数学教案-平行线的性质

| 收藏本文 下载本文 作者:celeste

下面是小编收集整理的数学教案-平行线的性质(共含12篇),仅供参考,希望能够帮助到大家。同时,但愿您也能像本文投稿人“celeste”一样,积极向本站投稿分享好文章。

数学教案-平行线的性质

篇1:数学教案-平行线的性质

教学建议

1、教材分析

(1)知识结构

平行线的性质:

(2)重点、难点分析

本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.

2、教法建议

由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

(1)讲授新课

首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“∵”、“∴”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.

(2)综合应用

理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点 .老师可以设计一些有两步推理的证明题,让学生填充理由.在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用.

(3)适当总结

几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力.对于好的学生,可以引导他们总结如何学好几何.注意文字语言,图形语言,符号语言间的相互转化.对简单的`题目,能做到想得明白,写得清楚,书写逐渐规范.

教学目标 :

1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.

2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.

3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.

教学重点:平行线性质的研究和发现过程是本节课的重点.

教学难点 :正确区分平行线的性质和判定是本节课的难点.

教学方法:开放式

教学过程 :

一、复习

1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?

2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。

如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。

二、新课

1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?

上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。

2、现在我们来用这个性质公理,来证明另两句话的正确性。

想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?

已知:如图,直线a∥b

求证:(1)∠1=∠4;(2)∠1+∠2=180°

证明:∵a∥b(已知)

∴∠1=∠3(两直线平行,同位角相等)

又∵∠3=∠4(对顶角相等)

∴∠1=∠4

(2)∵a∥b(已知)

∴∠1=∠3(两直线平行,同位角相等)

又∵∠2+∠3=180°(邻补角的定义)

∴∠1+∠2=180°

思考:如何用(1)来证明(2)?

例1、如图,是梯形有上底的一部分,已经量得∠1=115°,∠D=100°,梯形另外两个角各是多少度?

解:∵梯形上下底互相平行

∴∠A与∠B互补,∠D与∠C互补

∴∠B=180°-115°=65°

∠C-180°-100°=80°

答:梯形的另外两个角分别是65,80°

练习:P79  1、2、3

小结:平行性质与判定的区别

作业 :P87  9、10

篇2:平行线性质

1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

4.在同一平面内的两线平行并且不在一条直线上的直线。

篇3:平行线性质

1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

如:AB平行于CD ,写作AB∥CD

2.平行公理:过直线外一点有且只有一条直线与已知直线平行。

3.平行公理的推论(平行的传递性):

平行同一直线的两直线平行。

∵a∥c,c ∥b

∴a∥b

平行线的判定:

1. 两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

2. 两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

3 . 两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

平行线的性质: 1. 两条平行线被第三条直线所截,同位角相等.

简单说成:两直线平行,同位角相等。

2. 两条平行线被第三条直线所截,同旁内角互补.

简单说成:两直线平行,同旁内角互补。

3 . 两条平行线被第三条直线所截,内错角相等.

简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:

垂直于同一直线的两条直线互相平行。

平行线间的距离,处处相等。

如果两个角的两边分别平行,那么这两个角相等或互补。

基本规律

1.平行线的性质和判定中的条件和结论恰好相反。

2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。

3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。

2

篇4:《平行线的性质》

《平行线的性质》教案     天津市第五十四中学 王振红

教学目标:

(1)知识与技能:

探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:

在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:

在课堂练习中,体验几何与实际生活的密切联系。

篇5:平行线的性质

平行线的.判定方法

1、同位角相等,两直线平行。

2、内错角相等,两直线平行。

3、同旁内角互补,两直线平行。

4、两条直线平行于第三条直线时,两条直线平行。

5、在同一平面内,平行或垂直于同一直线的两条直线互相平行。

6、同一平面内永不相交的两直线互相平行。

篇6:数学教案-平行线的性质 教学设计方案(二)

一、教学目标

1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.

2.会用平行线的性质进行推理和计算.

3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.

4.通过学习习近平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.

二、学法引导

1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.

2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.

