以下是小编为大家整理的小学生逻辑思维(共含9篇),希望对您有所帮助。同时,但愿您也能像本文投稿人“谚博萍”一样,积极向本站投稿分享好文章。
我们知道,一方面,小学数学的内容虽然较中学简单,没有严格的推理论证,但却有不少的判断、推理,这就为培养小学生的逻辑思维能力提供了十分有利的条件;另一方面,小学生正处于从具体形象思维向抽象逻辑思维过渡的阶段。(这里所说的抽象逻辑思维,主要是指形式逻辑思维。)那么,我们该如何培养小学生的逻辑思维能力?
我们可以说,在小学尤其是中高年级,正是帮助小学生发展抽象逻辑思维的有利时期。所以,《小学数学教学大纲》中明确规定:“……使学生具有初步的逻辑思维能力。”因此,我们可以说:培养学生的思维能力是我们学校教学的一项基本任务,而培养学生的逻辑思维能力则是学校教学中一项重要任务。因为我们要培养社会主义现代化建设所需要的人才,其基本条件就是要具有独立思考的能力和勇于创新的精神。
那么,在教学中我们应如何有计划地培养学生的逻辑思维能力呢?
培养小学生的逻辑思维能力一、培养学生逻辑思维能力要趁早抓起,从一年级就要注意有意识地加以培养。如教学生关于数的知识时,我们做教师的就要设法引导学生通过动手操作、观察,逐步进行比较、分析、综合、抽象和概括,形成10以内(乃至更大的)数的概念,理解加、减法的含义,学会10以内(乃至更大的)数的加、减法的计算方法。具体如下:其一、教师借助多媒体或教学挂图,出示下列情景:草地上原有五只鸡,这时,又来了三只鸡。这时,就可以问学生:那么,一共有几只鸡?其二、教师仍借助多媒体或教学挂图,出示下列情景:小花家的院子里有六只羊,小军家的院子里有三只羊。这时,教师就可以问学生:对于上述情况,我们可以补充什么问题?(答案可以是:1、小花家比小军家多几只羊或小军家比小花家少几只羊?2、小花和小军家一共有几只羊?)
培养小学生的逻辑思维能力二、培养逻辑思维能力要见缝插针,要尽可能地贯穿于各部分内容的教学中。在教学数学概念、计算法则、解答应用题或动手操作时,我们都要注意培养学生的思维能力(包括逻辑思维的能力)。例如,教学正方形概念时,不应由教师在黑板上画一个正方形后,就告诉学生老师刚才画的就是一个正方形;而应让学生先看一些正方形的实物,然后引导学生发现它们的边和角分别有什么特点,最后再在黑板上画几个正方形,并对正方形的特征作出概括。
至于教学计算法则和规律性知识,则更要注意培养学生判断、推理的能力。例如,教学加法结合律,教师不应刚举一个例字,就迫不及待地告诉学生结论;而是至少举两三个例子,而且,每举一个例子,就设法引导学生作出个别判断——如(4+5)+8=4+(5+8),先把4和5相加,再和8相加,与先把5和8相加,再和4相加,两种计算方法的结果相同。做了上述铺垫后,教师再引导学生对前几个例子进行分析、比较,进而找出它们的共同点予以归纳,最后得出结论。这样做,不但便于学生对加法结合律理解得更透彻,而且,在不知不觉中学到了不完全归纳的方法。
培养小学生的逻辑思维能力三、培养学生逻辑思维能力要常抓不懈,要尽可能地贯穿在每一节课的各个环节中。不论是开始的复习,或是教学新知识,还是组织学生练习,教师都要注意结合具体的内容有意识地加以培养。例如,教学20以内的进位加法时,我们不仅要让学生答出得数,还要让他们尽可能地说说自己心里是怎么想的。特别是当学生答的得数有误时,让他说一下自己心里的想法,这很可能有助于学生加深对“凑十”的计算方法的理解,也有助于学生思维能力(包括逻辑思维能力)的培养。
又如,在教学新知识时,不是简单地告诉学生结论或计算方法,而是引导学生去分析、推理,最后归纳出正确的结论或计算方法。
当然,以上所述只是本人认同的观点结合自己的看法,目的无非是想起到抛砖引玉的作用。
思维是人脑以理性形式对客观事物的反映,它是人的一种认识活动。学生具有良好的逻辑思维能力,是学生在学习上获得成功的有力保证。因此,在数学教学中如何培养学生的逻辑思维能力显得特别重要。
小学生逻辑思维游戏
1.整理与收纳:要在晚上睡觉之前,让孩子把自己的玩具收拾好,数一件,放一件,让孩子养成好习惯,也从而培养孩子的数学智能。
2.会认路与门牌:当带孩子出门后,可充分利用回家的这段时间,让孩子分辨并记忆周围的马路与建筑,找出各条路的特点及不同之处,学会利用参照物来认路,能够提高孩子的观察力。还可以指导孩子数门牌号码,分清哪边是偶数,哪边是奇数,能强化孩子的数字概念,对提升数学逻辑智能很有帮助。
3.测量与记录:准备好测量工具让孩子测量物体的长度,并记录下来,过一段时间再测一下,看看是否发生了变化。
4.看商品标价:逛商场时,家长可以和孩子一起看看商品的标签,让孩子知道每样商品都有它的标价。然后再和孩子算一算,买几件要多少钱。这能可以使孩子对金钱有个最初的概念,也能提升孩子的数学智能。
这些只是平日里简单的逻辑思维训练活动,您也可以为孩子报一些专业的逻辑思维训练课程,让孩子具备较强的总结归纳能力,让孩子拥有超强的学习能力。
逻辑思维是借助于概念、判断、推理等思维形式所进行的思考活动,是一种有条件、有步骤、有根据、渐进式的思维方式,也是小学生数学能力的核心。因此,在小学数学教学中必须着力培养学生的逻辑思维能力。在本文中,就在小学数学教学过程中培养学生的逻辑思维能力的几个重点环节谈谈自己的看法。
一、要重视思维过程的组织
要培养学生的逻辑思维能力,就必须把学生组织到对所学数学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。具体而言,教学中加强思维过程的组织要做好以下几个方面:
首先,要为学生提供感性材料,组织从感性到理性的抽象概括。从具体的感性表象向抽象的理性思考启动,是小学生逻辑思维的显著特征。随着学生对具体材料感知数量的增多、程度的增强,逻辑思维也渐次开始。因此,教学过程中,教师必须为学生提供充分的感性材料,并组织好他们对感性材料从感知到抽象的活动过程,从而帮助他们建立新的概念。例如教学有余数的除法时,可先演示把“10个苹果放在2个盘子里”,然后顺序演示把“9个、8个、7个苹果放在2个盘子里”。在这一过程中,注意引导学生观察盘子里和盘子外苹果的数量,并比较盘子外的苹果个数与盘子个数的大小。学生后发现商是盘子里的苹果的个数,余数是盘子外的苹果个数,还会发现盘子外的苹果个数比盘子的个数要少。这样他们就会知道,余数要小于除数。这种抽象概括过程的展开,完全依赖于“观察----思考”过程的精密组织。
其次,要指导积极迁移,推进旧知向新知转化的过程。数学教学的过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移、推进旧知向新知转化的过程,也是学生继承前人经验的一条捷径。小学数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着。数学教学的目的之一就是挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学平行四边形面积的计算公式时,要唤起学生对“长方形面积的计算公式的推导过程”、“图形的旋转平移”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生学习小数加减法,要在教学整数时就帮助学生理解加法和减法的意义。
再次,要强化练习指导,促进学生实现从一般到个别的运用。学生学习数学时、了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,练习设计要力求巧妙:一是要加强基本练习,注重基本原理的理解;二是要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三是要针对易混易错的知识设计对比练习,使学生获得更为具体更为精确的认识;四要加强实践操作练习和体验学习,帮助学生把人的情感投入到学习中去,具体途经有:有目的的观察、测量、作图、试验与操作等;五要根据学生思维特点设计变式练习。
第四,要指导学生进行分类和整理,促进思维的系统化。教学中,教师要注意指导学生把所学的知识,按照一定的标准或特点进行梳理、分类、整合,使学生的认识组成某种序列,形成一定的结构,结成一个整体,从而促进思维的系统化。
二、要重视思维能力的培养
一是要注意思维训练要从起步时做起,从小学一年级开始,教师的数学教学过程中就应当有意识地培养学生的思维能力;二是要帮助学生牢固掌握数学概念,特别是加、减、乘、除法的意义,分数、小数的意义及一些与之有关的基本性质;三是要在游戏中促进学生思维能力的发展,通过设计灵活多样的游戏,激发学生的学习兴趣;四是要加强语言训练,要让学生用不同的叙述方法来叙述,例如要让学生准确地掌握增加、减少、降低、提高、节约等数学用语;五是要巧妙设计练习,既能够实现教学目标,又能够培养学生的好奇心,激发其学习的主动性和自觉性。
三、要重视寻求正确思维方向的训练
首先,要指导学生认识思维的方向问题。我们都知道,逻辑思维具有多向性。一般而言,包括以下几种情况:
一是顺向性。这种思维方式是以问题的某一条件与某一答案的联系为基础进行的,即在思维时直接利用已有的条件,通过概括和推理得出正确结论,其方向只集中于某一个方面,对问题只寻求一种正确答案。
二是逆向性。与顺向性思维方法相反,逆向性思维是从问题出发,寻求与问题相关联的条件,将只从一个方面起作用的单向联想,变为从两个方面起作用的双向联想的思维方法。
三是横向性。这种思维方式是以所给的知识为中心,从局部或侧面进行探索,把问题变换成另一种情况,唤起学生对已有知识的回忆,沟通知识的内在联系,从而开阔思路。
