平行线证明题

| 收藏本文 下载本文 作者:在不在不在

以下是小编帮大家整理的平行线证明题(共含9篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“在不在不在”一样,积极向本站投稿分享好文章。

平行线证明题

篇1:平行线证明题

平行线证明题

平行线证明题

直线AB和直线CD平行

因为,∠AEF=∠EFD.所以AB平行于CD

内错角相等,两直线平行

EM与FN平行因为EM是∠AEF的平分线,FN是∠EFD的平分线,所以角MEF=1/2角AEF,角EFN=1/2角EFD

因为,∠AEF=∠EFD,所以角MEF=角EFN

所以EM与FN平行,内错角相等,两直线平行

2

第五章 相交线与平行线试卷

一、填空题:

1、平面内两条直线的位置关系可能是 或 。

2、“两直线平行,同位角相等”的题设是 ,结论是 。

3、∠A和∠B是邻补角,且∠A比∠B大200,则∠A= 度,∠B= 度。

4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=400,则∠BOD=

0。

5、如图2,如果AB‖CD,那么∠B+∠F+∠E+∠D= 0。

6、如图3,图中ABCD- 是一个正方体,则图中与BC所在的直线平行的直线有 条。

7、如图4,直线 ‖ ,且∠1=280,∠2=500,则∠ACB= 0。

8、如图5,若A是直线DE上一点,且BC‖DE,则∠2+∠4+∠5= 0。

9、在同一平面内,如果直线 ‖ , ‖ ,则 与 的位置关系是 。

10、如图6,∠ABC=1200,∠BCD=850,AB‖ED,则∠CDE 0。

二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的`括号内

11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是( )

A、700 B、600 C、500 D、400

12、已知:如图8,下列条件中,不能判断直线 ‖ 的是( )

A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=1800

13、如图9,已知AB‖CD,HI‖FG,EF⊥CD于F,∠1=400,那么∠EHI=( )

A、400 B、450 C、500 D、550

14、一个角的两边分别平行于另一个角的两边,则这两个角( )

A、相等 B、相等或互补 C、互补 D、不能确定

15、下列语句中,是假命题的个数是( )

①过点P作直线BC的垂线;②延长线段MN;③直线没有延长线;④射线有延长线。

A、0个 B、1个 C、2个 D、3个

16、两条直线被第三条直线所截,则( )

A、同位角相等 B、内错角相等

C、同旁内角互补 D、以上结论都不对

17、如图10,AB‖CD,则( )

A、∠BAD+∠BCD=1800 B、∠ABC+∠BAD=1800

C、∠ABC+∠BCD=1800 D、∠ABC+∠ADC=1800

18、如图11,∠ABC=900,BD⊥AC,下列关系式中不一定成立的是( )

A、AB>AD B、AC>BC C、BD+CD>BC D、CD>BD

19、如图12,下面给出四个判断:①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁内角;④∠1和∠4是内错角。其中错误的是( )

A、①② B、①②③ C、②④ D、③④

三、完成下面的证明推理过程,并在括号里填上根据

21、已知,如图13,CD平分∠ACB,DE‖BC,∠AED=820。求∠EDC的度数。

证明:∵DE‖BC(已知)

∴∠ACB=∠AED( )

∠EDC=∠DCB( )

又∵CD平分∠ACB(已知)

∴∠DCB= ∠ACB( )

又∵∠AED=820(已知)

∴∠ACB=820( )

∴∠DCB= =410( )

∴∠EDC=410( )

22、如图14,已知AOB为直线,OC平分∠BOD,EO⊥OC于O。试说明:OE平分∠AOD。

解:∵AOB是直线(已知)

∴∠BOC+∠COD+∠DOE+∠EOA=1800( )

又∵EO⊥OC于O(已知)

∴∠COD+∠DOE=900( )

∴∠BOC+∠EOA=900( )

又∵OC平分∠BOD(已知)

∴∠BOC=∠COD( )

∴∠DOE=∠EOA( )

∴OE平分∠AOD( )

四、解答题:

23、已知,如图16,AB‖CD,GH是相交于直线AB、EF的直线,且∠1+∠2=1800。试说明:CD‖EF。

24、如图18,已知AB‖CD,∠A=600,∠ECD=1200。求∠ECA的度数。

五、探索题(第27、28题各4分,本大题共8分)

25、如图19,已知AB‖DE,∠ABC=800,∠CDE=1400。请你探索出一种(只须一种)添加辅助线求出∠BCD度数的方法,并求出∠BCD的度数。

26、阅读下面的材料,并完成后面提出的问题。

(1)已知,如图20,AB‖DF,请你探究一下∠BCF与∠B、∠F的数量有何关系,并说明理由。

(2)在图20中,当点C向左移动到图21所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?

