两个分数的分母的最小公倍数,转化为整数比,再化简成最简单的整数比)。

请把1.25∶2化成最简单的整数比。

讨论:如何把小数比化简成最简单的整数比?

④小结;应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?(第一步都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。)

(4)区别化简比和求比值。

①出示练习题:化简下面各比,并求出比值。

填表之后用投影进行订正。

讨论:由于化简比的方法和求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,如8∶12,化简比和求比值的结果都

比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

(三)巩固反馈

1.完成第57页的“做一做”。

把下面各比化成最简单的整数比。

请学生在练习本上独立完成,用投影仪集体订正。

2.完成第59页第6题。

声音在空气中每秒传播340米,有一种喷气式飞机每秒最快飞行578米,写出这种飞机最快的速度同声音速度的比,并化简。

578∶340=17∶10

3.填空:(口答)

(1)85∶51=(85÷(  ))∶(51÷(  ))=5∶3

(四)课堂总结

通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

(五)布置作业

第58页第5题,第59页第7,8题。

课堂教学设计说明

复习准备中,从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样不仅使学生很快地理解并概括出比的基本性质,还深深地受到了事物间存在着内在联系的辩证唯物主义启蒙教育。

对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例1的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

最后巩固练习中的第3题是提高题,要求学生说一说怎么想,使学生能够灵活地运用学过的知识。

篇2:比的基本性质2(人教版六年级教案设计)

教学目标

1.理解比的基本性质.

2.正确应用比的基本性质化简比.

3.培养学生的抽象概括能力,渗透转化的数学思想.

教学重点

理解比的基本性质.

教学难点

正确应用比的基本性质化简比.

教学过程

一、复习引入

(一)复习商不变的性质

1.谁能直接说出60÷25的商?

2.你是怎么想的?

3.根据是什么?内容是什么?

(二)复习分数的基本性质

约分:

通分:

根据是什么?内容是什么?

(三)求比值

3∶2 8∶4 7∶21 27∶9

5∶25  16∶4  24∶5 2∶1

二、讲授新课

我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?

(一)比的基本性质

1.把练习3中8∶4和2∶1这两个比找出来

2.教师提问

这两个比有什么共同点吗?(比值都相等)

这两个比有什么不同点吗?(前项和后项都不同)

我们可以说8∶4和2∶1相等吗?

你是怎么想的?

(1)根据比与除法的关系(商不变的性质)

8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1

(2)根据比与分数的关系(分数基本性质)

8∶4=  =  =  =2∶1

3.学生尝试概括比的基本性质(演示课件“比的基本性质”)

(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

板书课题:比的基本性质

(2)教师强调:“同时”“相同”“0除外”几个关键词

(二)化简比

1.练习引入

学校有8个篮球,12个排球,篮球和排球个数的比是多少?

(1)篮球和排球的个数比是8∶12

(2)篮球和排球的个数比是2∶3

讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?

2.最简单的整数比

最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.

3.化简比

例1.把下面各比化成最简单的整数比.

(1)14∶21=(14÷7)∶(21÷7)=2∶3

讨论:化简整数比的方法是什么?

(2)  ∶  =(  ×18)∶(  ×18)=3∶4

讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?

(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8

1.25∶2=(1.25×4)∶(2×4)=5∶8(更好)

讨论:怎样把小数比化成最简单的整数比?

4.小结化简比的方法

(1)都化成整数比

(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.

(三)区别化简比和求比值

1.练习

比 最简单的整数比 比值

25∶100

4.2∶1.4

1∶

2.讨论:化简比和求比值的区别是什么?

区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.

例如:25∶100化简比的结果是  ,读作1比4,求比值的结果是  ,读作四分之一.

三、巩固练习

(一)化简比

6∶10   ∶  0.3∶0.4

12∶21   ∶2 0.25∶1

(二)选择

1.1千米∶20千米=(     )

(1)1∶20    (2)1000∶20    (3)5∶1

2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是(     )

(1)20∶21   (2)21∶20      (3)7∶10

(三)思考题

篇3:《比的基本性质》 说课稿(人教版六年级上册)

P45《比的基本性质》

一、学情分析

新课标中指出“小学数学教学必须从学生的生活实际出发,设计富有情趣和意义的活动,使他们从周围熟悉的事物中学习数学,运用数学。”其实就是让学生带着已有的生活经验、认知经验进入课堂,参与学习。在认知经验中,学生已经理解了除法的意义与基本性质、分数的意义与基本性质,以及分数与除法的关系等知识,掌握了分数乘、除法的计算方法,会解答分数乘、除法实际问题且理解了比的意义。有了这些知识的储备,学生只要进行知识的迁移、类比就可以自主探究出比的基本性质。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。