三、重点・难点解决办法

(一)重点

平行线的性质公理及平行线性质定理的推导.

(二)难点

平行线性质与判定的区别及推导过程.

(三)解决办法

1.通过教师创设情境,学生积极思维,解决重点.

2.通过学生自己推理及教师指导,解决难点.

3.通过学生讨论,归纳小结.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制投影片.

六、师生互动活动设计

1.通过引例创设情境,引入课题.

2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.

3.通过学生讨论,完成课堂小结.

七、教学步骤

(一)明确目标

掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.

(二)整体感知

以情境创设导入  新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.

(三)教学过程

创设情境,复习导入

师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).

1.如图1,

(1)∵ (已知),∴ ( ).

(2)∵ (已知),∴ ( ).

(3)∵ (已知),∴ ( ).

2.如图2,(1)已知 ,则 与 有什么关系?为什么?

(2)已知 ,则 与 有什么关系?为什么?

图2 图3

3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?

学生活动:学生口答第1、2题.

师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:

[板书]2.6 平行线的性质

【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.

探究新知,讲授新课

师:我们都知道平行线的画法,请同学们画出直线 的平行线 ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?

学生活动:学生在练习本上画图并思考.

学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.

【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.

学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.

提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线 ,使它截平行线 与 ,得同位角 、 ,利用量角器量一下; 与 有什么关系?

学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.

根据学生的回答,教师肯定结论.

师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.

[板书]两条平行线被第三条直线所截,同位角相等.

简单说成:两直线平行,同位角相等.

【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.

提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?

学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.

师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.

学生活动:学生们思考,并相互讨论后,有的同学举手回答.

【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.

教师根据学生回答,给予肯定或指正的同时板书.

[板书]∵ (已知),∴ (两条直线平行,同位角相等).

∵ (对项角相等),∴ (等量代换).

师:由此我们又得到了平行线有怎样的性质呢?

学生活动:同学们积极举手回答问题.

教师根据学生叙述,板书:

[板书]两条平行经被第三条直线所截,内错角相等.

简单说成:西直线平行,内错角相等.

师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.

师生共同订正推导过程和第三条性质,形成正确板书.

[板书]∵ (已知),∴ (两直线平行,同位角相等).

∵ (邻补角定义),

∴ (等量代换).

即:两条平行线被第三条直线所截,同旁内角互补.

简单说成,两直线平行,同旁内角互补.

师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵ (已知见图6),∴ (两直线平行,同位角相等).∵ (已知),∴ (两直线平行,内错角相等).∵ (已知),∴ .(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)

尝试反馈,巩固练习

师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?

学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):

如图7,已知平行线 、 被直线 所截:

(1)从 ,可以知道 是多少度?为什么?(2)从 ,可以知道 是多少度?为什么?(3)从 ,可以知道 是多少度,为什么?

【教法说明】练习目的是巩固平行线的三条性质.

变式训练,培养能力

完成练习(出示投影片3).

如图8是梯形有上底的一部分,已知量得 , ,梯形另外两个角各是多少度?

学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.

【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找 和 的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的`板书.

[板书]解:∵ (梯形定义),∴ , (两直线平行,同旁内角互补).∴ .∴ .

变式练习(出示投影片4)

1.如图9,已知直线 经过点 , , , .

(1) 等于多少度?为什么?

(2) 等于多少度?为什么?

(3) 、 各等于多少度?

2.如图10, 、 、 、 在一条直线上, .

(1) 时, 、 各等于多少度?为什么?

(2) 时, 、 各等于多少度?为什么?

学生活动:学生独立完成,把理由写成推理格式.

【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.

(四)总结、扩展

(出示投影片1第1题和投影片5)完成并比较.

如图11,

(1)∵ (已知),

∴ ( ).

(2)∵ (已知),

∴ ( ).

(3)∵ (已知),

∴ ( ).

学生活动:学生回答上述题目的同时,进行观察比较.

师:它们有什么不同,同学们可以相互讨论一下.

(出示投影6)

学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.

【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.

