《三角形中位线》教案

| 收藏本文 下载本文 作者:edward1014

下面是小编整理的《三角形中位线》教案(共含15篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“edward1014”一样,积极向本站投稿分享好文章。

《三角形中位线》教案

篇1:《三角形中位线》教案

《三角形中位线》教案

一、教学目标: 1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算. 2.掌握添加辅助线解题的技巧. 3.提高学生分析问题,解决问题的能力,增强学习兴趣. 二、教学方法 探究式自主学习:以学生的自主探究为主,教师加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准 三、教学内容p教材重、难点分析: 三角形中位线定理的学习是继学习习近平行四边形与平行线等分线段定理后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中位线定理,最后是利用中位线定理解答例一所给的问题. 在今后的学习中要经常运用这个定理解决有关直线平行和线段倍分等问题. 本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和线段倍分等问题. 四、教学媒体的选择和设计 通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。 以实际生活为出发点,激发学生的思维从而引出本节课的内容.通过媒体动态的'效果引发学生的思路,猜想出结论,并且从添加辅助线的角度思考开始,分析条件,得出证明的方法,帮助学生用多种方法解题.再借助多媒体帮助学生分析题意,学生自己动手尝试利用三角形中位线解决实际问题. 特点是:打破以前数学课上老师一言谈的现象,学生能够积极参与学习,并且在媒体的作用下,学生的思维可以得到充分的展示,媒体动态的演示教会学生探究知识的方法:猜想―归纳―研究―结论.同时运用多媒体大大增强了课堂的容量,这是一般教学所难以实现的. 五、教学步骤 (一)导入新课: 同学们,在前面我们研究了平行线等分线段定理以及两条推论.下面请一些同学根据大屏幕上的图形说出定理的题设p结论.请大家注意推论(2)的题设p结论复习这些知识.我们把推论(2)的平行条件与结论互换以下是否会成立,这就是这节课需要我们共同来研究的问题。 (二)学习新课 1.三角形中位线概念,它与三角形中线有什么区别? 2.三角形中位线性质 3. 三角形中位线性质证明 4. 三角形中位线定理 5.解决疑难: ①我想测量一条湖面的宽度,能不能用三角形中位线知识设计一个方案,并说明这样做的理由. ②请问前面切蛋糕方法是否合理,为什么? 6.自己动手练习加深理解 (三)课堂小结: 三角形中位线定理的结论有两个方面: ①证明平行;②证明倍份关系. (四)布置作业 六、教学反思 1. 先从学生已经学过的知识入手,为进一步学习奠定基础,同时也为学生的知识体系进行一次简单的梳理 2. 通过图画带来的问题引发学生的思考,增加学生参与性,更加的体现数学来源于生活,生活中充满数学知识, 3. 教师是学生学习的组织者和参与者,在本节课中,动画的演示调动了学生的思维,为打开解题思路提供了一把钥匙,而不是生硬 4. 的传授知识. 5. 计算机辅助教学使信息量扩大了,课堂容量增大了。能够有效提高教学效果,提高学生的综合能力。      

篇2:三角形中位线教案设计

三角形中位线教案设计

三角形中位线教案设计

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的`一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使 ,连结CF,由 可得AD FC.

(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

(证明过程略)

例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC.

∴ (三角形中位线定理).

同理,

∴GH EF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业

教材P188中1(2)、4、7

篇3:初中人教版三角形中位线教案

教学建议

知识结构

重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

教法建议

1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

教学设计示例

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点 :三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使 ,连结CF,由 可得AD FC.

(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

(证明过程略)

例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC.

∴ (三角形中位线定理).

同理,

∴GH EF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业

教材P188中1(2)、4、7

九、板书设计

篇4:初中人教版三角形中位线教案

如图,已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2

方法一:过C作AB的平行线交DE的延长线于G点。

∵CG∥AD

∴∠A=∠ACG

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)

∴△ADE≌△CGE (A.S.A)

∴AD=CG(全等三角形对应边相等)

∵D为AB中点

∴AD=BD

∴BD=CG

又∵BD∥CG

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)

∴DG∥BC且DG=BC

∴DE=DG/2=BC/2

∴三角形的中位线定理成立.