四是散向性,即发散思维。这种思维方式的特点是从不同的角度、方向和侧面进行思考,进而产生多种、新颖的设想和答案。
其次,要指导学生掌握寻求正确思维方向的方法。培养逻辑思维能力,不仅要使学生认识思维的方向性,更要指导学生寻求正确思维方向的科学方法。为使学生善于寻求正确的思维方向,教学中应注意以下几点:
一是要精心设计思维感性材料。思维的感性材料,就是指以实物直观或具体表象进行思维的材料。培养学生思维能力既要求教师为学生提供丰富的感性材料,又要求教师对大量的感性材料进行精心设计和巧妙安排,从而使学生顺利实现由感知向抽象的转化。例如教学质数、合数概念时,可以先让学生写出几个大于1的自然数,在寻求其约数个数时,学生通过观察、分析、归纳后,可以“发现”约数的个数有两种情况:一种是只有1和本身,另一种是除1和本身外,还有其他约数,从而便引出质数和合数的概念。
二是要依据基础知识进行思维活动。小学数学基础知识包括概念、公式、定义、法则等。学生依据上述知识思考问题,便可以寻求到正确的思维方向。例如有些学生不知道如何作三角形的高,这时应当怎样寻求正确的思维方向呢?很简单,就是先弄准什么是三角形的高,“高的概念”明确了,作起来也就不难了。
三是要联系旧知,进行联想和类比。旧知是思维的基础,思维是通向新知的桥梁。由旧知进行联想和类比,也是寻求正确思维方向的有效途径。联想和类比,就是把两种相近或相似的知识或问题进行比较,找到彼此的联系和区别,进而对所探索的问题找到正确的答案。
四是反复训练,培养思维的多向性。学生思维能力培养,不是靠一两次的练习、训练所能奏效的,需要反复训练,多次实践才能完成。由于学生思维方向常是单一的,存在某种思维定势,所以不仅需要反复训练,而且注意引导学生从不同的方向去思考问题,培养思维的多向性。
四、要重视对良好思维品质的培养
思维品质如何会对思维能力的强弱产生直接影响,因此培养学生逻辑思维能力必须重视良好思维品质的培养。在这方面,要重点抓好以下几个环节:
一是要培养思维的敏捷性和灵活性。思维灵活是思维的灵魂,教学中要充分重视教材中例题和练习中“也可这样算”、“我这样算”“看谁算得快”、“怎样算简单就怎样算”、“我发现”我还发现“等提示,指导学生通过联想和类比,拓宽思路,选择最佳思路,从而培养学生思维的敏捷性和灵活性。
二是要培养思维的广阔性和深刻性。在教学过程中,教师如果注意沟通知识之间的联系,就可以培养思维的广阔性和深刻性。例如,在教学分数应用题时可以启发学生联想倍数应用题,教学百分数应用题时可以启发学生联想起分数应用题。通过这种训练,可以调整和完善学生头脑中的认知结构:从几倍的“几”到几分之几的“几”,再到百分之几的“几”,使之连成一个整体。不仅可以培养学生思维的广阔性,而且可以培养思维的深刻性。
三是要注意培养思维的独立性和创造性。教学中要创造性地使用教材和借助形象思维的参与,培养学生思维的独立性和创造性。例如,教材的例题中前面的多是为学习新知起指导、铺垫作用的,后面的则是为已获得的知识起巩固、加深作用的。因此,对前面例题教学的重点是使学生对原理理解清楚,对后面例题教学则应侧重于实践,即适当放手或完全放手,让学生自己去思考、去操做,以便培养他们思维的独立性。教学中还要重视从直观形象入手,充分调动学生的各种感官,获取多方面感性认识,并借助于形象思维的参与,加强对知识的理解和思维的发展,培养思维的创造性。
中学生在空间想象能力和抽象思维能力各方面还不够成熟,缺乏对几何问题的分析能力和解决几何问题的经验,学习几何的困难的较大。其具体表现为:
1、不理解题意。读题时不能借助图形很好的读题,或者读完后抓不住关键,不能找出题目中的一些关键条件,不能有效地结合图形进行分析。
2、逻辑推理差。部分学生不能清楚、较为准确地表达思路。
3、对推理过程书写不规范,过程欠缺严密性,总是出现很多的错误。
4、对几何语言的转换能力弱,重要的定理掌握不熟,综合运用能力差,以至于无从下手。
要学会有理有据地推理证明,而简明准确地表述推理过程有一定难度。培养小学生数学逻辑思维关键是:
一、注意由易到难,循序渐进。 开始阶段,证明的方向要明确,过程要简单。做法是:(1)写好证明过程,让学生在括号内注明每一步的理由。还要学生象学写作文一样背记一些证明的“范句”,熟悉一些“范例”,做到既掌握证明方法步骤和书写格式,也努力弄清证题的来龙去脉和编写意图。2)让学生论证一些写好了已知、求证并附有图形的证明题,先是一两步推理,然后逐渐增加推理的步数,主要是模仿证明。(3)让学生自己写出已知、求证、并自己画出图形来证明,每一步都得注明理由。通过例题、练习向学生总结出推理的规律,简单概括为“从题设出发,根据已学过的定义、定理用分析的方法寻求推理的途径,用综合的方法写出证明过程。
二、让学生学会数学语言与日常语言之间的转换. 在数学教学中的描述都是数学语言和日常语言混合使用来表达的,很多关键的条件往往用日常语言表述.而数学推理证明则更多使用数学语言,造成学生在推理证明过程的困难,许多学生明明知道如何判断数学结论,却不能准确表达出来。这就要求教师的教学中,对学生进行日常语言和数学语言的相互转换的长期训练.(1)要求学生理解和熟记几何常用语。几何教材开始就明确地给了一些常用语,如“直线AB与CD相交于点A”、“直线AB经过点C”,经过即通过,对某些字“咬文嚼字”,加强学生的理解,让学生熟记“几何常用语”,组织学生在课堂上朗读和学说,以提高他们的口头表达能力。(2)给出基本语句,要求学生画出图形,把语句和图形结合起来,训练学生熟记语句。(3)将定义、定理等翻译成符号语言,并画出图形,符号语言能将文字语言与图形结合起来。讲课时,努力做到语言规范化。
三、注意记忆公理、定理。 教学时要求学生牢记概念、公理、定理,并弄清每个重要数学结论中是描述哪些方面的数学性质的?条件是什么?结论是哪个?应该让学生仔细分析,特别是它的结论,它是推理证明的探索过程中的灵感来源.如”平行四边形对角线互相平分”,研究的是平行四边形的对角线,结论是线段”相等”,也就是指明了这个结论可以用来证明线段相等,当需要符合”有平行四边形”的背景,而需要证明的线段必须是平行四边形的对角线上的两个线段。
四、加强思维训练。 在讲课时按逻辑程序,层层深入,不断地提出问题,使学生不断产生“是什么”、“为什么”的定向反射,注意精心创设思维情境和加强对学生的思维训练。
五、几何证明题的常用分析法 证明几何题,关键要会分析题。分析得当,则证明会顺势利导,迎刃而解。常用的分析法有以下几种: 1、综合法 2、分析法 从命题的结论考虑,推敲使其成立需必备的条件,然后再把条件看成要证的结论继续推敲,如此逐步向上逆推,直到已知的条件为止。 3、两类结合法 将分析法与综合法合并使用。比较起来,分析法利于思考,综合法宜于表达。因此,在实际思考问题时,可综合使用,灵活处理,以利于缩短题设与结论之间的距离,直到完全沟通。
小学生数学逻辑思维训练题
1. 765×213÷27+765×327÷27
解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300
2. (9999+9997+…+9001)-(1+3+…+999)
解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000 (500个9000)
=4500000
3.×19991998-19981998×19991999
解:(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000
4.(873×477-198)÷(476×874+199)
解:873×477-198=476×874+199
因此原式=1
5.×1999-1999×1998+1998×-1997×+„+2×1
解:原式=1999×(2000-1998)+1997×(1998-1996)+„
+3×(4-2)+2×1
=(1999+1997+„+3+1)×2=2000000。
6.297+293+289+„+209
解:(209+297)*23/2=5819
7. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
解: 7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
8. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
解:28×3+33×5-30×7=39。
9. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
10.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分? 解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
11. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
解:每20天去9次,9÷20×7=3.15(次)。
12. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。 解:以甲数为7份,则乙、丙两数共13×2=26(份)
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:7。
13. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?