巩固练习(出示投影片7)

1.如图12,已知 是 上的一点, 是 上的一点, , , .(1) 和平行吗?为什么?

(2) 是多少度?为什么?

学生活动:学生思考、口答.

【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.

八、布置作业

(一)必做题

课本第99~100页A组第11、12题.

(二)选做题

课本第101页B组第2、3题.

作业 答案

A组11.(1)两直线平行,内错角相等.

(2)同位角相等,两直线平行.两直线平行,同旁内角互补.

(3)两直线平行,同位角相等.对顶角相等.

12.(1)∵ (已知),∴ (内错角相等,两直线平行).

(2)∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,同位角相等).

B组2.∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,内错角相等).

∵ (已知),∴ (两直线平行,同位角相等), (同上).又∵ (已证),∴ .∴ .又∵ (平角定义),∴ .

3.平行线的判定与平行线的性质,它们的题设和结论正好相反.

篇7:平行线的性质证明题

平行线的性质证明题

平行线的性质证明题

这是判定平行线

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单的说成:

1.同位角相等两直线平行

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

也可以简单的说成:

2.内错角相等两直线平行

3.同旁内角相等两直线平行

这个是平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

也可以简单的说成:

1.两直线平行,同位角相等

2.两直线平行,内错角相等

3.两直线平行,同旁内角互补

2

已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有①②

①②

(填入序号即可).考点:平行线的性质.分析:此题属于文字证明题,首先画出图,根据图写出已知求证,然后证明,用到的知识由一条直线截两条平行直线所得的同位角相等与对顶角相等,故可求得答案.解答:解:如图:已知:AB∥CD,

求证:∠2=∠3.

证明:∵AB∥CD,

∴∠1=∠2,(一条直线截两条平行直线所得的同位角相等)

∵∠1=∠3,(对顶角相等)

∴∠2=∠3.

故用的基本事实有①②.

3

本节是在学生掌握了“探索直线平行的条件”和“平行线的特征” 后的一节巩固和提高的综合习题课,怎样区分平行线性质和判定,是教学中的`重点和难点。

引例:(从实际情景出发,激发学生的求知欲)

探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关。如图所示的是探照灯的纵剖面,从位于E点的灯泡发出的两束光线EA、EC经灯碗反射以后平行射出。

试探索∠AEC与∠ EAB、∠ECD之间的关系,并说明理由。

你能把这个实际问题转化为数学问题吗?

例题1(一题多证):已知AB∥CD,

探索三个拐角∠E与∠A,∠C之间的关系

(E在AB与CD之间且向内凹)

※ 本题的难点在引导学生添加辅助线构造三线八角及如何利用已知条件AB∥CD。

添加辅助线的方法有以下四种:

证法一:过点E作MF∥AB

∴∠AEM=∠A

又∵AB∥CD

∴EF∥CD

∴∠MFC=∠C

又∠AEC=∠AEM+∠MEC

∴∠AEC=∠A+∠C

证法二:延长AE交AB于F

∵AB∥CD

∴∠A=∠AFC

又∠AEC=∠C+∠AFC

∴∠AEC=∠A+∠C

证法三:延长CE交AB于F

(略,与证法二类似)