方法二:相似法:

∵D是AB中点

∴AD:AB=1:2

∵E是AC中点

∴AE:AC=1:2

又∵∠A=∠A

∴△ADE∽△ABC

∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C

∴BC=2DE,BC∥DE

方法三:坐标法:

设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)

则一条边长为 :根号(x2-x1)^2+(y2-y1)^2

另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)

这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2

最后化简时将x3,y3消掉正好中位线长为其对应边长的一半

方法4:

延长DE到点G,使EG=DE,连接CG

∵点E是AC中点

∴AE=CE

∵AE=CE、∠AED=∠CEG、DE=GE

∴△ADE≌△CGE (S.A.S)

∴AD=CG、∠G=∠ADE

∵D为AB中点

∴AD=BD

∴BD=CG

∵点D在边AB上

∴DB∥CG

∴BCGD是平行四边形

∴DE=DG/2=BC/2

∴三角形的中位线定理成立[2]

方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3]

∴DE//BC且DE=BC/2

篇5:数学教案-三角形的中位线

教学目标

1.理解三角形中位线的概念,掌握它的性质及初步应用.

2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.

教学重点与难点

重点是三角形中位线的性质定理.

难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.

教学过程 设计

一、联想,提出问题.

1.(投影)复习近平行线等分线段定理及两个推论(图4-89).

(1)请同学叙述定理及推论的内容.

(2)用数学表态式叙述图4-89(c)中的结论.

已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.

篇6:《平行四边形-三角形的中位线》教案设计

《平行四边形-三角形的中位线》教案设计

教学过程

一、课堂引入

1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?

2.你能说说平行四边形性质与判定的用途吗?

(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)

3.创设情境

实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)

图中有几个平行四边形?你是如何判断的?

二、例习题分析

例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.

分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的'对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.

方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)

方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

定义:连接三角形两边中点的线段叫做三角形的中位线.

【思考】:

(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?

(2)三角形的中位线与第三边有怎样的关系?

(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。

篇7:22.3三角形的中位线教案冀教版

22.3三角形的中位线教案冀教版

22.3三角形的中位线教案冀教版教学目标:   申柱芳  知识与技能 理解并掌握三角形中位线的概念、性质,会利用性质解决有关问题. 过程与方法 经历探索三角形中位线性质的过程,感受三角形与四边形的联系,培养学生分析问题和解决问题的能力. 情感态度价值观 通过对问题的探索研究,培养学生大胆猜想、合理论证的科学精神 教学重点、难点 : 重点:探索并运用三角形中位线的性质 难点:从三角形中位线性质的探索过程中抽象出三角形中位线的性质 教学方法:活动――观察――探索相结合 通过自己实际操作从图形中观察出结论并利用结论解决问题。 教学过程:     导入新课   你还记得吗?以前学过的三角形的重要线段有哪些?   A 三角形的角平分线、高线、中线   它们各有几条?3条 观察与思考   F E 在三角形ABC中,D是中点,AD是三角形 ABC的.中线     C D   B E 、F是AB、AC 的中点,EF是三角形的中位线   1.如何用语言表述三角形的中位线? 2.一个三角形有几条中位线?请指出来 1、定义 连接三角形两边中点的线段叫做三角形的中位线           一个三角形有3条中位线 观察猜想 三角形中位线是连结三角形两边中点的线段,那么它与第三边具有怎样的数量关系和位置关系呢?如图: DE为△ABC的中位线,DE与BC具有怎样的数量关系和位置关系呢? 做一做 方法一:1、、取AB、AC的中点D、E,连接DE 2、量一量DE与BC的长度,∠ADE和∠B的度数 3、猜一猜:线段DE与BC的大小关系,位置关系 方法二:1、剪一个三角形记为△ABC; 2、分别取AB、AC的中点D、E,连接DE; 3、沿DE将△ABC剪成两部分,将△ADE绕点E旋转180°,得四边形BCFD,如图下图   探索推证 四边形DBCF是平行四边形吗?如果是,那么DE和BC之间的位置关系和数量关系如何? 结果:DE∥BC且DE=1/2 BC 结论:三角形的中位的性质 三角形的中位线平行于第三边,并且等于它的一半.     A     D F   B  C   E 例题讲解:如下图,在△ABC中,D、E、F分别是AB、BC、AC的中点,AC=12,BC=16,求四边形DECF的周长?   解:(略)         练习1.如图1:在△ABC中,DE是中位线   (1)若∠ADE=60°,  则∠B=  度,为什么?(2)若BC=8cm,则DE=  cm,为什么?   2.如图2:在△ABC中,D、E、F分别是各边中点,AB=6cm,AC=8cm ,BC=10cm,  则△DEF的周长= cm 小结:本节你学到了什么? 作业:教材68页2题 教 学 反 思 本节课的内容是三角形中位线定理,在讲课过程中我注重启发引导学生经过探索、猜想得到结论后再去证明,注重引导学生用不同的方法探索三角形中位线定理,开阔了学生的视野,培养了学生的思维能力,而且在授课过程中尽可能创设一些问题情境,为学生提供自主探索发现的空间,然后再去证明,从而使推理成为探索活动的自然延续和必要发展,让学生经历“猜想―探索――发现―-推理”的过程,体会合情推理与演绎推理在获得结论中各发挥的作用,并且注重培养学生的合作交流共同研讨的习惯.   教学过程的不足之处是整个教学过程前后联系不够紧凑,学生在证明思路和方法上理解的不够透彻,并且在辅助线的制作上出现思维停滞,学生对老师的依赖心理过重,自主探索的勇气欠佳,在解题的步骤中说理过程不充分,在以后的教学过程中还有待于完善和培养.   总的来说,本节课既有成功之处,又有欠缺不足,在三维目标的指导下,我将继续努力,培养学生自主探索,合作交流的好习惯,真正达到师生互动,融会贯通.