二、教材处理

根据教材的编排和学生已有的知识经验,我对本段教材的教学作出以下两点处理:

1、比的基本性质的探究

原教材联系比和除法、分数关系,通过“想一想”启发学生找出比中有什么样的规律?然后概括比的基本性质。我认为这样的编排是一种纯数理之间的推理,是符号之间的运算,欠缺生活气息,难以激发学生的探究热情。为此,我创设了一个生活情境,让学生在解决生活问题的过程中激发探究欲望,不着痕迹地完成了“比的基本性质”的探究过程。

2、例1的教学

例题由两道题组成。第(1)题采用“神州五号”的题材。此素材有利于渗透情感价值观的教育,且蕴含了相似变换的数学思想,是非常好的编排。第(2)题给出的两个比,我认为过于单调,且没能涵盖比的各种呈现形式,为体现课堂的动态生成,教学资源的丰富性,我采用了开放性的教学内容,让学生在学习第(1)题的基础上自主举例练习化简整数与分数、分数与分数、整数与小数、小数与小数、分数与小数等各种比。

以上两点处理均基于数学教育的生活化、数学资源的多元化的现代数学教育教学理念进行个性处理的,并以此提升学生在课堂教学中的主体地位,体现课堂教学的动态生成。

三、教学目标

①知识目标:使学生领悟并理解比的基本性质。

②能力目标:运用比的基本性质,让学生通过尝试来化简并探讨出不同类型比的多种化简方法,从而培养学生的应用能力和创新能力。

③情感目标:感受生活中处处有数学,数学就在我们身边。培养学生积极、自主的学习探究兴趣,使每个学生都尝到成功的喜悦。

四、教学策略

1、坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

2、小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

3、“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让数学课堂真正成为学生活动的、创造的课堂。

五、教学程序设计

(一)创设生活情境,以激发学生的探索欲望

上课开始,我询问学生:“同学们喜欢喝果珍吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的果珍,这不小明的妈妈给小明准备了三杯果珍,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?多媒体课件演示:第一杯100毫升的水,10克果珍;第二杯200毫升的水,20克果珍;第三杯400毫升的水,40克果珍.同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。

(设计意图是:因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)

(二)引导学生发现规律,总结比的基本性质

同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。(屏幕出示文字内容。)我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。

(设计意图是:先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)

接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。

(设计意图是:让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)

(三)理解最简整数比

通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的整数比”这个概念?然后达成共识:(1)是一个比;(2)前项、后项必须是整数,不能是分数或小数;(3)前项与后项互质。

(设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)

(四)教学例1

1、教学第(1)题

(1)出示例1的第(1)题。

(2)让学生阅读例题,说说图片中的事件,并按要求列出两个比,然后尝试运用比的基本性质把两个比化成两个最简单的整数比。

(3)师生点评,小结。

(4)提出问题:两面旗的长、宽不一样,但化成最简单整数比后是一样的,你发现了什么?

2、谈话:以上我们学习了利用比的基本性质化简比的知识,但比的呈现形式有很多,你能不能自己举例出不同的比,并进行化简呢?

(1)要求:分小组进行探究活动,每小组分别举出整数与分数、分数与分数、整数与小数、小数与小数、分数与小数的一个例,并在小组内完成探究练习。

(2)小组汇报探究成果。

(3)简单小结各种比的化简办法。

(这样的设计充分体现了学生的主体地位,把课堂交给学生,让课堂教学资源多元化,让学生在提出问题、解决问题中提升学习能力,在探究活动中体会到学习数学的乐趣)

(五)应用与拓展

1、完成教材46页的“做一做”。

2、判断。

(1)比的前项和后项都乘5,比值不变。

(2)比的前项扩大2倍,要使比值不变,后项应除以2。( )

(3):12化成最简整数比是3:48。( )

3、完成教材48页第6题。

(设计意图:层次性训练中,提高学生知识技能,发展学生个性。第1题是基础性练习,让学生巩固比的基本性质的应用。第2题是判断题,设计目的是加深学生对比的基本性质的理解。第3题使用讨论形式,通过全班的辩论,提高了学生解决问题的能力。)

篇4:比的基本性质

教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

教学目的:使学生理解比的基本性质,掌握化简比的方法。

教学过程 :

一、复习。

1.除法中的商不变规律是什么?