(3)在图20中,当点C向上移动到图22所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?

(4)在图20中,当点C向下移动到图23所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?

分析与探究的过程如下:

在图20中,过点C作CE‖AB

∵CE‖AB(作图)

AB‖DF(已知)

∴AB‖EC‖DF(平行于同一条直线的两条直线平行)

∴∠B+∠1=∠F+∠2=1800(两直线平行,同旁内角互补)

∴∠B+∠1+∠2+∠F=3600(等式的性质)

即∠BCF+∠B+∠F=3600

在图21中,过点C作CE‖AB

∵CE‖AB(作图)

AB‖DF(已知)

∴AB‖EC‖DF(平行于同一条直线的两条直线平行)

∴∠B=∠1,∠F=∠2(两直线平行,内错角相等)

∴∠B+∠F=∠1+∠2(等式的性质)

即∠BCF=∠B+∠F

直接写出第(3)小题的结论: (不须证明)。

由上面的探索过程可知,点C的位置不同,∠BCF与∠B、∠F的数量关系就不同,请你仿照前面的推理过程,自己完成第(4)小题的推理过程。

篇2:初一平行线证明题

初一平行线证明题

初一平行线证明题

用反证法

A平面垂直与一条直线,

设平面和直线的交点为P

B平面垂直与一条直线,

设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形 PQR

PR垂直PQ QR垂直PQ

没有这样的三角形。因为三角形的内角和为180

所以 A一定平行于B

证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行 则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾 所以假使不成立 所以b‖c 由同位角相等,两直线平行,可推出: 内错角相等,两直线平行。 同旁内角互补,两直线平行。 因为 a‖b,a‖c, 所以 b‖c (平行公理的推论)

2

“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

一、怎样证明两直线平行 证明两直线平行的常用定理(性质)有: 1.两直线平行的'判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C 认六一值!小人�晗�叱的 一试勺洲洲川JL ZE一B /(一、图月一飞 /匕一|求且它们到该直线的距离相等,则两直线平行. 例1(南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(20泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc

(1)根据定义。证明两个平面没有公共点。

由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。

(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。

(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

2. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面

与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。

3. 两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。

因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。

1. 两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:

(1)平行―没有公共点;

(2) 相交―有无数个公共点,且这些公共点的集合是一条直线。

注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。

2. 两个平面平行的判定定理表述为:

4. 两个平面平行具有如下性质:

(1) 两个平行平面中,一个平面内的直线必平行于另一个平面。

简述为:“若面面平行,则线面平行”。

(2) 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

简述为:“若面面平行,则线线平行”。

(3) 如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。

(4) 夹在两个平行平面间的平行线段相等

2

用反证法

A平面垂直与一条直线,

设平面和直线的交点为P

B平面垂直与一条直线,

设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形 PQR

PR垂直PQ QR垂直PQ

没有这样的三角形。因为三角形的内角和为180

所以 A一定平行于B

篇3:平行线的性质证明题

平行线的性质证明题

平行线的性质证明题

这是判定平行线

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单的说成:

1.同位角相等两直线平行

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

也可以简单的说成:

2.内错角相等两直线平行

3.同旁内角相等两直线平行

这个是平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

也可以简单的说成:

1.两直线平行,同位角相等

2.两直线平行,内错角相等

3.两直线平行,同旁内角互补

2

已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有①②

①②

(填入序号即可).考点:平行线的性质.分析:此题属于文字证明题,首先画出图,根据图写出已知求证,然后证明,用到的知识由一条直线截两条平行直线所得的同位角相等与对顶角相等,故可求得答案.解答:解:如图:已知:AB∥CD,

求证:∠2=∠3.