篇8:三角形的中位线

教学建议

知识结构

重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的.情况对比有一定的难度.

教法建议

1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

教学设计示例

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

篇9:三角形的中位线

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使 ,连结CF,由 可得AD FC.

(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

(证明过程略)

例  求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC.

篇10:三角形的中位线

同理,

∴GH EF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业

教材P188中1(2)、4、7

九、板书设计

篇11: 三角形的中位线的

一、设计思路

(一)教材分析

本课时所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历“探索―发现―猜想―证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。

(二)学情分析

本班学生基础知识比较扎实,接受新知识的意识较强,对于本章有关平行四边形的性质和判定的内容掌握较好,但知识迁移能力较差,数学思想方法运用不够灵活。因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。

三)教学目标

1、知识目标

篇12: 三角形的中位线的

2)掌握三角形中位线定理的证明和有关应用。

2、能力目标

1)经历“探索―发现―猜想―证明”的过程,进一步发展推理论证能力。

2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。

3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。

3、情感目标

通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。

(四)教学重点与难点

教学重点:三角形中位线的概念与三角形中位线定理的证明。

教学难点:三角形中位线定理的多种证明。

(五)教学方法与学法指导

对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。

(六)教具和学具的准备

教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。

学具:三角形纸片、剪刀、刻度尺、量角器。

二、教学过程

1、一道趣题――课堂因你而和谐

问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)

(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)

学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.

如图中,将△ade绕e点沿顺(逆)时针方向旋转180°可得平行四边形adfe。

问题:你有办法验证吗?

2、一种实验――课堂因你而生动

学生的验证方法较多,其中较为典型的方法如下:

生1:沿de、df、ef将画在纸上的△abc剪开,看四个三角形能否重合。

生2:分别测量四个三角形的三边长度,判断是否可利用“sss”来判定三角形全等。

生3:分别测量四个三角形对应的边及角,判断是否可用“sas、asa或aas”判定全等。

引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?

3、一种探索――课堂因你而鲜活

师:把连接三角形两边中点的线段叫做三角形的中位线.(板书)

问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?

(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)

学生的结果如下:de∥bc,df∥ac,ef∥ab,ae=ec,bf=fc,bd=ad,

△ade≌△dbf≌△efc≌△def,de=bc,df=ac,ef=ab……

猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书)

师:如何证明这个猜想的命题呢?

生:先将文字问题转化为几何问题然后证明。

已知:de是abc的中位线,求证:de//bc、de=bc。

学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。

(学生积极讨论,得出几种常用方法,大致思路如下)

生1:延长de到f使ef=de,连接cf

由△ade≌△cfe(sas)

得adfc从而bdfc

所以,四边形dbcf为平行四边形

得dfbc

可得debc(板书)

生2:将ade绕e点沿顺(逆)时针方向旋转180°,使得点a与点c重合,

即ade≌cfe,

可得bdcf,

得平行四边形dbcf

得dfbc可得debc

生3:延长de到f使de=ef,连接af、cf、cd,可得adcf

得dbcf

得dfbc

可得debc

生4:利用△ade∽△abc且相似比为1:2

可得debc

师:还有其它不同方法吗?