证法四:连接AC

∵AB∥CD

∴∠BAC+∠ACD=180°

即∠BAE+∠EAC+∠ACE+∠ECD=180°

又∠EAC+∠ACE+∠AEC=180°

∴∠AEC=∠BAE+∠ECD

※ 通过一题多证,加深了学生对平行线的特征的理解和运用。

例题2(一题多变) 已知AB∥CD,

如果改变E点与AB、CD的位置关系,且∠E、∠A、∠C依然存在,有哪几种情况?请画出图形,并证明

图1中结论,∠AEC+∠A+∠C=360°

证:过点E作EF∥AB

∵AB∥CD

∴EF∥CD

∴∠A+∠AEF=180°,∠FEC+∠C=180°

∴∠A+∠AEF+∠FEC+∠C=360°

即∠AEC+∠A+∠C=360°

图2中结论,∠AEC=∠C-∠A

证:过点E作EF∥AB

∵AB∥CD

∴EF∥CD

∴∠FEA+∠A=180°

∠FEC+∠C=180°

∴∠FEA-∠FEC=∠C-∠A

即∠AEC=∠C-∠A

图3中结论,∠AEC=∠A-∠C

证:过点E作EF∥AB

∵AB∥CD

∴EF∥CD

∴∠FEA+∠A=180°

∠FEC+∠C=180°

∴∠FEC-∠FEA=∠A-∠C

即∠AEC=∠A-∠C

例题3(一题多变)将例1和例2的条件和结论对换,以上结论都成立重点练习近平行线的性质和判断 (证明过程略)

图形条件结论∠AEC=∠A+∠CAB∥CD∠AEC+∠A+∠C=360°AB∥CD∠AEC=∠C-∠AAB∥CD∠AEC=∠A-∠CAB∥CD拓展延伸

观察以下二个图形,这些拐角之间的关系有什么规律?

提示:分别过E1,E2,E3……En作AB的平行线即可证得

※ 结论:向左凸出的角的和=向左凸出的角的和

篇8:平行线的性质说课稿

平行线的性质说课稿

一、教材分析

1、教材的地位与作用

《平行线的性质》是华师大版七年级数学上册第四章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过农远资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。

2、教学重点、难点

重点:平行线的三个性质及运用。

难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

3、学生情况分析

我所在的学校是少数民族农村中学,这里的学生基础知识较差,但学生有较强的求知欲望,对新的`事物有很强的好奇心。学生对于平行线也有了很深的了解,已经学会了平行线的判定方法,所以本节课对学生来说不是非常难学。

二、目标分析

根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:

知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

三、说教法、学法

新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课我选用下面教学方法:

1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、新技术教学法:在教学过程中充分利用农远资源和多媒体教学技术,给学生以直观的感受,加深学生的印象。

3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

在学法指导上,通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

四、说教学过程

1、创设情境引入

(1)我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。

【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.

2、探索新知

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)讲解平行线的性质一。

【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)总结平行线的性质

性质1:两直线平行,同位角相等.

性质2:两直线平行,内错角相等.

性质3:两直线平行,同旁内角互补.

(5)平行线的性质和平行线的判定区别:

要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识讲解例4和例5

(3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。

(4)练习P174―175 第1、2、3、4题

【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

4、回顾总结

(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?

(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?

【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

5、作业设计

P175 第5题

【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

五、效果预测

本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强。

篇9:平行线的性质教案

【教学目标】

1、经历平行线的性质:两直线平行,同位角相等的发现过程。

2、掌握平行线的性质:两直线平行,同位角相等。

3、会用两直线平行,同位角相等进行简单的推理和判断,并学会表达。

【教学重点】平行线的性质:两直线平行,同位角相等。

【教学难点】例2的推理过程要用到平行线的判定和性质。

【教学预设】

【活动1】复习引入

1、如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两直线平行的结论?(学生口答,教师板书。)

条件 结论

同位角相等, 两直线平行。

内错角相等, 两直线平行。

同旁内角互补, 两直线平行。

2、练习:

(1) 如图①,A、B、C三点在一条直线上。

如果3 =6,那么 ∥ 。( )

如果6 =9,那么 ∥ 。( )

如果1 +2 +3 =180,那么 ∥ 。( )

如果 ,那么BE∥CD。( )

(2) 如图②,看图填空:

∵1 =2(已知)

∥ 。( )

又∵2 =3(已知)

∥ 。( )

【活动2】

1、 引入新课的课堂练习:

(1)你们练习本上的横线与横线成什么关系?(平行)

(2)请画出其中二条(二条之间可空若干行),分别用a、b 表示,a∥b,再画一条c分别与a、b相交。

(3)标出一对同位角,用1、2表示,并量一下度数。

(4)1与2有何关系?(2)

在这个练习中,两直线平行是给出的条件,而得到的结论是什么?

