数学悖论

| 收藏本文 下载本文 作者:庭芙英

以下是小编帮大家整理的数学悖论(共含5篇),供大家参考借鉴,希望可以帮助到您。同时,但愿您也能像本文投稿人“庭芙英”一样,积极向本站投稿分享好文章。

数学悖论

篇1:数学悖论

悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。 数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。

目录历史定义数学悖论第一次收缩展开历史

“……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。” ――N・布尔巴基 悖论的历史源远流长,它的起源可以一直追溯到古希腊和中国先秦时代。“悖论”一词源于希腊文,意为“无路可走”,转义是“四处碰壁,无法解决问题”。 在古希腊时代,克里特岛的哲学家埃庇米尼得斯(约公元前6世纪)发现的“说谎者悖论”可以算作人们最早发现的悖论。公元前4世纪的欧布里德将其修改为“强化了的撒谎者悖论”。在此基础上,人们构造了一个与之等价的“永恒的撒谎者悖论”。埃利亚学派的代表人物芝诺(约490B.C.―430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍余波未息。 在中国古代哲学中也有许多悖论思想,如战国时期逻辑学家惠施(约370B.C.―318B.C.)的“日方中方睨,物方生方死”、“一尺之棰,日取其半,万世不竭”;《韩非子》中记载的有关矛与盾的悖论思想等,这些悖论式的命题,表面上看起来很荒谬,实际上却潜伏着某些辩证的思想内容。 在近代,著名的悖论有伽利略悖论、贝克莱悖论、康德的二律背反、集合论悖论等。在现代,则有光速悖论、双生子佯谬、EPR悖论、整体性悖论等。这些悖论从逻辑上看来都是一些思维矛盾,从认识论上看则是客观矛盾在思维上的反映。 尽管悖论的历史如此悠久,但直到本世纪初,人们才真正开始专门研究悖论的本质。在此之前,悖论只能引起人们的.惊恐与不安;此后,人们才逐渐认识到悖论也有其积极作用。特别是本世纪60、70年代以来,出现了研究悖论的热潮。

定义

悖论的定义有很多说法,影响较大的有以下几种,如“悖论是指这样一个命题A,由A出发可以找到一语句B,然后,若假定B真,就可推出~B真,亦即可推出B假。若假定~B真,即B假,又可推导出B真”。又如“悖论是一种导致逻辑矛盾的命题,这种命题,如果承认它是真的,那么它又是假的;如果承认它是假的,那么它又是真的。”再如“如果某一理论的公理和推理原则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式,那么,我们就说这个理论包含了一个悖论。” 上述各种悖论定义,都有其合理的一面,但又都不十分令人满意。从潜科学的观点来看,悖论是一种在已有科学规范中无法解决的认识矛盾,这种认识矛盾可以在新的科学规范中得到克服,这是悖论的广义定义。 悖论有其存在的客观性和必然性,它是科学理论演进中的必然产物,在科学发展史上经常出现,普遍存在于各门科学之中。不仅在语义学、形式逻辑和数理逻辑等领域出现悖论,而且在物理学、天文学、系统论和哲学等领域也经常出现悖论。 悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。 悖论常常以逻辑推理为手段,深入到原理论的根基之中,尖锐地揭露出该理论体系中潜藏着的无法回避的矛盾,所以它的出现必然导致现存理论体系的危机。科学危机的产生,往往是科学革命的前兆和强大杠杆,是科学认识飞跃的关节点和开始进入新阶段的重要标志。 我国著名数学家徐利治教授指出:“产生悖论的根本原因,无非是人的认识与客观实际以及认识客观世界的方法与客观规律的矛盾,这种直接和间接的矛盾在一点上的集中表现就是悖论。”所谓主客观矛盾在某一点上的集中表现,是指由于客观事物的发展造成了原来的认识无法解释新现实,因而要求看问题的思想方法发生转换,于是在新旧两种思想方法转换的关节点上,思维矛盾特别尖锐,就以悖论的形式表现出来。

数学悖论

数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。数学中有许多著名的悖论,除前面提到的伽利略悖论、贝克莱悖论外,还有康托尔最大基数悖论、布拉里――福蒂最大序数悖论、理查德悖论、基础集合悖论、希帕索斯悖论等。数学史上的危机,指数学发展中危及整个理论体系的逻辑基础的根本矛盾。这种根本性矛盾能够暴露一定发展阶段上数学体系逻辑基础的局限性,促使人们克服这种局限性,从而促使数学的大发展。数学史上的三次危机都是由数学悖论引起的,下面作以简要的分析。

第一次

起因

毕达哥拉斯学派主张“数”是万物的本原、始基,而宇宙中一切现象都可归结为整数或整数之比。在希帕索斯悖论发现之前,人们仅认识到自然数和有理数,有理数理论成为占统治地位的数学规范,希帕索斯发现的无理数,暴露了原有数学规范的局限性。由此看来,希帕索斯悖论是由于主观认识上的错误而造成的。

经过

公元前5世纪,毕达哥拉斯学派的成员希帕索斯(470B.C.前后)发现:等腰直角三角形斜边与一直角边是不可公度的,它们的比不能归结为整数或整数之比。这一发现不仅严重触犯了毕达哥拉斯学派的信条,同时也冲击了当时希腊人的普遍见解,因此在当时它就直接导致了认识上的“危机”。希帕索斯的这一发现,史称“希帕索斯悖论”,从而触发了第一次数学危机。

影响

希帕索斯的发现,促使人们进一步去认识和理解无理数。但是,基于生产和科学技术的发展水平,毕达哥拉斯学派及以后的古希腊的数学家们没有也不可能建立严格的无理数理论,他们对无理数的问题基本上采取了回避的态度,放弃对数的算术处理,代之以几何处理,从而开始了几何优先发展的时期,在此后两千年间,希腊的几何学几乎成了全部数学的基础。当然,这种将整个数学捆绑在几何上的狭隘作法,对数学的发展也产生了不利的影响。 希帕索斯的发现,说明直觉和经验不一定靠得住,而推理和证明才是可靠的,这就导致了亚里士多德的逻辑体系和欧几里德几何体系的建立。

篇2:三次数学危机与悖论

三次数学危机与悖论

悖论的发现,给数学界以极大的震动,相继导致了数学史上的.三次危机.为了探求其根塬和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展.本文就悖论与数学危机的产生、悖论的根源以及悖论对数学科学的影响提出一些看法.