(学生面面相觑,学生5举手发言)

4、一种创新――课堂因你而美丽

生5:过点d作df//bc交ac于点f

则adf∽abc

可得

又e是ac中点

可得

因此ae=af

即e点与f点重合

所以de//bc且de=bc

(笔者事先只局限于思考利用平行四边形及三角形相似的性质解决问题,没想到学生的发言如此精彩,为整个课堂添加了不少亮色。)

师:很好,好极了!这种证法在数学中叫做同一法,连老师也没想到。太棒了,大家要向生5学习,用变化的、动态的、创新的观点来看问题,努力去寻找更好更简捷的方法。

5、一种思考――课堂因你而添彩

问题:三角形的中位线与中线有什么区别与联系呢?

容易得出如下事实:都是三角形内部与边的中点有关的`线段.但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分.(学生交流、探索、思考、验证)

6、一种照应――课堂因你而完整

问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃)

7、一种应用――课堂因你而升华

做一做:任意一个四边形,将其四边的中点依次连接起来所得新四边形的形状有什么特征?

(学生积极思考发言,师生共同完成此题目的最常见解法。)

已知:四边形abcd,点e、f、g、h

分别是四边的中点,求证:四边形efgh是平行四边形。

证明:连结ac

∵e、f分别是ab、bc的中点,

∴ef是abc的中位线,

∴ef∥ac且ef=ac,

同理可得:gh∥ac且gh=ac,

∴ efgh,

∴四边形efgh为平行四边形。(板书)

其它解法由学生口述完成。

8、一种引申――课堂因你而让人回味无穷

问题:如果将上例中的“任意四边形”改为“平行四边形、矩形、菱形、正方形”,结论又会怎么样呢?(学生作为作业完成。)

9、一句总结――课堂因你而彰显无穷魅力

学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业)

三、板书设计

篇13: 三角形的中位线的

1、问题

2、三角形中位线定义

3、三角形中位线定理证明

4、做一做

5、练习

6、小结

四、课后反思

本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索―发现―猜想―证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。

篇14:三角形中位线课件

教材依据:北师大版九年级数学上册第三章证明(三)第一节平行四边形第二课时三角形的中位线。

指导思想:教师必须树立正确的学生观,摆正教师和学生在教育过程中的位置,正确处理教师与学生的关系,主体与主导的有机结合,融为一体。

设计理念:义务教育阶段的数学应体现基础性、普及性和发展性,所以我的设计理念是引导学生进行探究式的学习活动,通过动手操作,发现规律,把自主探索作为数学学习的重要方式,让学生个性得到发展,让学生认识到数学的应用性,乐于投入数学学习中。

教材分析: 三角形的中位线是几何学的主要标志之一,是初中数学的重要组成部分。在当代社会中,三角形的中位线的应用非常广泛,它是人们参加社会生活,从事劳动和学习,研究现代科学技术必不可少的工具,他的内容,思想,方法和语言已广泛渗入自然科学,成为现代文化的重要组成部分。而且三角形的中位线的性质也学习梯形中位线的基础,为四边形的中点问题服务。

学情分析: 本班学生基础知识不是很扎实,因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。

教学目标:

知识与能力目标: 理解并掌握三角形中位线的概念,性质,会利用三角形中位线的性质解决有关问题。培养学生解决问题的`能力和空间思维能力。

过程与方法目标:1,经历探索三角形性质的过程,让学生动手实践,自主探索,合作交流。

2,通过对问题的探索研究,培养学生大胆猜想。合理论证的科学精神,培养思维的灵活性。

情感与评价目标:通过学生的团结协作,交流,培养学生友好相处的感情。体会数学学科的价值,建立正确的数学学习观。

教学的重点,难点:探索并运用三角形中位线的性质,是本课的重点。从学生年龄特点考虑,证明三角形中位线性质定理的辅助线的添法和性质的灵活应用,运用转化思想解决有关问题是本课的难点。破这个难点,必须理解三角形中位线与中线的区别这个关键问题,正确应用已有的知识,发现并寻找比较的方法。