解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了
74×6-70×5=94(个)。
14. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?
解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
15. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?
解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。
16. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米)。
17. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则
4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)
我们知道,一方面,小学数学的内容虽然较中学简单,没有严格的推理论证,但却有不少的判断、推理,这就为培养小学生的逻辑思维能力提供了十分有利的条件;另一方面,小学生正处于从具体形象思维向抽象逻辑思维过渡的阶段。(这里所说的抽象逻辑思维,主要是指形式逻辑思维。)因此,我们可以说,在小学尤其是中高年级,正是帮助小学生发展抽象逻辑思维的有利时期。所以,《小学数学教学大纲》中明确规定:“……使学生具有初步的逻辑思维能力。”因此,我们可以说:培养学生的思维能力是我们学校教学的一项基本任务,而培养学生的逻辑思维能力则是学校教学中一项重要任务。因为我们要培养社会主义现代化建设所需要的人才,其基本条件就是要具有独立思考的能力和勇于创新的精神。
那么,在教学中我们应如何有计划地培养学生的逻辑思维能力呢?
作为教师,我们应该知道,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(当然包括逻辑思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握和思维能力(尤其是逻辑思维能力)的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断和推理;另一方面,在教学数学知识时,为运用思维方法和形式也提供了具体的内容和材料。然而,数学知识和技能的教学只是为培养学生思维能力的发展提供了有利的条件,还需要教师在教学时有意识地利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的效果。
鉴于上述原因考虑,具体的操作我们可从以下几个方面去考虑:
其一、培养学生逻辑思维能力要趁早抓起,从一年级就要注意有意识地加以培养。如教学生关于数的知识时,我们做教师的就要设法引导学生通过动手操作、观察,逐步进行比较、分析、综合、抽象和概括,形成10以内(乃至更大的)数的概念,理解加、减法的含义,学会10以内(乃至更大的)数的加、减法的计算方法。具体如下:其一、教师借助多媒体或教学挂图,出示下列情景:草地上原有五只鸡,这时,又来了三只鸡。这时,就可以问学生:那么,一共有几只鸡?其二、教师仍借助多媒体或教学挂图,出示下列情景:小花家的院子里有六只羊,小军家的院子里有三只羊。这时,教师就可以问学生:对于上述情况,我们可以补充什么问题?(答案可以是:1、小花家比小军家多几只羊或小军家比小花家少几只羊?2、小花和小军家一共有几只羊?)
其二、培养逻辑思维能力要见缝插针,要尽可能地贯穿于各部分内容的教学中。在教学数学概念、计算法则、解答应用题或动手操作时,我们都要注意培养学生的思维能力(包括逻辑思维的能力)。例如,教学正方形概念时,不应由教师在黑板上画一个正方形后,就告诉学生老师刚才画的就是一个正方形;而应让学生先看一些正方形的实物,然后引导学生发现它们的边和角分别有什么特点,最后再在黑板上画几个正方形,并对正方形的特征作出概括。
至于教学计算法则和规律性知识,则更要注意培养学生判断、推理的能力。例如,教学加法结合律,教师不应刚举一个例字,就迫不及待地告诉学生结论;而是至少举两三个例子,而且,每举一个例子,就设法引导学生作出个别判断——如(4+5)+8=4+(5+8),先把4和5相加,再和8相加,与先把5和8相加,再和4相加,两种计算方法的结果相同。做了上述铺垫后,教师再引导学生对前几个例子进行分析、比较,进而找出它们的共同点予以归纳,最后得出结论。这样做,不但便于学生对加法结合律理解得更透彻,而且,在不知不觉中学到了不完全归纳的方法。
其三、培养学生逻辑思维能力要常抓不懈,要尽可能地贯穿在每一节课的各个环节中。不论是开始的复习,或是教学新知识,还是组织学生练习,教师都要注意结合具体的内容有意识地加以培养。例如,教学20以内的进位加法时,我们不仅要让学生答出得数,还要让他们尽可能地说说自己心里是怎么想的。特别是当学生答的得数有误时,让他说一下自己心里的想法,这很可能有助于学生加深对“凑十”的计算方法的理解,也有助于学生思维能力(包括逻辑思维能力)的培养。
又如,在教学新知识时,不是简单地告诉学生结论或计算方法,而是引导学生去分析、推理,最后归纳出正确的结论或计算方法。
当然,以上所述只是本人认同的观点结合自己的看法,目的无非是想起到抛砖引玉的作用。
思维是人脑以理性形式对客观事物的反映,它是人的一种认识活动。学生具有良好的逻辑思维能力,是学生在学习上获得成功的有力保证。因此,在数学教学中如何培养学生的逻辑思维能力显得特别重要。怎么让小学生形成超强的逻辑思维呢?现结合本人的教学实际,谈谈培养学生逻辑思维能力的几点做法:
小学生超强逻辑思维一、结合内容,培养逻辑思维学生很多知识的掌握都是来源于教学内容,因此结合小学数学教学内容培养学生的逻辑思维能力是较为关键的。我们教师结合小学数学内容培养学生的逻辑思维能力,必须要有意识、有目的。教师在进行小学数学教学时,除了应该考虑数学知识的教学目标外,还应该充分考虑培养学生的逻辑思维能力的教学目标和方法。例如,在教学“多边形面积计算”这个单元时,我除了要求学生掌握这个单元教参中所规定的知识教学目的和要求外,还定出了以下几条在初步逻辑思维能力方面的教学目标和方法。1、培养学生的分析比较能力。通过长方形、正方形、平形四边形、三角形、梯形、组合图形的面积的教学,引导学生分组加以比较这些图形求法的异同点,从而有效地培养学生的分析、比较能力。2、培养学生概括推理能力。例如,教学三角形面积计算时,在学生按照数方格的方法算出面积的基础上,然后提问,有没有更加简单的方法?从而引导学生进行思考,在此基础上,抽象概括出三角形面积的计算公式。从而很好地培养学生抽象概括能力。总之,数学教材处处体现逻辑性,教师千万不能基于教材的表面,只讲数学知识,只有在加强基础知识的同时,重视培养学生初步的逻辑思维能力,自觉地、有目的地挖掘教材本身的逻辑因素,才能不断提高学生的逻辑思维能力。
小学生超强逻辑思维二、重视过程,培养逻辑思维重视思维过程从内容方面讲,要求教师做到三个注重:一是注重算理讲解。如讲小数加减法,教师不能只要求学生掌握的计算小数加减法的法则,而且要讲清算理,让学生知道计算小数加减法时,为什么要先把各数的小数点对齐?二是注重推导过程。如讲圆柱的体积时,教师不仅使学生掌握圆柱的体积的计算公式,而且要讲清怎样切拼推导公式的过程,事实上讲清推导过程,既有利于学生记忆公式,又有利于培养学生逻辑推理能力。三是注重数量关系分析。解应用题的关键是正确分析题里的数量关系,从而找出解题思路,所以应用题教学要注重数量关系分析,客观上,分析数量关系的过程是初步的逻辑思维能力培养、训练和运用的过程。重视思维过程从训练方面讲,要教师让学生除了练法则、公式的应用外,还要让学生练思维的方法和过程。这是培养学生思维能力的一个重要途径。如教学求一个数比另一个数多几的应用题,我就结合实例:哥哥有9本课外书,弟弟有5本课外书。哥哥比弟弟多几本课外书?训练学生如下的思维过程和方法:先想:谁与谁比,谁多谁少(哥哥与弟弟比,哥哥多弟弟少);再想:多的是由哪两部分组成?(一部分是跟弟弟同样多的5本,另一部分是比弟弟多的)最后说要求问题怎么办?(要求哥哥比弟弟多几本课外书?只要从哥哥的课外书本数里去掉同样多的5本课外书,剩下的就是哥哥比弟弟多的本数)在此基础上,教师和学生一起归纳出:先想哪个数比较多,再想比较多的数是由哪两部分组成的,然后从这里面去掉和另一个数同样多的部分,就能算出比另个数多的。这样训练不但学生能够真正掌握这类题的解题方法和思路,而且初步的逻辑思维能力能够得到良好的发展。