证明:∵AB∥CD,

∴∠1=∠2,(一条直线截两条平行直线所得的同位角相等)

∵∠1=∠3,(对顶角相等)

∴∠2=∠3.

故用的基本事实有①②.

3

本节是在学生掌握了“探索直线平行的条件”和“平行线的特征” 后的一节巩固和提高的综合习题课,怎样区分平行线性质和判定,是教学中的`重点和难点。

引例:(从实际情景出发,激发学生的求知欲)

探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关。如图所示的是探照灯的纵剖面,从位于E点的灯泡发出的两束光线EA、EC经灯碗反射以后平行射出。

试探索∠AEC与∠ EAB、∠ECD之间的关系,并说明理由。

你能把这个实际问题转化为数学问题吗?

例题1(一题多证):已知AB∥CD,

探索三个拐角∠E与∠A,∠C之间的关系

(E在AB与CD之间且向内凹)

※ 本题的难点在引导学生添加辅助线构造三线八角及如何利用已知条件AB∥CD。

添加辅助线的方法有以下四种:

证法一:过点E作MF∥AB

∴∠AEM=∠A

又∵AB∥CD

∴EF∥CD

∴∠MFC=∠C

又∠AEC=∠AEM+∠MEC

∴∠AEC=∠A+∠C

证法二:延长AE交AB于F

∵AB∥CD

∴∠A=∠AFC

又∠AEC=∠C+∠AFC

∴∠AEC=∠A+∠C

证法三:延长CE交AB于F

(略,与证法二类似)

证法四:连接AC

∵AB∥CD

∴∠BAC+∠ACD=180°

即∠BAE+∠EAC+∠ACE+∠ECD=180°

又∠EAC+∠ACE+∠AEC=180°

∴∠AEC=∠BAE+∠ECD

※ 通过一题多证,加深了学生对平行线的特征的理解和运用。

例题2(一题多变) 已知AB∥CD,

如果改变E点与AB、CD的位置关系,且∠E、∠A、∠C依然存在,有哪几种情况?请画出图形,并证明

图1中结论,∠AEC+∠A+∠C=360°

证:过点E作EF∥AB

∵AB∥CD

∴EF∥CD

∴∠A+∠AEF=180°,∠FEC+∠C=180°

∴∠A+∠AEF+∠FEC+∠C=360°

即∠AEC+∠A+∠C=360°

图2中结论,∠AEC=∠C-∠A

证:过点E作EF∥AB

∵AB∥CD

∴EF∥CD

∴∠FEA+∠A=180°

∠FEC+∠C=180°

∴∠FEA-∠FEC=∠C-∠A

即∠AEC=∠C-∠A

图3中结论,∠AEC=∠A-∠C

证:过点E作EF∥AB

∵AB∥CD

∴EF∥CD

∴∠FEA+∠A=180°

∠FEC+∠C=180°

∴∠FEC-∠FEA=∠A-∠C

即∠AEC=∠A-∠C

例题3(一题多变)将例1和例2的条件和结论对换,以上结论都成立重点练习近平行线的性质和判断 (证明过程略)

图形条件结论∠AEC=∠A+∠CAB∥CD∠AEC+∠A+∠C=360°AB∥CD∠AEC=∠C-∠AAB∥CD∠AEC=∠A-∠CAB∥CD拓展延伸

观察以下二个图形,这些拐角之间的关系有什么规律?

提示:分别过E1,E2,E3……En作AB的平行线即可证得

※ 结论:向左凸出的角的和=向左凸出的角的和

篇4:平行线的判定证明题

平行线的判定证明题

平行线的判定证明题

1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。 (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。按这个判定,绝对没错。这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的'结果一定是对的。

2

平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

平行线的性质:在同一平面内永不相交的两条直线叫做平行线。平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

3

光学原理。

延长GE角CD于Q

因为∠2=∠3,所以AB∥CD

由AB∥CD可得∠1=∠GQD

又∠1=∠4

所以∠4=∠GQD

所以GQ∥FH 即:GE∥FH

因为∠2=∠3

所以AB∥CD

所以角CFE=角FEB

所以大角HFE=大角FEG

所以HF∥GE

4

)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;

(2)根据AB∥CD,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥BC,EF⊥BC(已知)