作 者:兰林世  作者单位:集宁师专,马列部,内蒙古,集宁,01 刊 名:集宁师专学报 英文刊名:JOURNAL OF JINING TEACHERS COLLEGE 年,卷(期): 25(4) 分类号:B812.5 关键词:数学危机   悖论   毕达哥拉斯   芝诺   罗素   根源   影响  

篇3:数学悖论、数学危机及其对数学的推动作用

数学悖论、数学危机及其对数学的推动作用

数学悖论、数学危机及其对数学的推动作用

悖论是让数学家无法回避的问题。悖论出现使得数学体系出现不可靠性和失真理性,这就逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了,因而悖论在推动数学发展中的巨大作用。现在我作如下简单阐述:

毕达哥拉斯学派认为“万物皆数”,而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。这却在当时的数学界掀起了一场巨大风暴。这一伟大发现不但对毕达哥拉斯学派的致命打击,也对于当时所有古希腊人的观念这都是一个极大的冲击。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的**,史称“第一次数学危机”.

二百年后,欧多克索斯提出的新比例理论暂时消除悖论。一直到18世纪,当数学家证明了圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。

伴随着人们科学理论与实践认识的提高,十七世纪微积分诞生,但是微积分理论是不严格的。理论都建立在无穷小分析之上,作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。

数学史上把贝克莱的问题称之为“贝克莱悖论”.笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0.但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。

十八世纪开始微积分理论获得了空前丰富。然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面。当时数学中出现的混乱局面了。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。到十九世纪,批判、系统化和严密论证的必要时期降临了。

使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于18开始给出了分析学一系列基本概念的严格定义。后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所使用的“ε-δ ”方法。另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。

柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系。1892年,另一个数学家创用“区间套原理”来建立实数理论。由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。

十九世纪下半叶,康托尔创立了著名的集合论,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而这使数学家们为之陶醉。

可是,19一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。

罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S.无论如何都是矛盾的。

罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。这一悖论就像在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。

危机产生后,人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。19,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的`需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。

以上简单介绍了数学史上由于悖论而导致的三次数学危机与解决,从中我们不难看到悖论在推动数学发展中的巨大作用。而悖论提出的正是让数学家无法回避的问题。正如希尔伯特在《论无限》一文中所指出的那样:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。人们试想:在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”悖论的出现逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了:第一次数学危机促成了公理几何与逻辑的诞生;第二次数学危机促成了分析基础理论的完善与集合论的创立;第三次数学危机促成了数理逻辑的发展与一批现代数学的产生。数学由此获得了蓬勃发展。

篇4:精选数学悖论故事之绞刑架与理发师

世界文学名著《唐·吉诃德》中有这样一个故事:

唐·吉诃德的仆人桑乔·潘萨跑到一个小岛上,成了这个岛的国王。他颁布了一条奇怪的法律:每一个到达这个岛的人都必须回答一个问题:“你到这里来做什么?”

如果回答对了,就允许他在岛上游玩,而如果答错了,就要把他绞死。

对于每一个到岛上来的人,或者是尽兴地玩,或者是被吊上绞架。有多少人敢冒死到这岛上去玩呢?

一天,有一个胆大包天的人来了,他照例被问了这个问题,而这个人的回答是:

“我到这里来是要被绞死的。”

请问桑乔·潘萨是让他在岛上玩,还是把他绞死呢?

如果应该让他在岛上游玩,那就与他说“要被绞死”的话不相符合,这就是说,他说“要被绞死”是错话。既然他说错了,就应该被处绞刑。

但如果桑乔·潘萨要把他绞死呢?这时他说的“要被绞死”就与事实相符,从而就是对的,既然他答对了,就不该被绞死,而应该让他在岛上玩。

小岛的国王发现,他的法律无法执行,因为不管怎么执行,都使法律受到破坏。他思索再三,最后让卫兵把他放了,并且宣布这条法律作废。

这又是一条悖论。还有一个由数学家伯特兰·罗素(Russel,1872—1970)提出的悖论与之相似:

在某个城市中有一位理发师,他的广告词是这样写的:

“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”

来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。

罗素的这条悖论使集合理论产生了危机。德国的逻辑学家弗里兹在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”

由于形形色色的悖论的研究,促进了数学理论基础的研究,使数学更进一步发展,更坚实地建立在牢固的基础之上。

篇5: 希帕索斯悖论数学故事

希帕索斯悖论数学故事

在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。

毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的.正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的**,史称“第一次数学危机”。

二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。

国有企业经理激励悖论

中小企业的信息化悖论论文

生活随笔:人生的悖论

数学

数学名人名言

数学学习方法

数学谜语

数学课堂教学

数学教学计划

数学教材

数学悖论(共5篇)

欢迎下载DOC格式的数学悖论,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

相关文章

猜你喜欢

NEW
点击下载本文文档