小学生超强逻辑思维三、鼓励质疑,培养逻辑思维在小学数学教学中教师要鼓励学生质疑问难。学生肯质疑问难,这是学生勤于思考问题的一个重要体现,勤于思考问题的习惯能够很好地促进学生初步的逻辑思维的发展。教师只有鼓励才能使学生敢于质疑问难。须知学生不敢质疑问难将严重影响班级学习气氛和学生智力发展。怎样才能使学生敢于质疑问难呢?积老师们的经验,首先教师不能扼杀学生中出现的质疑问难的好苗头。学生敢于提问或发表意见是一个极好的苗头,即使是错误的意见或者问倒老师的问题,教师都应予以重视和欢迎,然后加以适当的引导,千万不要在不知不觉中扼杀学生中出现的质疑问难的好苗头。其次,教师要抓住机会鼓励学生大胆质疑问难。我在教学和倍应用题“学校有足球和排球共30个,足球的个数是排球的4倍,足球和排球各有多少个?”(列方程解答)。大部分学生都是把排球的个数设为x解答,我进行讲解时,也是把排球的个数设为x。临下课前有一个学生问:“老师,这道题把足球的个数设为x,行吗?”学生的这种质疑,我表示极度的赞赏,对着全班同学说:“老师先要感谢这位小朋友提了一个非常好的问题,大家要向他学习,上课肯动脑,敢提问,大家说,这道题把足球的个数设为x,行吗?大家课后要好好研究一下,我们下一堂课再进行讲解。”总之,只要我们老师多多鼓励学生质疑问难,就一定能培养学生思维敏捷性、灵活性。
小学生超强逻辑思维四、理性思考,培养逻辑思维数学具有很强的严密性和条理性,因此培养学生初步的逻辑思维能力,要注意逐步培养学生能够有根据有条理地进行思考,比较完整地叙述思考过程、说明理由。扎实的基础知识是学生有根据有条理思考的前提。试想,一个概念不清、法则不知、公式不懂的学生是难以进行有根据有条理地思考问题的。即使是解答一道简单的式子题,如果不掌握有关数的运算法则,不能有根据有条理地进行思考,也是难以求出正确结果的。所以,培养学生有根据有条理地思考应以扎实的基础知识作前提,要教好、教活基础知识,才能促进学生思维的发展。教好基础知识,主要指基础知识要教得正确、扎实,让学生切实掌握。注意不断提高思维的逻辑性是培养学生有根据有条理思考的关键。逻辑思维是一种有步骤有根据有条理的思维。要培养学生有根据有条理地思考,必须不断提高学生思维的逻辑性。例如,用比例方法解答:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?在学生充分思考的基础上可引导:(1)这道题涉及哪三种量?哪种量是一定的?(2)行驶的路程和时间成什么比例关系?(3)怎么列出比例等式进行解答?这个过程一方面表明,学生有条理地思考必须做到分析清楚、判断恰当、推理合乎逻辑,即要有初步的逻辑思维能力,另一方面也表明只有不断提高学生思维的逻辑性才有助于学生有根据有条理要思考。学生有根据有条理地思考要靠教师长期地科学地训练和培养。培养和训练首先要注意适应学生的年龄特点把操作、思维和语言表达结合起来。其次,要注意分层要求、逐步培养。低年级可多采用边让学生操作,边说思路或教师先说出关键性指导词,然后由学生接着说的方法进行。中高年级教师讲完后可逐步让学生自己有根据有条理比较完整地叙述思考过程,并说明理由。例如,教分数连乘、除应用题时,每一步可让学生说说单位“1”是谁,单位“1”是已知还是未知?数量关系是怎样?当然,培养学生有根据有条理地思考过程是一个逐步提高的过程,不能一下要求学生说得有条有理,也不能要求所有的学生都能说得有条有理。但只要坚持训练,逐步地会有较多的学生能够进行有根据的思考和有条理地说明问题。总之,培养学生的逻辑思维能力的方法和形式是多样的,只要我们教师能根据教材特点,结合学生实际,善于思考学生逻辑思维发展的规律,就一定能在教学中培养出逻辑思维能力出色的好学生。
小学生具有直观思维、形象思维、逻辑思维三种基本形式。一般来说,学生对直观思维和形象思维两种形式较有兴趣并运用比较娴熟,对逻辑思维觉得比较抽象且运用比较不那么轻车熟路。由于小学生认识事物掌握事物的过程是由低级到高级,由简单到复杂,由量变到质变的过程。所以,教师要根据学生掌握知识的规律对学生进行逻辑知识进行由浅入深的渗透和对学生逻辑思维进行由浅入深地训练。
我们知道,一方面,小学数学的内容虽然较中学简单,没有严格的推理论证,但却有不少的判断、推理,这就为培养小学生的逻辑思维能力提供了十分有利的条件;另一方面,小学生正处于从具体形象思维向抽象逻辑思维过渡的阶段。(这里所说的抽象逻辑思维,主要是指形式逻辑思维。)因此,我们可以说,在小学尤其是中高年级,正是帮助小学生发展抽象逻辑思维的有利时期。所以,《小学数学教学大纲》中明确规定:“……使学生具有初步的逻辑思维能力。”因此,我们可以说:培养学生的思维能力是我们学校教学的一项基本任务,而培养学生的逻辑思维能力则是学校教学中一项重要任务。因为我们要培养社会主义现代化建设所需要的人才,其基本条件就是要具有独立思考的能力和勇于创新的精神。
那么,在教学中我们应如何有计划地培养学生的逻辑思维能力呢?
作为教师,我们应该知道,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(当然包括逻辑思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握和思维能力(尤其是逻辑思维能力)的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断和推理;另一方面,在教学数学知识时,为运用思维方法和形式也提供了具体的内容和材料。然而,数学知识和技能的教学只是为培养学生思维能力的发展提供了有利的条件,还需要教师在教学时有意识地利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的效果。
鉴于上述原因考虑,具体的操作我们可从以下几个方面去考虑:
其一、培养学生逻辑思维能力要趁早抓起,从一年级就要注意有意识地加以培养。如教学生关于数的知识时,我们做教师的就要设法引导学生通过动手操作、观察,逐步进行比较、分析、综合、抽象和概括,形成10以内(乃至更大的)数的概念,理解加、减法的含义,学会10以内(乃至更大的)数的加、减法的计算方法。具体如下:其一、教师借助多媒体或教学挂图,出示下列情景:草地上原有五只鸡,这时,又来了三只鸡。这时,就可以问学生:那么,一共有几只鸡?其二、教师仍借助多媒体或教学挂图,出示下列情景:小花家的院子里有六只羊,小军家的院子里有三只羊。这时,教师就可以问学生:对于上述情况,我们可以补充什么问题?(答案可以是:1、小花家比小军家多几只羊或小军家比小花家少几只羊?2、小花和小军家一共有几只羊?)
其二、培养逻辑思维能力要见缝插针,要尽可能地贯穿于各部分内容的教学中。在教学数学概念、计算法则、解答应用题或动手操作时,我们都要注意培养学生的思维能力(包括逻辑思维的能力)。例如,教学正方形概念时,不应由教师在黑板上画一个正方形后,就告诉学生老师刚才画的就是一个正方形;而应让学生先看一些正方形的实物,然后引导学生发现它们的边和角分别有什么特点,最后再在黑板上画几个正方形,并对正方形的特征作出概括。
至于教学计算法则和规律性知识,则更要注意培养学生判断、推理的能力。例如,教学加法结合律,教师不应刚举一个例字,就迫不及待地告诉学生结论;而是至少举两三个例子,而且,每举一个例子,就设法引导学生作出个别判断——如(4+5)+8=4+(5+8),先把4和5相加,再和8相加,与先把5和8相加,再和4相加,两种计算方法的结果相同。做了上述铺垫后,教师再引导学生对前几个例子进行分析、比较,进而找出它们的共同点予以归纳,最后得出结论。这样做,不但便于学生对加法结合律理解得更透彻,而且,在不知不觉中学到了不完全归纳的方法。
其三、培养学生逻辑思维能力要常抓不懈,要尽可能地贯穿在每一节课的各个环节中。不论是开始的复习,或是教学新知识,还是组织学生练习,教师都要注意结合具体的内容有意识地加以培养。例如,教学20以内的进位加法时,我们不仅要让学生答出得数,还要让他们尽可能地说说自己心里是怎么想的。特别是当学生答的得数有误时,让他说一下自己心里的想法,这很可能有助于学生加深对“凑十”的计算方法的理解,也有助于学生思维能力(包括逻辑思维能力)的培养。
又如,在教学新知识时,不是简单地告诉学生结论或计算方法,而是引导学生去分析、推理,最后归纳出正确的结论或计算方法。
当然,以上所述只是本人认同的观点结合自己的看法,目的无非是想起到抛砖引玉的作用。
逻辑思维是借助于概念、判断、推理等思维形式所进行的思考活动,是一种有条件、有步骤、有根据、渐进式的思维方式,也是小学生数学能力的核心。因此,在小学数学教学中必须着力培养学生的逻辑思维能力。在本文中,笔者将结合教学实践,就在小学数学教学过程中培养学生的逻辑思维能力的几个重点环节谈谈自己的看法。
一、要重视思维过程的组织
要培养学生的逻辑思维能力,就必须把学生组织到对所学数学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。具体而言,教学中加强思维过程的组织要做好以下几个方面:
首先,要为学生提供感性材料,组织从感性到理性的抽象概括。从具体的感性表象向抽象的理性思考启动,是小学生逻辑思维的显著特征。随着学生对具体材料感知数量的增多、程度的增强,逻辑思维也渐次开始。因此,教学过程中,教师必须为学生提供充分的感性材料,并组织好他们对感性材料从感知到抽象的活动过程,从而帮助他们建立新的概念。例如教学有余数的除法时,可先演示把“10个苹果放在2个盘子里”,然后顺序演示把“9个、8个、7个苹果放在2个盘子里”。在这一过程中,注意引导学生观察盘子里和盘子外苹果的数量,并比较盘子外的苹果个数与盘子个数的大小。学生后发现商是盘子里的苹果的个数,余数是盘子外的苹果个数,还会发现盘子外的苹果个数比盘子的个数要少。这样他们就会知道,余数要小于除数。这种抽象概括过程的展开,完全依赖于“观察----思考”过程的精密组织。
其次,要指导积极迁移,推进旧知向新知转化的过程。数学教学的过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移、推进旧知向新知转化的过程,也是学生继承前人经验的一条捷径。小学数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着。数学教学的目的之一就是挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学平行四边形面积的计算公式时,要唤起学生对“长方形面积的计算公式的推导过程”、“图形的旋转平移”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生学习小数加减法,要在教学整数时就帮助学生理解加法和减法的意义。
再次,要强化练习指导,促进学生实现从一般到个别的运用。学生学习数学时、了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,练习设计要力求巧妙:一是要加强基本练习,注重基本原理的理解;二是要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三是要针对易混易错的知识设计对比练习,使学生获得更为具体更为精确的认识;四要加强实践操作练习和体验学习,帮助学生把人的情感投入到学习中去,具体途经有:有目的的观察、测量、作图、试验与操作等;五要根据学生思维特点设计变式练习。
第四,要指导学生进行分类和整理,促进思维的系统化。教学中,教师要注意指导学生把所学的知识,按照一定的标准或特点进行梳理、分类、整合,使学生的认识组成某种序列,形成一定的结构,结成一个整体,从而促进思维的系统化。
二、要重视思维能力的培养
一是要注意思维训练要从起步时做起,从小学一年级开始,教师的数学教学过程中就应当有意识地培养学生的思维能力;二是要帮助学生牢固掌握数学概念,特别是加、减、乘、除法的意义,分数、小数的意义及一些与之有关的基本性质;三是要在游戏中促进学生思维能力的发展,通过设计灵活多样的游戏,激发学生的学习兴趣;四是要加强语言训练,要让学生用不同的叙述方法来叙述,例如要让学生准确地掌握增加、减少、降低、提高、节约等数学用语;五是要巧妙设计练习,既能够实现教学目标,又能够培养学生的好奇心,激发其学习的主动性和自觉性。
三、要重视寻求正确思维方向的训练
首先,要指导学生认识思维的方向问题。我们都知道,逻辑思维具有多向性。一般而言,包括以下几种情况:
一是顺向性。这种思维方式是以问题的某一条件与某一答案的联系为基础进行的,即在思维时直接利用已有的条件,通过概括和推理得出正确结论,其方向只集中于某一个方面,对问题只寻求一种正确答案。
二是逆向性。与顺向性思维方法相反,逆向性思维是从问题出发,寻求与问题相关联的条件,将只从一个方面起作用的单向联想,变为从两个方面起作用的双向联想的思维方法。
三是横向性。这种思维方式是以所给的知识为中心,从局部或侧面进行探索,把问题变换成另一种情况,唤起学生对已有知识的回忆,沟通知识的内在联系,从而开阔思路。
四是散向性,即发散思维。这种思维方式的特点是从不同的角度、方向和侧面进行思考,进而产生多种、新颖的设想和答案。
其次,要指导学生掌握寻求正确思维方向的方法。培养逻辑思维能力,不仅要使学生认识思维的方向性,更要指导学生寻求正确思维方向的科学方法。为使学生善于寻求正确的思维方向,教学中应注意以下几点:
一是要精心设计思维感性材料。思维的感性材料,就是指以实物直观或具体表象进行思维的材料。培养学生思维能力既要求教师为学生提供丰富的感性材料,又要求教师对大量的感性材料进行精心设计和巧妙安排,从而使学生顺利实现由感知向抽象的转化。例如教学质数、合数概念时,可以先让学生写出几个大于1的自然数,在寻求其约数个数时,学生通过观察、分析、归纳后,可以“发现”约数的个数有两种情况:一种是只有1和本身,另一种是除1和本身外,还有其他约数,从而便引出质数和合数的概念。
二是要依据基础知识进行思维活动。小学数学基础知识包括概念、公式、定义、法则等。学生依据上述知识思考问题,便可以寻求到正确的思维方向。例如有些学生不知道如何作三角形的高,这时应当怎样寻求正确的思维方向呢?很简单,就是先弄准什么是三角形的高,“高的概念”明确了,作起来也就不难了。
三是要联系旧知,进行联想和类比。旧知是思维的基础,思维是通向新知的桥梁。由旧知进行联想和类比,也是寻求正确思维方向的有效途径。联想和类比,就是把两种相近或相似的知识或问题进行比较,找到彼此的联系和区别,进而对所探索的问题找到正确的答案。
四是反复训练,培养思维的多向性。学生思维能力培养,不是靠一两次的练习、训练所能奏效的,需要反复训练,多次实践才能完成。由于学生思维方向常是单一的,存在某种思维定势,所以不仅需要反复训练,而且注意引导学生从不同的方向去思考问题,培养思维的多向性。
四、要重视对良好思维品质的培养
思维品质如何会对思维能力的强弱产生直接影响,因此培养学生逻辑思维能力必须重视良好思维品质的培养。在这方面,要重点抓好以下几个环节:
一是要培养思维的敏捷性和灵活性。思维灵活是思维的灵魂,教学中要充分重视教材中例题和练习中“也可这样算”、“我这样算”“看谁算得快”、“怎样算简单就怎样算”、“我发现”我还发现“等提示,指导学生通过联想和类比,拓宽思路,选择最佳思路,从而培养学生思维的敏捷性和灵活性。
二是要培养思维的广阔性和深刻性。在教学过程中,教师如果注意沟通知识之间的联系,就可以培养思维的广阔性和深刻性。例如,在教学分数应用题时可以启发学生联想倍数应用题,教学百分数应用题时可以启发学生联想起分数应用题。通过这种训练,可以调整和完善学生头脑中的认知结构:从几倍的“几”到几分之几的“几”,再到百分之几的“几”,使之连成一个整体。不仅可以培养学生思维的广阔性,而且可以培养思维的深刻性。
三是要注意培养思维的独立性和创造性。教学中要创造性地使用教材和借助形象思维的参与,培养学生思维的独立性和创造性。例如,教材的例题中前面的多是为学习新知起指导、铺垫作用的,后面的则是为已获得的知识起巩固、加深作用的。因此,对前面例题教学的重点是使学生对原理理解清楚,对后面例题教学则应侧重于实践,即适当放手或完全放手,让学生自己去思考、去操做,以便培养他们思维的独立性。教学中还要重视从直观形象入手,充分调动学生的各种感官,获取多方面感性认识,并借助于形象思维的参与,加强对知识的理解和思维的发展,培养思维的创造性。
训练小学生逻辑思维的书籍
1. 小学生最喜爱的300个逻辑游戏
2. 哈佛给学生做的1400个思维游戏
3. 脑筋急转弯6册
4. 清华北大学生爱做的1500个游戏
5. 脑筋急转弯 思维逻辑训练智力益智开发
6. 一分钟破案
7. 逻辑思维训练1000题
8. 哈佛学生喜欢玩的智趣游戏
9. 提升逻辑思维的200个益智游戏
10. 逻辑思维训练1200题(单卷)
11. 和福尔摩斯一起学思考:脑筋急转弯
12. 训练逻辑思维的16种经典趣题
13. 全世界优等生都在做的个思维游戏
14. 小学生灵动思维密码全解:我是数学逻辑高手
我们知道,一方面,小学数学的内容虽然较中学简单,没有严格的推理论证,但却有不少的判断、推理,这就为培养小学生的逻辑思维能力提供了十分有利的条件;另一方面,小学生正处于从具体形象思维向抽象逻辑思维过渡的阶段。(这里所说的抽象逻辑思维,主要是指形式逻辑思维。)因此,我们可以说,在小学尤其是中高年级,正是帮助小学生发展抽象逻辑思维的有利时期。所以,《小学数学教学大纲》中明确规定:“……使学生具有初步的逻辑思维能力。”因此,我们可以说:培养学生的思维能力是我们学校教学的一项基本任务,而培养学生的逻辑思维能力则是学校教学中一项重要任务。因为我们要培养社会主义现代化建设所需要的人才,其基本条件就是要具有独立思考的能力和勇于创新的精神。
那么,在教学中我们应如何有计划地培养学生的逻辑思维能力呢?