2.分数的基本性质是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

篇5:比的基本性质

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)

问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)

(2)

问:这是一道分数比,怎样才能使它转化成整数比?(引

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)

问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的'前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)

四、作业 。

1.练习十四第6、10题

2.一列火车15小时行驶1200千米。

(1)        写出行驶的路程和时间的比,并化成最简单的整数比。

(2)        求出这个比的比值,再说出这个比值的含义是什么?

篇6:比例的意义和基本性质(一)(人教版六年级教案设计)

教学目标

1.使学生理解并掌握比例的意义和基本性质.

2.认识比例的各部分的名称.

教学重点

比例的意义和基本性质.

教学难点

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学过程

一、复习准备.

(一)教师提问复习.

1.什么叫做比?

2.什么叫做比值?

(二)求下面各比的比值.

12∶16   4.5∶2.7 10∶6

教师提问:上面哪些比的比值相等?

(三)教师小结

4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

用等号连接.

教师板书:4.5∶2.7=10∶6

二、新授教学.

(一)比例的意义(课件演示:比例的意义)

例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

时间(时) 2 5

路程(千米) 80 200

1.教师提问:从上表中可以看到,这辆汽车,

第一次所行驶的路程和时间的比是几比几?

第二次所行驶的路程和时间的比是几比几?

这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

80∶2=200∶5或  .

3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

教师提问:什么叫做比例?组成比例的关键是什么?

板书:表示两个比相等的式子叫做比例.

关键:两个比相等

4.练习

下面哪组中的两个比可以组成比例?把组成的比例写出来.

(1)6∶10和9∶15  (2)20∶5和1∶4

(3)  和  (4)0.6∶0.2和

5.填空

(1)如果两个比的比值相等,那么这两个比就( )比例.

(2)一个比例,等号左边的比和等号右边的比一定是( )的.

(二)比例的基本性质(课件演示:比例的基本性质)

1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

2.练习:指出下面比例的外项和内项.

4.5∶2.7=10∶6 6∶10=9∶15

3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以80∶2=200∶5为例,指名来说明.

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

4.学生自己任选两三个比例,计算出它的外项积和内项积.

5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

板书课题:加上“和基本性质”,使课题完整.

6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

教师板书:

7.练习

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

6∶3和8∶5   0.2∶2.5和4∶50

三、课堂小结.

这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

四、巩固练习.

(一)说一说比和比例有什么区别.

(二)填空.

在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

根据比例的基本性质可以写成( )×( )=( )×( ).

(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

1.6∶9和9∶12  2.1.4∶2和7∶10

3.0.5∶0.2和     4.  和7.5∶1

(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

篇7:分数的基本性质(人教版五年级教案设计)

教学目标

(一)理解和掌握分数的基本性质。

(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点和难点

(一)理解和掌握分数的基本性质。

(二)归纳分数的基本性质,运用性质转化分数。

教学用具

教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

学具:每位同学准备三张相同的长方形纸片。

教学过程设计

(一)复习准备

1.口答:(投影片)

根据 120÷30=4,不用计算直接说出结果:

(120×3)÷(30×3)=(  );(120÷10)÷(30÷10)=(  )。

2.说一说依据什么可以不用计算直接得出商的?

3.说出商不变的性质。

教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

(二)学习新课

1.分数基本性质。

(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

教师:请比较这三个分数的大小?

你根据什么说这三个分数相等?

学生口答后老师用等号连结上面三个分数。

(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

请同学观察,思考和讨论。投影出思考题:

如何?

结果如何?

变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)

的变化规律是什么?(学生小组讨论后汇报)教师板书:

教师:试说一说这时分子、分母的变化规律?

学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)

(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

学生口述分数基本性质的内容,老师把板书补充完整。

教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。

请学生打开书读两遍。

教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)

用学生自己的例题说明后,用投影片再说明:

口答填空:(投影片)

2.把一个分数化成大小相等,而分子或分母是指定数的分数。

分子应怎样变化?谁随着谁变?

化?谁随着谁变?

教师:上面两个分数的变化依据是什么?