教学方法:要“授之以鱼”更要“授之以渔”。数学教学不仅要教给学生数学知识,而且还要提示获取知识的思维过程,发展思维能力,是培养能力的核心。对于三角形中位线定理的引入采用发现法 ,在教师的引导下,学生通过探索,猜测等自主探究,合作交流的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。

教具和学具的准备: 教具:多媒体,投影仪,三角形纸片,剪刀。学具:三角形纸片,剪刀,刻度尺,量角器。

教学过程:本节课分为六个环节:设景激趣,引入新课——引导探究,获得新知——拼图活动,探索定理——巩固练习,感悟新知——小结归纳,当堂检测, 作业布置

一. 创设问题情景,激发学习兴趣。

问题:你能将任意一个三角形分成四个全等的三角形吗?这四个三角形能拼凑成一个平行四边形吗?

设计意图:这一问题激发了学生的学习兴趣,学生积极主动的加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来。

学生想出了这样的方法:顺次连接三角形没两边的中点,看上去就得到了四个全等的三角形。

二. 动手实践,探究新知。

1.探究三角形中位线的定义。

问题:你有办法验证吗?

学生的验证方法较多,其中较为典型的方法

生1:沿DE,EF,DF将画在纸上的三角形ABC剪开,看四个三角形能否重合。

生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。

生3:……

师:多媒体课件展示重合法。

引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?

师:把连接三角形两边中点的线段叫做三角形的中位线。(板书)

2.探究三角形中位线定理。

问题:三角形的中位线与第三边有怎样的关系呢?在前面的图中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)

学生的猜想结果:三角形的中位线平行于第三边,且等于第三边的一半、(板书)

师:如何证明这个猜想的命题呢?

生:先将文字命题转化为几何问题,然后证明。

已知:如图,DE是△ABC的 中位线

求证:DE‖BC,DE=1/2 BC

学生思考后教师启发:要证明两直线平行,可以利用“三线八角”的有关能容进行转化,而要证明一条线段等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。

(学生积极讨论,得出几种常用方法,大致思路如下)

生1:延长DE至F,使EF=DE,连接CF,由△ADE≌△CFE,得AD=CF,从而BD=CF,所以,四边形DBCF为平行四边形。得DE‖BC,DE=1/2 BC (一名学生板演,其他学生在练习本上书写过程,幻灯片展示。)

生2:延长DE到F,使EF=DE,利用对角线互相平分的四边形是平行四边形,可得AD=FC,AD‖FC,由此可得到结论。

生3:过点C作CF‖AB,与DE延长线交于F,通过证△ADE≌△CFE,可得AD=FC,AD‖ FC,由此得结论。

师:还有其它不同方法吗?

(学生面面相觑,学生4举手发言)

生4:利用△ADE∽△ABC且相似比为1:2,

师:很好,大家要像这位同学学习,用变化的,动态的,创新的观点来看问题,努力寻找更好更简捷的方法。

这个结论为我们以后解决平行问题,线段的2倍或1/2提供了新的思路。

设计意图:一题引导学生从多个角度证明,丰富学生的联想,开拓了学生的思维

三,学以致用。

师:请同学们自己画一个三角形,画出他的中线,中位线,(一生板演,师巡视指导区别)。待学生完成后,进行变式提问。

问:一个三角形中最多可以画几条中线,中位线。说出他们的联系和区别。(学生交流,探索,思考,验证。)

生:都是三角形内部与边的中点有关的线段,但中位线平行于第三边且等于第三边的一半,三角形的一条中线把三角形分成两个面积相等的小三角形。

问:你能利用三角形中位线地理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃)

做一做:任意一个四边形,将其四边的中点依次连接起来所得新四边形的形状有特征?

当学生不会添辅助线时,教师再作启发,这么多的中点我们会想到什么呢?四边形的问题又可以转化成什么图形的问题呢?使学生能够连结对角线。(学生积极思考发言,师生共同完成此题目的最常见的证法。) 设计意图:学以致用的体验,使学生感受到数学学习是有趣的、丰富的、有价值的.