作为教师,我们应该知道,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(当然包括逻辑思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握和思维能力(尤其是逻辑思维能力)的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断和推理;另一方面,在教学数学知识时,为运用思维方法和形式也提供了具体的内容和材料。然而,数学知识和技能的教学只是为培养学生思维能力的发展提供了有利的条件,还需要教师在教学时有意识地利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的效果。
鉴于上述原因考虑,具体的操作我们可从以下几个方面去考虑:
其一、培养学生逻辑思维能力要趁早抓起,从一年级就要注意有意识地加以培养。如教学生关于数的知识时,我们做教师的就要设法引导学生通过动手操作、观察,逐步进行比较、分析、综合、抽象和概括,形成10以内(乃至更大的)数的概念,理解加、减法的含义,学会10以内(乃至更大的)数的加、减法的计算方法。具体如下:其一、教师借助多媒体或教学挂图,出示下列情景:草地上原有五只鸡,这时,又来了三只鸡。这时,就可以问学生:那么,一共有几只鸡?其二、教师仍借助多媒体或教学挂图,出示下列情景:小花家的院子里有六只羊,小军家的院子里有三只羊。这时,教师就可以问学生:对于上述情况,我们可以补充什么问题?(答案可以是:1、小花家比小军家多几只羊或小军家比小花家少几只羊?2、小花和小军家一共有几只羊?)
其二、培养逻辑思维能力要见缝插针,要尽可能地贯穿于各部分内容的教学中。在教学数学概念、计算法则、解答应用题或动手操作时,我们都要注意培养学生的思维能力(包括逻辑思维的能力)。例如,教学正方形概念时,不应由教师在黑板上画一个正方形后,就告诉学生老师刚才画的就是一个正方形;而应让学生先看一些正方形的实物,然后引导学生发现它们的边和角分别有什么特点,最后再在黑板上画几个正方形,并对正方形的特征作出概括。
至于教学计算法则和规律性知识,则更要注意培养学生判断、推理的能力。例如,教学加法结合律,教师不应刚举一个例字,就迫不及待地告诉学生结论;而是至少举两三个例子,而且,每举一个例子,就设法引导学生作出个别判断——如(4+5)+8=4+(5+8),先把4和5相加,再和8相加,与先把5和8相加,再和4相加,两种计算方法的结果相同。做了上述铺垫后,教师再引导学生对前几个例子进行分析、比较,进而找出它们的共同点予以归纳,最后得出结论。这样做,不但便于学生对加法结合律理解得更透彻,而且,在不知不觉中学到了不完全归纳的方法。
其三、培养学生逻辑思维能力要常抓不懈,要尽可能地贯穿在每一节课的各个环节中。不论是开始的复习,或是教学新知识,还是组织学生练习,教师都要注意结合具体的内容有意识地加以培养。例如,教学20以内的进位加法时,我们不仅要让学生答出得数,还要让他们尽可能地说说自己心里是怎么想的。特别是当学生答的得数有误时,让他说一下自己心里的想法,这很可能有助于学生加深对“凑十”的计算方法的理解,也有助于学生思维能力(包括逻辑思维能力)的培养。
又如,在教学新知识时,不是简单地告诉学生结论或计算方法,而是引导学生去分析、推理,最后归纳出正确的结论或计算方法。
当然,以上所述只是本人认同的观点结合自己的看法,目的无非是想起到抛砖引玉的作用。
1、取五斤水,倒入三斤的桶中, H# }+把三斤桶的水倒了,然后把五斤桶中的二斤水倒入三斤桶中;再取五斤水,倒满三斤桶,则五斤桶的水即为四斤。
2、甲乙先过,用时两分钟;乙返回,用时两分钟;丙丁过,用时十分钟;甲返回,用时一分钟,甲乙返回,用时两分钟。
3、首先,顾客给了小赵50元假钞,小赵没有零钱,换了50元零钱,此时小赵并没有赔,当顾客买了20元的东西,由于50元是假钞,此时小赵赔了20元,换回零钱后小赵又给顾客30元,此时小赵赔了20+30=50元。
4、鸡妈妈数数是从后向前数,数到她自己是8,说明她是第八个,她的后面有7只小鸡;鸡妈妈又从前往后数数,数到她她自己是9,说明她前面有8只小鸡;鸡妈妈的孩子总数应该是15,而不是17,鸡妈妈数错的原因是她数了两次都把她自己数进去了。
5、最多能将西瓜切1024次块,就是2的10次方。最少切11块。
6、先用40元钱买20瓶饮料,得20个饮料瓶,4个饮料瓶换一瓶饮料,就得5瓶,再得5个饮料瓶,再换得1瓶饮料,这样总共得20+5+1=26瓶。
7、此题易混淆人的做题思路。多数人认为青蛙一次跳3m,两次就可以跳6米,超过了井的深度,两次就可以跳出井。这是错误的。因为题中说“井壁非常光滑”,说明青蛙在跳到3米高度时,会因为触到井壁而重新落回井底,所以无论这只青蛙跳多少次,它都跳不到井外去,除非它一次跳的高度超过井的深度。
8、这本书的价格是4.9元。小红口袋里就没有钱,小丽口袋里有4.8元。
9、先把狗带过河,返回带一只小羊过河,顺便把狗带回,再把另一只小羊带过河,返回,再把狗带过河。
10、第1个袋装1个,第2个袋装3个,第3个袋装5个,然后把已装有乒乓球的三个袋装在第4个袋里。
1. 小学生最喜爱的300个逻辑游戏
2. 哈佛给学生做的1400个思维游戏
3. 脑筋急转弯6册
4. 清华北大学生爱做的1500个游戏
5. 脑筋急转弯 思维逻辑训练智力益智开发
6. 一分钟破案
7. 逻辑思维训练1000题
8. 哈佛学生喜欢玩的智趣游戏
9. 提升逻辑思维的200个益智游戏
10. 逻辑思维训练1200题(单卷)
11. 和福尔摩斯一起学思考:脑筋急转弯
12. 训练逻辑思维的16种经典趣题
13. 全世界优等生都在做的个思维游戏
14. 小学生灵动思维密码全解:我是数学逻辑高手
1.世界级的马拉松选手每天跑步不超过6公里。因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
以下哪项与上文推理方法相同?
(A)跳远运动员每天早晨跑步。如果早晨有人跑步,则他不是跳远运动员。
(B)如果每日只睡4小时,对身体不利。研究表明,最有价值的睡眠都发生在入睡后第5小时。
(C)家长和小孩做游戏时,小孩更高兴。因此,家长应该多做游戏。
(D)如果某汽车早晨能起动,则晚上也可能起动。我们的车早晨通常能启动,同样,它晚上通常也能启动。
(E)油漆三小时之内都不干。如果某涂料在三小时内干了,则不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。那些没有牛的,通常是好吃懒做的人。因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
这位改革家明显犯了一个逻辑错误。下列选项哪个与该错误相类似?
(A)天下雨,地上湿。现在天不下雨,所以地也不湿。
(B)这是一本好书,因为它的作者曾获诺贝尔奖。
(C)你是一个犯过罪的人,有什么资格说我不懂哲学?
(D)因为他躺在床上,所以他病了。
(E)你说谎,所以我不相信你的话;因为我不相信你的话,所以你说谎。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。经侦破,查明作案人肯定在甲、乙、丙、丁之中。于是,对这四个重大嫌疑犯进行审讯。审讯所得到的口供如下:
甲:我不是作案的。
乙:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
丁:作案的不是我。
经查实:这四个人的口供中只有一个是假的。那么,以下哪项才是正确的破案结果?
(A)甲作案。
(B)乙作案。
(C)丙作案。
(D)丁作案。
(E)甲、乙、丙、丁共同作案。
4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。打猎中,一只鹿中箭倒下,但不知是何人所射。
张说:“或者是我射中的,或者是李将军射中的。”
王说:“不是钱将军射中的。”
李说:“如果不是赵将军射中的,那么一定是王将军射中的。”
赵说:“既不是我射中的,也不是王将军射中的。”
钱说:“既不是李将军射中的,也不是张将军射中的。”
国王让人把射中鹿的箭拿来,看了看,说:“你们五位将军的猜测,只有两个人的话是真的。”请根据国王的话,判定以下哪项是真的?
(A)张将军射中此鹿。
(B)王将军射中此鹿。
(C)李将军射中此鹿。
(D)赵将军射中此鹿。
(E)钱将军射中此鹿。
5.“赵科长又戒烟了。”
由这句话我们不可能得出的结论是
(A)赵科长过去戒过烟,次数可能不止一次。
(B)赵科长过去戒烟未成功,这次仍可能如此。
(C)赵科长烟瘾很大,讲这话的人深信赵科长的烟瘾永远戒不掉。
(D)讲这话的人是在讽刺嘲笑赵科长的戒烟行为。
(E)讲这话的人确信赵科长这次戒烟一定会成功。
6.古希腊柏拉图学园的门口竖着一块牌子“不懂几何者禁入”。这天,来了一群人,他们都是懂几何的人。
那么,他们
(A)可能会被允许进入。
(B)一定不会被允许进入。
(C)一定会被允许进入。
(D)不可能被允许进入。
(E)不可能不被允许进入。
7.所有通过英语六级考试的学生都参加了学校的英语俱乐部,王进参加了英语俱乐部,所以他一定通过了英语六级考试。
以下哪项最好地指出了上述论证的逻辑错误?