∴∠EFB=∠ADB=90°(垂直的定义)

∴EF∥AD(同位角相等,两直线平行)(2分)

∴∠2=∠BAD(两直线平行,同位角相等)(3分)

∵∠1=∠2,(已知)

∴∠1=∠BAD(等量代换)

∴AB∥DG.(内错角相等,两直线平行)(4分)

(2)判断:BA平分∠EBF(1分)

证明:∵∠1:∠2:∠3=1:2:3

∴可设∠1=k,∠2=2k,∠3=3k(k>0)

∵AB∥CD

∴∠2+∠3=180°(2分)

∴2k+3k=180°

∴k=36°

∴∠1=36°,∠2=72°(4分)

∴∠ABE=72°(平角定义)

∴∠2=∠ABE

∴BA平分∠EBF(角平分线定义).(5分)

篇5:相交线平行线证明题

相交线平行线证明题

相交线平行线证明题

由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。

如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。

由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。

不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,

第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的.曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。

因为三角形ABE当中AE是斜边,所以很容易得到 :

曲线AE >线段AE > AB=2

第二:E在AB或者AD上的情况,同样只考虑在AB上,

也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

曲线AE= 曲线AF +曲线EF > 线段AF +线段EF

三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE >AB = 2

其实,有需要的时候,我们可以把AE的最小值算出来的,

在这里我就不罗嗦拉

2

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)

3

第二:E在AB或者AD上的情况,同样只考虑在AB上,

也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

曲线AE= 曲线AF +曲线EF > 线段AF +线段EF

三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE >AB = 2

其实,有需要的时候,我们可以把AE的最小值算出来的,

在这里我就不罗嗦拉

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出”因为“,”所以:,在写证明过程中,将因为和所以改成三个点的样子)

篇6:证明题格式

证明题格式

证明题格式

把已知的作为条件 因为 (已知的内容)

因为条件得出的结论 所以 (因为已知知道的东西)

顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项

1 当 xx 时,满足 。。 是以xx为条件,做出答案。。

2 试探究 。。。。。。。。 是以。。。。。。。。。为条件,做出答案

【需要证的】

∵【从题目已知条件找】(已知)

∴【从上一步推结论】(定理)

……(写上你所找的已知条件然后推出结论进行证明,最好“∴”后面都标上所根据的定理)

∴【最终所证明的】

就是不知道怎么区分这两种证明格式:

1 当 时,满足 。。 并证明

回答时好像要把该满足的内容当做条件证明

2 试探究 。。。。。。。。同上

怎么回答时就要自己在草稿本上算出当 时,然后把它作为条件 得到满足 的结论

2

1 当 xx 时,满足 。。 是以xx为条件,做出答案。。

2 试探究 。。。。。。。。 是以。。。。。。。。。为条件,做出答案

3

把已知的作为条件 因为 (已知的'内容)

因为条件得出的结论 所以 (因为已知知道的东西)

顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 尽管问我吧 谢谢..............

4

格式就按照你的想法写就行。要说的是,不少证明题是可以“骗分”的。假如有一道题是要求证某三角形的形状,你知道是等边三角形,到不会算,那你就可以利用等边三角形的特性,随便写。多多益善,只要不是错的。老师改卷时一般先看结果,结果对的话,只要过程没有很明显毛病就会得到大部分分数。就是是被看出是错的,因为你写的特性没错。老师也不会给你零分。

试论推理格式与数学证明方法孙宗明摘要本文以命题真值代数的基本知识为依据,阐述五种主要的数学证明方法:演绎法、完全归纳法、反证法、半反证法、数学归纳法。关键词推理,推理格式,数学证明本文假定熟知命题真值代数的基本知识.本文所使用的符号是标准的,见【川.1

1 当 xx 时,满足 。。 是以xx为条件,做出答案。。

2 试探究 。。。。。。。。 是以。。。。。。。。。为条件,做出答案

3

把已知的作为条件 因为 (已知的内容)

因为条件得出的结论 所以 (因为已知知道的东西)

顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项

1 当 xx 时,满足 。。 是以xx为条件,做出答案。。

2 试探究 。。。。。。。。 是以。。。。。。。。。为条件,做出答案

3

把已知的作为条件 因为 (已知的内容)

因为条件得出的结论 所以 (因为已知知道的东西)

顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 尽管问我吧 谢谢..............