学生回答

这就是平行线的一个重要性质:两条平行直线被第三条直线所截,同位角相等。

简单地说成:两直线平行,同位角相等。

【活动3】知识应用:

例1、 如图,梯子的各条横档互相平行,1=1000,求2的度数。

此题比较简单,让学生自己分析,个别同学发表自己的分析过程,后学生书写过程。强调过程的书写。

例2、 如图,已知2。若直线bm,则直线am。请说明理由。

这是一道平行线的判定和性质综合的.题目,引导学生用逆向推理的方法来分析。

3、 课内练习

给学生10分钟的时间让他们自行完成,然后校对

强调说明过程的书写规范

机动:作业题4

【活动4】小结

请同学们回答平行线的两个性质,指出其中的条件与结论。

【活动5】布置作业

见作业本

【教学反思】

10.3平行线的性质(2)

【教学目标】

1、经历平行线的性质:两直线平行,内错角相等两直线平行,同旁内角互补的发现过程。

2、掌握平行线的两个性质:两直线平行,内错角相等两直线平行,同旁内角互补。

3、会用平行线的性质进行简单的推理和判断。

【教学重点】平行线的性质。

【教学难点】平行线的性质和判定的综合应用。

【教学预设】

【活动1】知识回顾:

1、平行线的判定

2、平行线的性质

【活动2】1.合作学习:

如图,直线AB∥CD,并被直线EF所截。2与3相等吗?3与4的和是多少度?

思考下列几个问题:

(1)图中有哪几对角相等?

(2)3与1有什么关系?4与2有什么关系?

2.你发现平行线还有哪些性质?

【活动3】平行线的性质:

两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

【活动4】知识应用

1、做一做:

如图,AB,CD被EF所截,AB∥CD(填空)

若1=120,则2= ( )

3= -1= ( )

2、例3 如右下图,已知AB∥CD,AD∥BC。判断1与2是否相等,并说明理由。

思考下列几个问题:

(1)1与BAD是一对什么的角?它们是否相等?为什么?

(2)2与BAD是一对什么的角?它们是否相等?为什么?

(3)那么1与2是否相等?为什么?

解:2

∵AB∥CD(已知)

BAD=180(两直线平行,同旁内角互补)

∵AD∥BC(已知)

BAD=180(两直线平行,同旁内角互补)

2(同角的补角相等)

讨论:还有其它解法吗?如不用两直线平行,同旁内角互补这个性质是否可以解?

3、练一练:(课内练习1、2)

4、例4如右图,已知ABC+C=180,BD平分ABC。CBD与D相等吗?请说明理由。

思考下列几个问题:

(1)AB与CD平行吗?为什么?

(2)D与ABD是一对什么的角?它们是否相等?为什么?

(3)CBD与ABD相等吗?为什么?

解:CBD

∵ABC+C=180(已知)

AB∥CD(同旁内角互补,两直线平行)

ABD(两直线平行,内错角相等)

∵BD平分ABC(已知)

CBD=ABD=D

想一想:是否还有其它方法?(用三角形内角和定理等)

5、练一练:

如图,已知2,3=65,求4的度数。

【活动5】拓展

1、如图1,已知AD∥BC,BAD=BCD。判断AB与CD是否平行,并说明理由

2、如图2,已知AB∥CD,AE∥DF。请说明BAE=CDF

【活动6】知识整理:

1、平行线的性质:

两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

2、思维方法:如不能直接说明其成立,则需说明它们都与第三个量相等。

3、要注意一题多解。

4、到目前为止说明两个角相等有哪些方法?课后归纳。

【活动7】布置作业:见作业本

篇10:《平行线的性质》说课稿

一、教材分析

1、教材的地位与作用

《平行线的性质》是华师大版七年级数学上册第四章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过农远资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。

2、教学重点、难点

重点:平行线的三个性质及运用。

难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

3、学生情况分析

我所在的学校是少数民族农村中学,这里的学生基础知识较差,但学生有较强的求知欲望,对新的事物有很强的好奇心。学生对于平行线也有了很深的了解,已经学会了平行线的判定方法,所以本节课对学生来说不是非常难学。

二、目标分析

根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:

知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

三、说教法、学法

新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课我选用下面教学方法:

1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、新技术教学法:在教学过程中充分利用农远资源和多媒体教学技术,给学生以直观的感受,加深学生的印象。

3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

在学法指导上,通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

四、说教学过程

1、创设情境引入

(1)我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。

【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的'不同.