(A)部分通过英语六级考试的学生没有参加英语俱乐部。
(B)王进能够参加英语俱乐部是因为它符合加入俱乐部的基本条件。
(C)王进曾经获得过年级英语演讲比赛第一名。
(D)凡愿意每学期缴纳50元会费,并且愿意积极参加俱乐部活动的学生都可以成为俱乐部的成员。
(E)有些参加俱乐部的学生还没有通过英语六级考试。
8.认真学习逻辑知识,加强逻辑训练,可以有效的提高人们的逻辑思维水平和增强逻辑思维能力。小林平时注重逻辑知识的学习和逻辑思维的训练,可想而知,他的思维是有条理和逻辑性的。上面的论述犯了以下哪项错误?
(A)转移论题。
(B)自相矛盾。
(C)以偏概全。
(D)论据和论题不相干。
(E)推不出。
9.如果电动剃刀中的电池用完了,剃刀就不能工作。我的剃刀不能工作,因此,电池一定是用完了。
以下哪句与以上论证相似?
(A)如果马拉多纳上场,阿根廷队就一定会赢。阿根廷队输了,所以马拉多纳一定没上场。
(B)一个证据没有被破坏除非它不能被接受。这个证据不能被接受,因此,它被破坏了。
(C)如果某甲犯罪了,他的指印可以在现场找到。某甲没有犯罪,所以,某甲的指印没有在现场找到。
(D)老葛是我的叔叔,小菲是老葛的侄女。因此,小菲是我的姐姐。
(E)阿森将戴太阳镜,如果海岸可被清楚地看见。海岸可被清楚地看见,因此,阿森将戴太阳镜。
10.一家钟表店被盗,经查可以肯定是甲、乙、丙、丁中的某一个人所为。审讯中,甲说:“我不是罪犯。”乙说:“丁是罪犯。”
丙说:“乙是罪犯。”丁说:“我不是罪犯。”经调查证实四人中只有一个说的是真话。
根据已知条件,下列哪个判断为真。
(A)甲说的是假话,因此,甲是罪犯。
(B)乙说的是真话,丁是罪犯。
(C)丙说的是真话,乙是罪犯。
(D)丁说的是假话,丁的确是罪犯。
(E)四人中说的全是假话,丙才是罪犯。
11.先天的遗传因素和后天的环境影响对人的发展所起的作用到底哪个重要?双胞胎的研究对于回答这一问题有重要的作用。惟环境影响决定论者预言,如果把一对双胞胎儿完全分开抚养,同时把一对不相关的婴儿放在一起抚养,那么,待他们长大成人后,在性格等内在特征上,前两者之间决不会比后两者之间有更多的类似。实际的统计数据并不支持这种极端的观点,但也不支持另一种极端观点,即惟遗传因素决定论。
从以上论述最能推出以下哪个结论?
(A)为了确定上述两种极端观点哪一个正确,还需要进一步的研究工作。
(B)虽然不能说环境影响对于人的发展起唯一决定作用,但实际上起重要作用。
(C)环境影响和遗传因素对人的发展都起着重要的作用。
(D)试图通过改变一个人的环境来改变一个人是徒劳无益的。
(E)双胞胎研究是不能令人满意的,因为它得出了自相矛盾的结论。
12.一种对许多传染病非常有效的药物,目前只能从一种叫ibora的树的皮中提取,而这种树在自然界很稀少,5
000棵树的皮才能提取1公斤药物。因此,不断生产这种药物将不可避免地导致该种植物的灭绝。
以下哪项如果为真,则最能削弱上述论断?
(A)把从ibora树皮上提取的药物通过一个权威机构发放给医生。
(B)从ibora树皮提取药物生产成本很高。
(C)ibora的叶子在多种医学之品种都使用。
(D)ibora可以通过插枝繁衍和在人工培育下生长。
(E)ibora主要生长在人迹罕至的地区。
13.“作为本公司的法人代表,我郑重声明:王也飞签署的任何合同都无效。王也飞不是法人代表。如他是法人代表,那我就不是,因为一个公司只能有一个法人代表。”
以下哪句话最能代表讲话人所表明的立场观点?
(A)公司只有一个法人代表。
(B)王也飞不是法人代表。
(C)王也飞没有资格签署合同。
(D)王也飞不代表本公司。
(E)我不承认王也飞签署的合同。
14.有甲、乙、丙三个学生,一个出生在北京,一个出生在上海,一个出生在武汉。他们中一个是学国际金融专业的,一个是学工商管理专业的,一个是学外语专业的。其中:
①甲不是学国际金融的,乙不是学外语的。
②学国际金融的不出生在上海。
③学外语的出生在北京。
④乙不出生在武汉。
请根据已知的条件,判断甲的专业:
(A)国际金融。
(B)工商管理。
(C)外语。
(D)三种专业都可能。
(E)三种专业都不可能。
15.如果佣人出现,他将被发现;如果他被发现,他就会受到询问;他如果受到询问,他将回答问题,他的声音可以被听到。如果未看到佣人也未听到他的声音,他一定在工作;如果他在工作,他一定会出现,但没有人听到佣人的声音。
结合上文,以下哪一项能够成立?
(A)佣人被问。
(B)佣人不被问。
(C)未看见佣人。
(D)看到佣人。
(E)以上全不是。
16.只有小陈参加,小王和小张才会一起吃饭;而小陈只到她家附近的酒店吃饭,那里距市中心几里路远;只有小王去,小宋才会去酒店吃饭。
如果上面的资料是对的,下面哪一条也一定对?
(A)小宋不与小陈在酒店一起吃饭。
(B)小张不与小宋、小陈一起在酒店吃饭。
(C)小王、小宋和小张不在酒店一起吃饭。
(D)小宋不在市中心的酒店吃饭。
(E)小王与小张不会一起在市中心吃饭。
17.有人认为当前的大学教育在传授基本技能上是失败的。他们对若干大公司人事部门负责人进行了一次调查,发现很大一部分新上岗的工作人员中都没有很好掌握基本的写作、数量和逻辑技能。
如果上述论点为真,那么以下哪项也为真?
(A)现在的大学里没有基本技能方面的课程了。
(B)新上岗人员中极少有大学生。
(C)写作、数量、逻辑方面的基本技能对胜任工作很重要。
(D)大公司的新上岗人员基本上代表了当前的大学毕业生的水平。
(E)过去的大学生比现在的大学生接受了更多的基本技能教育。
18.在世界范围内禁止生产各种破坏臭氧层的化学物质可能仅仅是一种幻想。大量这样的化学物质已经生产出来,并且以成千上万台冰箱的冷却剂的形式而存在。当这些化学物质到达大气层中的臭氧层时,起作用不可能停止。因此,没有任何方式可以阻止这类化学物质进一步破坏臭氧层。
下列哪项如果为真,则能最严重的削弱以上论证。
(A)不可能精确地测量冰箱里冷却剂这种破坏臭氧层的化学物质的量是多少。
(B)在现代社会中,为了避免不卫生的和潜在的威胁生命的情况发生,食物的冷藏是必要的。
(C)不会破坏臭氧层的替代品还未开发出来,并且替代品可能会的冰箱目前使用的冷却剂昂贵。
(D)即是人们放弃使用冷藏设备,已经存在的冰箱里的冷却剂也是对大气层的一个威胁。
(E)当冰箱的使用寿命结束时,冰箱里的冷却剂可完全回收并且重新利用。
19.龙口开发区消防站向市政府申请购置一辆新的云梯消防车,这种云梯消防车是扑灭高层建筑火灾的重要设施。市政府否决了这项申请,理由是:龙口开发区现只有五幢高层建筑,消防站现有的云梯消防车足够了。
以下哪项是市政府的决定所必须假设的?
(A)龙口开发区至少近期内不会有新的高层建筑封顶投入使用。
(B)市政府的财政面临困难无力购置云梯消防车。
(C)消防站的云梯消防车中,至少有一辆近期内不会退役。
(D)龙口开发区的高层建筑内的防火设施都符合标准。
(E)这种云梯消防车对于扑灭高层建筑的火灾并不是不可缺少的。
20.世界卫生组织1995年调查报告显示,70%的肺癌患者都有吸烟史。这说明,吸烟将极大增加患肺癌的危险。
以下哪项,如果是真的,将严重削弱上述结论?