(2)口答练习:(学生口答,老师板书。)

教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

(三)巩固反馈

1.口答:(投影片)

2.在括号里填上“=”或“≠”。(投影)

3.在(  )里填上适当的数。(投影)

4.判断正误,并说明理由。

(四)课堂总结与课后作业

1.分数基本性质。

2.把分数化成大小相同而分子或分母是指定数的分数的方法。

3.作业:课本108页练习二十三,1,2,4,5。

课堂教学设计说明

分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

新课教学分为两部分。

第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

板书设计

篇8:六年级数学《比基本性质》评课稿

本节课的教学内容是一节概念课,老师本着“扎实、有效”的原则,整节课思路清晰,环环相扣,师生互动性良好,突出数学概念的形成过程,重视学生获取知识的思维过程。她关注数学的本质,凸显“数学味”,较好的体现了自主体验教学新理念。通过听武老师的课使我学到了很多知识:

值得我学习的第一个地方,就是武老师的微笑。在这节课中,武老师给我印象最深的地方就属她迷人的微笑了。我想这也是这节课成功的原因之一吧。因为老师的微笑对学生来说至关重要,它可以给学生以自信,使课堂自始至终都处于和谐的气氛当中,使学生的思维一直处于积极的状态,我觉得这样的课堂才能培养出多方面的人才。从今往后,我一定要向武老师学习,面带微笑的走进课堂,面带微笑的帮孩子们解决难题,争取与微笑做朋友形影不离。

值得我学习的第二个地方,就是武老师简洁有力的语言。武老师的课堂用语简洁有力,不罗嗦,该强调的强调,重点突出,一语中的。一比较我的课堂语言,显得随意、不规范,苍白无力。在课堂上,我总是怕学生不会讲得很多,但是学生根本就抓不到重点,对知识的记忆很模糊。所以,在语言的表达上,我还要多多的下功夫。比如,在提问的时候该怎样正确引导?在对学生的回答,怎样去做评价?……

值得我学习的第三个地方是透彻分析,层层深入。在解读教材上,武老师分析得很透彻,她不仅对例题做分析,还把课后的练习都解读了。对于一些学生比较难懂的题型,在课前老师做了处理。所以这节课武老师上得很是精彩。每次的备课,虽然我也有备例题,备练习题,但是都没有这样来分析,学生学习时候有没有吃力的地方,需不需要进行调整或者处理。所以,在学生做练习的时候,就出现很多问题,学生不会把知识拿来运用,也是因为他们不知道该怎么去运用。因此,在解读教材上,还要下一点功夫,反复的斟酌,处理好知识间的衔接。

除了上面提到的,武老师还有很多值得我学习的地方。武老师的扎实的基本功都不是一朝一夕就可以完成的,需要长期的培养。同时从低段开始就应该培养学生的数学思维,严谨的数学语言表达。同时也是要求我们老师的'语言要更加的斟酌。结合新的教学要求来设计自己的课堂,让每一个孩子都是在快乐中接受知识,运用知识。

篇9:六年级数学《比基本性质》评课稿

今天听了冯老师执教的《比的基本性质》,冯老师课堂上快节奏的教学,学生精神饱满的学习,给我留下了深刻的印象,教师作为课堂的引领者,冯老师做到了引导者的驾驭,掌控课堂,带领学生在快节奏,高效率的氛围中有效学习,收获颇丰。

1、《比例的基本性质》作为一节认识比例后的概念教学课,冯老师能够抓住概念教学的特点,扎实有效的开展教学,整节课思路清晰,环环相扣,师生互动性良好,突出数学概念的形成过程,重视学生获取知识的思维过程。

2、数学语言的严谨性、严密性是数学特有的,在课堂中,冯老师自己的语言的语简洁有力,不罗嗦,而对于学生的语言更是强调到位,让全体学生认真倾听,纠正数学语言中不足、不准的地方,集体强调,如对于一个分数形式的比的读法,比如对于两个比判断过程中的表述问题,冯老师都强调到位,一语中的。

3、课堂练习设计有针对性,有梯度,层层深入,教师能够吃透教材,把握考试的重点,将考试的知识要点在课堂上贯穿,这体现在教师设计的小组竞赛题上,体现在教学新课后的运用上,教师在让学生回答问题时,能够对学生的表现及时给与指正,反馈及时。练习的效果、练习的质量都非常高。

4、利用积分评价,调动了学生的积极性,特别是后面的抽取分值的方法,点燃了学生的学习热情,更将本节课的学习知识得到了延续,在教学中,冯老师还注重了对学生激励性评价,使得学生学习气氛很好。

5、课堂环节设计的题目吸引学生的眼球,有种数学中有语文,学科不分家的感觉,这些颇有新意的设计,“众人拾柴火焰高”,“试手气,展才气”等,既温馨,又很好的激发了学生学习的兴趣。

篇10:六年级数学《比基本性质》评课稿

今天听了冯老师的这节公开课后,给我的触动很深,她扎实的教学功底,严谨的教风很值得我们学习,本节课的亮点有:

1、复习题的设计抓住了新旧知识的连结点,为概念的学习作好铺垫。

本课中,教师抓住了新旧知识的联系点点,设计了铺垫练习,为实现知识的正迁移作好准备。先是用填空题的训练,给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系,说一说这样做的依据是什么。这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律。

2、很好的运用了猜测——验证——应用的教育理念。

首先让学生提出课本中的问题:联系比和除法、分数的关系想一想,在比中有什么相应的规律?然后先让学生说出个人的猜想,再自己举例验证,或者四人小组分工合作举例验证。通过交流,使学生看到各种角度(除法与比,分数与比)、各种方式(同乘,同除)的验证情况。接着得到了比的基本性质的内容,教师通过找关键词的方式让学生在头脑中形成清晰的表象,通过活学活用的练习。

(1)4:5的前项扩大2倍,要使比值不变,比的后项应该

(2)、如果3:2的后项变成10,要使比值不变,比的前项应该为()这两题及时巩固了新知,非常合理。最后学生会发现学习逼得基本性质的作用是为了化简比,进而学习如何化简比的方法,顺理成章。

3、练习形式多样,扎实有效。

既有随着知识学习的反馈练习,也有集中练习,既有口答的练习,又有动笔完成的训练,真正起到了练习的效果。

建议:给予学困生思考的时间,放慢语速就更好了。

篇11:数的整除分数、小数的基本性质(人教版六年级教案设计)

教学目标

1.使学生对数的整除的有关概念掌握得更加系统、牢固.

2.进一步弄清各概念之间的联系与区别.

3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

4.掌握分数、小数的基本性质.

教学重点

通过对主要概念进行整理和复习,深化理解,形成知识网络.

教学难点

弄清概念间的联系和区别,理解易混淆的概念.

教学步骤

一、铺垫孕伏.

教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

二、探究新知.

(一)建立知识网络.【演示课件“数的整除”】

1.思考:哪个概念是最基本的概念?并说一说概念的内容.

反馈练习:

在12÷3=4    4÷8=0.5     2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有(    )个;被除数能整除除数的有(    )个.

教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

2.说出与整除关系最密切的概念,并说一说概念的内容.

反馈练习:下面的说法对不对,为什么?

因为15÷5=3,所以15是倍数,5是约数.     (     )

因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数.   (     )

明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

3.教师提问:

由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

根据一个数所含约数的个数的不同,还可以得到什么概念?

互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

4.讨论互质数与质数之间有什么区别?

互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

5.教师提问:

如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

只有什么数才能做质因数?

什么叫做分解质因数?

只有什么数才能分解质因数?

6.教师提问:

谁还记得,能被2、5、3整除的数各有什么特征?

由一个数能不能被2整除,又可以得到什么概念?

(二)比较方法.

1.练习:求16和24的最大公约数和最小公倍数.

2.思考:求最大公约数和最小公倍数有什么联系和区别?

(三)分数、小数的基本性质.

1.教师提问:

分数的基本性质是什么?

小数的基本性质是什么?

2.练习.

(1)想一想,小数点移动位置,小数大小会发生什么变化?

(2)

(3)下面这组数有什么特点?它们之间有什么规律?

0.108   1.08   10.8   108   1080

三、全课小结.

这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的

联系和区别,并且强化了对知识的运用.

四、随堂练习.

1.判断下面的说法是不是正确,并说明理由.

(1)一个数的约数都比这个数的倍数小.

篇12:比和比例2(人教版六年级教案设计)

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷  100×1%

0.25×40   2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

比 前项 ∶(比号) 后项 比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :2

4.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

(3)解比例:  ∶  =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法 结果

求比值 根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数

化简比 根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外) 是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72    ∶3

(2)化简比.

∶    0.7∶0.25

(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是  )

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成  ,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成反比例.

(3)如果  =8  ,  和  成( )比例.

如果  =  ,  和  成( )比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

比的基本性质说课稿

比的基本性质教学反思

比和比例的基本性质说课稿

比例的意义和基本性质的教案设计

分教的基本性质教学反思

比的意义和基本性质教学反思

圆柱的体积(人教新课标六年级教案设计)

《等腰三角形性质》教案设计

分数的基本性质说课稿冀教版

六年级下册比例的基本性质说课稿

比的基本性质(人教版六年级教案设计)(精选12篇)

欢迎下载DOC格式的比的基本性质(人教版六年级教案设计),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档