篇7:平行线

两条平行线

两条平行线在数学中被认定为是永远都不能相交的,可把它在现实中深入以下呢?我觉得是可以相交的,就好象我和我的他,以前也是两条平行线,我们虽然在同一个学校上课,但我不认识他,他不认识我,或许我们还会像“向左走向右”里所发生的那样,我刚从这里走过他马上也从那里经过,我从桥上过他从桥下过.

或许是老天注定的,我在学术报告厅看英语演讲比赛,他明明就在我的.背后和同学打闹可我们就是谁也没向谁说话,谁也没发现谁,我再次去了那里看英语演讲比赛的决赛,他也进入了决赛,但他是最后一个,我也因为有事而没看完就走了,或许那时真的注定我和他不能相识,注定我们不能很早的相爱。

后来为了过计算机二级我和同学去了图书馆看书,他为了考研也去了那里,好东张西望的我看见了他,他也看见了我,不好意思的我忙埋头看书了,晚上再去的时候好象是上天注定的要我们相识,他做在了我的对面,我们真的相识了,为了不影响别人看书我们用写纸条的方式互通了姓名和电话,还谈了许多其他的话题,至尽那纸条他还保留着,他说那是我们爱的旅程的开始,我要好好的保留着。

其实我们爱的旅程是起于我答应了他陪他星期天去口语角,去教堂,<后来他问我为什么要答应他的要求,我说我是想去教堂看看,说真的我现在都不知道我为什么当时要答应他,难道我那时就对他产生了感觉>.真是天公不做美,刚去了口语角就下雨了,他带我去了民族风情园,我们坐在秋千上第一次和他一起看圣经,雨越下越大我们也是越来越冷,但我们谁都不想走,谁都不想让这种觉消失,我们一直坐到天快黑了,该走了才不情愿的回学校了。就这样他什么也没说就把我给骗了,我们在一起了。

就这样我们一起看书,一起吃饭,一起感谢那天的大雨,是那天的大雨让我们相爱,让我们的心近了,我们怀着感恩的相爱了,希望上帝能让我们永远在一起不管贫穷,不管富贵,不管疾病,都要永远在一起,,谁也不离弃谁。

两条平行线总有他相交的一天,只要我们有耐心

篇8:平行线

教学目标

1.认识平行线,初步了解平行线的性质,学会用直尺和三角板画平行线.

2.培养学生操作的初步技能.

3.渗透分类的思想,透过现象看本质的观点.

教学重点

理解平行线的概念和性质.

教学难点

1.理解“同一平面”.

2.会用三角板和直尺画平行线.

教学过程

一、导入  新课.

1.教师谈话:前面我们学习了两条直线互相垂直的位置关系.这节课我们继续研究同一平面内两条直线的位置关系.(板书:同一平面  两条直线)

2.学生摆小棒.

利用手里的小棒,每根小棒代表一条直线,每两根为一组,请你用这些小棒摆一摆,看看在同一平面内两条直线的位置关系你能摆出几种情况.两个同学一组可以互相合作、互相商量.

二、探究新知.

(一)教学平行线的概念.

1.出示下列图形.

2.讨论:你能根据它们的位置关系给它们分分类吗?说出分类的理由.

3.持不同分类方法的同学进行辩论.

4.教师小结:表面上看起来不相交,如果把两条直线无限延长后相交于一点,看来今后不能先看表面现象,要看到其实质.

5.教师讲解:

这两组直线表面不相交,延长后也不相交,这才是真正的不相交,这就是我们今天学习的平行线.(板书课题:平行线)

6.学生尝试概括:什么是平行线?

7.教师出示长方体:

教师提问:这两条直线延长后相交吗?它们是平行线吗?

8.师生进一步概括平行线的定义(给重点处加标记)

学生讨论:平行线应具备哪几个条件?

9.播放视频“平行线举例”.

10.出示练习:下面各图中哪些是平行线;哪些不是?

(二)教学平行线的性质.

1.出示图形:

教师提问:你们所说的宽度是指哪一条线段?(板书:平行线间的距离)

2.教师小结:两条平行线间的距离处处相等,这是平行线的一个重要性质,这一特性在生活中有广泛的应用.