拓展训练:如果将上例中的“任意四边形”改为“平行四边形,矩形,菱形。正方形”结论又会怎么样呢?(学生课后讨论)

四. 本节小结。

本节课你有什么收获?(小组讨论后,学生总结)

1、回顾知识

2、总结方法

设计意图:这是一次组织与情感的交流,浓缩知识点,突出内容本质,渗透思想、方法.培养自我反馈,自主发展的意识。

五. 当堂检测: 如图, △ ABC中,D,E,F分别是AB,BC,AC的中点,若AB=10cm,AC=6cm,求四边形ADEF的周长。

设计意图:当堂检测实现了知识向能力的转化,让学生主动用所学知识和方法寻求解决问题的策略.达到学以致用提高课堂效率。 六,布置作业。

书面作业:教科书94页习题3.3 1.2.3.4

活动作业:利用“剪。拼。”的方法将任意一个三角形纸片变成一个与原三角形面积相等的平行四边形纸片,并证明你的做法的合理性。

板书设计:三角形的中位线

1. 问题

2. 三角形中位线定义

3. 三角形中位线定理证明

4. 做一做

篇15:三角形中位线优秀课件

三角形中位线优秀课件

教学目标:

1.掌握梯形中位线的概念和梯形中位线定理

2.能够应用梯形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力和分析能力

3.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

一、情景创设

怎样将一张梯形硬纸片剪成两部分,使分成的两部分能拼成一个三角形?

操作:

(1)剪一个梯形,记为梯形ABCD;

(2)分别取AB、CD的中点M、N,连接MN;

(3)沿AN将梯形剪成两部分,并将△ADN绕点N按顺时针方向旋转180到△ECN的位置,得△ABE,如右图。

讨论:在上图中,MN与BE有怎样的位置关系和数量关系?为什么?

二、合作交流

1.梯形中位线定义:

2.现在我们来研究梯形中位线有什么性质.

如右图所示:MN是梯形 ABCD的中位线,引导学生回答下列问题:

MN与梯形的两底边AD、BC有怎样的.位置关系和数量关系?为什么?

梯形中位线定理:

定理符号语言表达:∵

3.归纳总结出梯形的又一个面积公式:

S 梯= (a+b)h 设中位线长为l ,则l = (a+b), S=l*h

三、例题解析

例1.如图,梯子各横木条互相平行,且A1A2=A2A3=A3A4=A4A5,B1B2=B2B3=B3B4=B4B5。已知横木条A1B1=48cm,A2B2=44cm,求横木条A3B3、A4B4、A5B5的长

练习:

①一个梯形的上底长4 cm,下底长6 cm,则其中位线长为 ;

②一个梯形的上底长10 cm,中位线长16 cm,则其下底长为 ;

③已知梯形的中位线长为6 cm,高为8 cm,则该梯形的面积为________ ;

④已知等腰梯形的周长为80 cm,中位线与腰长相等,则它的中位线长 .

例2:已知:如图在梯形ABCD中,AD∥BC,

AB=AD+BC,P为CD的中点,求证:AP:

已知横木条A1B1=48cm,A2B2=44cm,求横木条A3B3、A4B4、A5B5的长

练习:

①一个梯形的上底长4 cm,下底长6 cm,则其中位线长为 ;

②一个梯形的上底长10 cm,中位线长16 cm,则其下底长为 ;

③已知梯形的中位线长为6 cm,高为8 cm,则该梯形的面积为________ ;

④已知等腰梯形的周长为80 cm,中位线与腰长相等,则它的中位线长 .

例2:已知:如图在梯形ABCD中,AD∥BC,

AB=AD+BC,P为CD的中点,求证:APBP

四、拓展练习

1.已知,在梯形ABCD中,AD∥BC,对角线ACBD,且AC =12,BD=9,则此梯形的中位线长是 ( )

A.10B.C. D.12

2.已知,等腰梯形ABCD中,两条对角线AC、BD互相垂直,中位线EF长为8cm,求它的高CH.

三角形的中位线

《平行四边形-三角形的中位线》教案设计

三角形教案

《生活中的三角形》大班教案

全等三角形教案

初中数学三角形教案

三角形的性质教案

初二数学三角形教案

幼儿园小班教案《三角形》

三角形认识教案四年级

《三角形中位线》教案(精选15篇)

欢迎下载DOC格式的《三角形中位线》教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档