2、探索新知

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)讲解平行线的性质一。

【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)总结平行线的性质

性质1:两直线平行,同位角相等.

性质2:两直线平行,内错角相等.

性质3:两直线平行,同旁内角互补.

(5)平行线的性质和平行线的判定区别:

要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识讲解例4和例5

(3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。

(4)练习P174—175 第1、2、3、4题

【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

4、回顾总结

(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?

(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?

【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

5、作业设计

P175 第5题

【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

五、说板书设计

篇11:《平行线的性质》说课稿

判定的区别

【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

六、效果预测

本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强。

篇12:平行线性质的说课稿

平行线性质的说课稿

一、说教材

1、教材的地位与作用

《平行线的性质》是鲁教版六年级数学下册第七章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和探索直线平行的基础上进行教学的。

本节课是空间与图形领域的基础知识是今后三角形内角和、三角形全等、三角形相似等知识的学习的理论基础。

2、教学重点、难点

重点:平行线的三个性质及运用。

难点:平行线判定和性质的区别

二、说教学目标

根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:

知识与技能:探索平行线的`性质,会用平行线的性质定理进行简单的计算、证明,区分平行线判定和性质。

过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

情感、态度与价值观:通过创设情境,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。

三、说学情

初一学生已经学习了基本平面图形、两条直线的位置关系、探索两直线平行的条件基础等相关知识,对于平行线的有了自己认知,虽然学生基础差,学生间差距较大,但可以利用学生对新事物的好奇心来激发求知欲望。

四、说教法、学法

1、情境导入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、鼓励学生大胆猜测,指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

3、在学法指导上,教师引导、学生观察、动手测量、猜想、总结出平行线的性质。

五、教学过程

1、创设情境、导入新课

(1)取一张A4纸对折、展开,找出内错角,并猜测内错角是否相等?若将两个对角相折,内错角是否相等?学习了这节课后我们就很容易知道答案了。

【设计意图】学生动手,实例导入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

(2)设问:根据内错角相等可以判定两条直线平行,反过来,如果两条直线平行,内错角之间有什么关系呢?同位角、同旁内角之间又有什么关系呢?

【设计意图】:通过对平行线判定的复习引入新课,一是巩固已有知识,促使学生知识思维的迁移;二是引导学生比较性质与判定的区别。

2、自主学习、探究新知

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,加深平行线性质与判定的区别。

(2)讲解平行线的性质一。

【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)平行线的性质

性质1:两直线平行,同位角相等.

性质2:两直线平行,内错角相等.

性质3:两直线平行,同旁内角互补.

(5)平行线的性质和平行线的判定区别:

平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得出角的关系。

3、典例解析、知识应用

(1)解决情境导入提出的问题

(2)讲解例2、例3。

【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处。

4、反馈练习、巩固落实

(1)利用所学的知识完成P76《做一做》和《随堂练习》

(2)练习P77第《知识技能》

【设计意图】:通过练习,检验学生对知识的理解和掌握情况,使学生能更加熟悉该知识点。

5、归纳总结、提升拓展

【设计意图】:比较归纳加强区别,进一步突破难点

6、布置设计、回扣目标

P80《知识技能》 第2、3题

【设计意图】:本题是让学生进一步理解平行线的性质,规范解答过程。

平行线性质教学反思

平行线的性质教案

平行线证明题

数学教案-合比性质和等比性质例

平行线的诗歌

平行线的证明

平行线的文案摘抄

画平行线教学反思

作文平行线的距离

等腰三角形性质

数学教案-平行线的性质(集锦12篇)

欢迎下载DOC格式的数学教案-平行线的性质,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档