3.实践操作.

(1)利用若干小棒摆,变换不同位置、方向,使它们互相平行.

(2)小组合作:利用两根皮筋,使它们互相平行、两个小组合作,使其两两平行.

三、画平行线.

1.学生自学:平行线的画法(见第133页),并尝试画出一组平行线.

2.演示视频“平行线画法”.

3.教师小结平行线画法:靠紧、画线、平移、画线.

4.探索与尝试:你还有其他画平行线的.方法吗?

四、质疑小结.

1.让学生看书并提出疑问,组织学生解疑.

2.提问:通过今天的学习,你都学会了什么?

小结:①定义:在同一平面内,不相交的两条直线叫做平行线.

②性质:两条平行线间的距离处处相等.

③平行线画法:靠紧、画线、平移、画线.

五、布置作业 .

完成第134页第1题.

检验下面的各组直线,哪组是平行线,哪组不是平行线?

完成第134页第2题.

检验下面每个图形中哪两条线段是平行的.

完成P134页第3题.

用直尺和三角板在练习本上画两条平行线.

4.判断.

①永不相交的两条直线叫做平行线(    )

②在同一平面内的两条直线叫做平行线.(    )

③在同一平面内的两条直线不相交,就一定互相平行.(    )

④在同一平面内,不相交的两条线叫做平行线.(    )

六、拓展练习.

和1号棱平行的有哪些棱?还有哪些棱互相平行?

板书设计

探究活动

摆长方形或正方形

活动目的

巩固垂直概念

学生准备

火柴棍(一盒 )

活动过程

按老师要求摆长方形或正方形,看谁摆的快、规范.

①用4根,摆一个正方形

②用6根,摆一个长方形

③用10根,摆一个长方形

④用12根,摆一个正方形

画场地

活动目的

1.巩固平行线的画法.

2.学会应用平行线的知识解决实际问题.

3.培养学生应用数学的意识.

活动要求

在操场上画一个立定跳远的场地,同学们分组,可以为每个组画一个场地,比比看哪一组画出的最标准.(形如下图)

篇9:平行线

我们是永不相交的两条平行线,虽行走在各自的生活轨迹上,但只一声鼓励就能相互取暖;我们是永不相交的两条平行线,我享受着这种距离的幸福,你感受着这种无言的关爱;我们是永不相交的两条平行线,你的光亮照亮我前方的道路,我的话语温暖你初冬的早晨;我们是永不相交的两条平行线,即使无法点燃相遇时满天灿烂火,但是星月为伴的夜晚也是另一种浪漫;我们是永不相交的两条平行线,但请你记住----平凡的生活里也有不朽的真情,陌生的人群里也有相知的朋友,现实的世界里也有太多的遗憾,熟悉的朋友里也有难找的知音;我们是永不相交的两条平行线,虽然相互对视,但却永不相交,只正因我们是永不相交的两天平行线。

有时想想我们来是两个世界的人,就像两条平行线一样永远不可能相交,但是在幂幂中却好像有一双手在推着我们,让相遇在一齐。

当初,我们的缘分刚刚好,相遇了。不知是年少的稚气,还是我的沉默寡言,我们并没有太多的交流。到之后才发现,这,是个多么大的遗憾。

我离开了,离开了你,从那儿以后才发现,原来我们之间还存在着一种东西——友谊,而且是那么地深厚。渐渐地,我会关注着你,向你倾诉着自己的喜怒哀乐。这,似乎已成习惯。每当向你诉说之后,心中都有一种释然。嘴角微扬,这不是自嘲,而是由衷的微笑。

或许是命运,或许是缘分,高中的我们又被安排在了同一所学校。但是,我发现,你变了,我们都变了。尽管如此,我们的友谊并未改变,或是更加深厚了。

一次无意的聊天中,你说:“我们,就像随风回旋的落叶,不可跨越,也不会后退�。顿时觉得酸酸地,眼眶有着些许辣意。难道,即使我们以前一齐奋勇向前,到最后彼此也仅是两条平行线吗?即使是平行线,也不能够有例外,交织在一齐吗?

到最后我发现我输了,输给了时刻,输给了你。如果,能够回到当初,我不再沉默寡言,毅然留下,这一切是不是都会改变。如果,我不曾改变,仍是原来的那个我,是不是就不存在那所谓的“观察期”。

如果有如果,如果又没有如果……你那直接而又无情的回答与警告就像是块巨大的标示牌——你输了!宣判着我的”死刑”!

有时候,在心里一再微笑着:我们仍停留在时刻是原处,但是这以前的一切早已被洪流无声地卷走。而我却呆呆地站在原地,天真地认为从自己背后走远的她仍处在原地,和自己一样……原来,两条平行线,要么持续相对距离,一向延续;要么改变路线,相互交织在一齐;再要么,背道而驰,永不交集。而你想要的是相对距离,也不想失去,哪怕这失去仅有千分之一,万分之一的几率。

或许,我该庆幸,我们仍是平行线,有着我们深厚友谊的奠基,并没有背道而驰,形同陌路。

那,我该恨吗?还是感激?那所谓的平行线。

抛物线与平行线的区别是,两条抛物线有相交的.可能,但相交后便行同陌路。而两条平行线永远不会相遇。人生就像一条直线,或许是两条平行线,永远不会相交,又或者不平行,只相交于那一点,就再也不会相交。也许我们以前是抛物线,但是此刻以致以后,我们就是永不相交的平行线。我们会选取他们的生活方式,你有你人生道路的选取,我们的生活轨迹就像两条平行线,不知道谁以后会延展的更长,更好。但唯一知道的是,我们将不再会有交集。

有人说,人生总有许多意外,两条平行线也可能会有交汇的一天。在这个陌生的城市中,无助地寻找一个陌生又熟悉的身影。两个不一样的人生,两条平行线,你走你的路,他过他的桥,不偏不倚,毫不相交。你的泪光与伤感,你的无奈与无助,只能祝愿,没有他,你的未来更精彩!万有引力,再次作用吧,为那两条以前相交的平行线!有谁还能将那份情感相待如初。有些情感,最是凄清,它有缘无份,就像天边的两条平行线,永远都不会有交集,铭记那一份完美,不言不语,只把他轻轻放心里吧!

精选阅读(三):

我们只是两条平行线

从认识你的那天起,你就是一个让人从头疼到脚,从骨子里疼到外表的人。

也许是别人幸运,你太不幸;也许是别人发奋你不发奋;也许是别人珍惜生活你不珍惜;也许是别人现实你太虚伪;也许是别人虚伪你太现实;也许是别人谦逊你太自傲;也许是别人自信你太自卑;也许是别人乐观你太忧郁。也许是你以前伤的太深;也许是你太不重情;也许是你太重情;也许是你生活太不如意;也许是你追求的太完美;也许是正因你不喜爱表露心绪;也许是你太无奈……

对于你我自私,对于我你刻薄;对于你我幼稚;对于我你成熟;对于你我固执,对于我你偏激。我们就这样格格不入,但是你依然这样让人心疼。敷衍的的脸却是那样无奈,虚伪的有些自然,自然的有些虚伪。

只是人都是自私的,只是有一种虚伪是不需要掩饰的,正因人的内心原本太善良。

我们的距离是那样的遥远却会受伤害,就像两条平行线,没有交集,也不会像射线那样偏离顶点,可它还是有一个起点。

也许我就是个愚腐的蠢驴,不懂新潮。但是还是心疼你。只是你永远不知道我心疼你的时候我自己也从身体疼到心底。

当我将那仅有的一滴泪和血渍一齐融化丢弃时,也丢弃了我的犹豫,在你面前,我丢弃的矜持和骄傲太多,遗留的心疼太多。要你好好照顾自己,只正因我不想把太多疼遗落在属于你的定义域而忽视我自己的值域。正因不是每个人都甘愿扩大自己的值域心疼另一个人。

我们就像射线那样只有一个共同的起点而后面偏离顶点,又像两条平行线那样没有交集。

全等三角形证明题

考研数学证明题

平行线的诗歌

平行线的证明

初中数学几何证明题

七年级下几何证明题

平行线的文案摘抄

平行线性质教学反思

平行线的性质教案

画平行线教学反思

平行线证明题(共9篇)

欢迎下载DOC格式的平行线证明题,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档