(A)有吸烟史的人在1995年超过世界总人口的65%。
(B)1995年世界吸烟的人数比1994年增加了70。
(C)被动吸烟被发现同样有致癌的危险。
(D)没有吸烟史的人数在1995年超过世界总人口的40%。
(E)1995年未成年吸烟者的人数有惊人的增长。
21.有一逻辑推理单选题的四个选择答案分别是:
(1)作案者是甲。
(2)作案者是乙。
(3)作案者是丙。
(4)作案者是甲或乙。
设该题是成立的,则该题的正确答案应是:
(A)(1)
(B)(2)
(C)(3)
(D)(4)
(E)无法确定
22.贾女士:本报对减肥成功者所作的一项调查显示,70%的受调查者称服用东参减肥丸,30%的称服用灵芝瘦身丹。没有被调查者服用其他减肥药。
陈先生:这说明在被调查者中,服用东参减肥丸的人数,比服用灵芝瘦身丹的两倍还多。
贾女士:另外,25%的被调查者称他们从不通过药物减肥。
以下哪项如果为真,最有利于解释贾女士的断定中看来存在的矛盾?
(A)30%的服用灵芝瘦身丹的被调查者,包括在70%的服用东参减肥丸的被调查者中。
(B)一些被调查者服用上述两种减肥药。
(C)被调查者的人数超过100人。
(D)被调查者在整个减肥成功者中,只占很少的比例。
(E)减肥成功者在整个减肥者中只占很少的比例。
23.甲、乙、丙三人居一学生宿舍。甲报案遗失2
000元。保安人员经过周密调查,得出结论是丙作的案。班主任说:“这是最不可能的。”保安人员说:“当所有其他的可能性都被排除了,剩下的可能性不管看来是多么不可能,都一定是事实。”
以下哪项如果是真的,将最为有力地动摇保安人员的结论?
(A)保安人员事实上不可能比班主任更了解学生。
(B)对非法行为惩处的根据,不能是逻辑推理,而只能是证据。
(C)保安人员无法穷尽地把握所有的可能性。
(D)丙是班上公认的品学兼优的学生。
(E)乙有作案的前科。
24.老陈:我在下围棋的时候,全神贯注到这种程度,以至我可以说,这时如果有人呼我的话,肯定是白费劲,因为我什么也不会听到。
老焦:如果你什么也听不到的话,怎么会知道有人呼你呢?
以下哪项是对老焦的反应的最恰当的评价?
(A)老焦的话正确地指出了老陈的话中存在的逻辑矛盾。
(B)老焦的话假设:在老陈下围棋的时候,实际上并没有人呼他。
(C)老焦的话中包含着逻辑矛盾。
(D)老焦的话假设:老陈不可能知道有人呼他,除非他听到了呼叫。
(E)老焦的话假设,如果有人呼老陈,他肯定能够听到
25.在美国,本国制造的汽车的平均耗油量是每21.5英里一加仑,而进口汽车的平均耗油量是每30.5英里一加仑。显然,美国车的买主在汽油上的花费要远高于进口汽车的买主。因此,美国的汽车工业在和外国汽车制造商的竞争中将失去很大一部分国内市场。
上述论证基于以下哪项假设?
(A)美国制造的汽车和进口汽车的价格性能比大致相同。
(B)汽车在使用过程中的花费是买主在购买汽车时的主要考虑之一。
(C)美国汽油的价格呈上涨趋势。
(D)美国汽车的最高时速要高于进口汽车。
(E)目前在美国国内,国产汽车的销售优于进口汽车。
答案:
1.E 2.D 3.B 4.E 5.E
6.A 7.E 8.E 9.B 10.A
11.C 12.D 13.C 14.C 15.E
16.E 17.D 18.E 19.C 20.A
21.C 22.B 23.C 24.D 25.B
1.如何问问题?
有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话。但是,他们两个人在回答别人的问题时,只通过点头与摇头来表示,不讲话。有一天,一个人面对两条路:A与B,其中一条路是通向京城的,而另一条路是通向一个小村庄的。这时,他面前站着甲与乙两人,但他不知道此人是甲还是乙,也不知道“点头”是表示“是”还是表示“否”。现在,他必须问一个问题,才可能断定出哪条路通向京城。那么,这个问题应该怎样问?
2.他们的职业是分别什么?
小王、小张、小赵三个人是好朋友,他们中间其中一个人下海经商,一个人考上了重点大学,一个人参军了。此外他们还知道以下条件:小赵的年龄比士兵的大;大学生的年龄比小张小;小王的年龄和大学生的年龄不一样。请推出这三个人中谁是商人?谁是大学生?谁是士兵?
3.谁做对了?
甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后,甲说:“我做错了。”乙说:“甲做对了。”丙说:“我做错了。”在一旁的丁看到他们的答案并听了她们的意见后说:“你们三个人中有一个人做对了,有一个人说对了。”请问,他们三人中到底谁做对了?
4.鞋子的颜色
小丽买了一双漂亮的鞋子,她的同学都没有见过这双鞋了,于是大家就猜,小红说:“你买的鞋不会是红色的。”小彩说:“你买的鞋子不是黄的就是黑的。”小玲说:“你买的鞋子一定是黑色的。”这三个人的看法至少有一种是正确的,至少有一种是错误的。请问,小丽的鞋子到底是什么颜色的?
5.谁偷吃了水果和小食品?
赵女士买了一些水果和小食品准备去看望一个朋友,谁知,这些水果和小食品被他的儿子们偷吃了,但她不知道是哪个儿子。,为此,赵女士非常生气,就盘问4个儿子谁偷吃了水果和小食品。老大说道:“是老二吃的。”老二说道:“是老四偷吃的。”老三说道:“反正我没有偷吃。”老四说道:“老二在说谎。”这4个儿子中只有一个人说了实话,其他的3个都在撒谎。那么,到底是谁偷吃了这些水果和小食品?
6.谁在说谎,谁拿走了零钱?
姐姐上街买菜回来后,就随手把手里的一些零钱放在了抽屉里,可是,等姐姐下午再去拿钱买菜的时候发现抽屉里的零钱没有了,于是,她就把三个妹妹叫来,问她们是不是拿了抽屉里的零钱,甲说:“我拿了,中午去买零食了。”乙说:“我看到甲拿了。”丙说:“总之,我与乙都没有拿。”这三个人中有一个人在说谎,那么到底谁在说谎?谁把零钱拿走了?
7.夜明珠在哪里?
一个人的夜明珠丢了,于是他开始四处寻找。有一天,他来到了山上,看到有三个小屋,分别为1号、2号、3号。从这三个小屋里分别走出来一个女子,1号屋的女子说:“夜明珠不在此屋里。”2号屋的女子说:“夜明珠在1号屋内。”3号屋的女子说:“夜明珠不在此屋里。”这三个女子,其中只有一个人说了真话,那么,谁说了真话?夜明珠到底在哪个屋里面?
8.谁的成绩好
玲玲和芳芳经常在一起玩,有一次,有人问她们:“你们俩经常在一起玩,这次期末考试你们谁的成绩好呀?”玲玲说:“我的成绩比较好一点。”小红说芳芳说:“我的成绩比较差一些。”她们这两个人之中至少有一个人没有说实话。那么,到底她们谁的考试成绩好?
9.她们分别买了什么
小丽、小玲、小娟三个人一起去商场里买东西。她们都买了各自需要的东西,有帽子,发夹,裙子,手套等,而且每个人买的东西还不同。有一个人问她们三个都买了什么,小丽说:“小玲买的不是手套,小娟买的不是发夹。”小玲说:“小丽买的不是发夹,小娟买的不是裙子。”小娟说:“小丽买的不是帽子,小娟买的是裙子。”她们三个人,每个人说的话都是有一半是真的,一半是假的。那么,她们分别买了什么东西?
10.谁偷了奶酪
有四只小老鼠一块出去偷食物(它们都偷食物了),回来时族长问它们都偷了什么食物。老鼠A说:我们每个人都偷了奶酪。老鼠B说:我只偷了一颗樱桃。老鼠C说:我没偷奶酪。老鼠D说:有些人没偷奶酪。族长仔细观察了一下,发现它们当中只有一只老鼠说了实话。那么下列的评论正确的是:
a.所有老鼠都偷了奶酪;
b.所有的老鼠都没有偷奶酪;
c.有些老鼠没偷奶酪;
d.老鼠B偷了一颗樱桃。
11.一句问路的话
一个人站在岔道口,分别通向A国和B国,这两个国家的人非常奇怪,A国的人总是说实话,B国的人总是说谎话。路口站着一个A国人和一个B国人:甲和乙,但是不知道他们真正的身份,现在那个人要去B国,但不知道应该走哪条路,需要问这两个人。只许问一句。他是怎么判断该走那条路的?
12.为什么小张是A队的
有一天,学校的学生在做游戏,A队只准说真话、B队只准说假话;A队在讲台西边,B队在讲台东边。这时,叫讲台下的一个学生上来判断一下,从A、B两队中选出的一个人--小张,看他是哪个队的。这个学生从A或B队中任意抽出了一个队员去问小张是在讲台的西边而是东边叫其中一个队员的人去问小张是在讲台西边还是东边。这个队员回来说,小张说他在讲台西边。这个学生马上判断出来小张是A队的,为什么?
13.凶手是谁
小阳的妹妹是小蒂和小红;他的女友叫小丽。小丽的哥哥是小刚和小温。他们的职业分别是:
小阳:医生
小刚:医生
小蒂:医生
小温:律师
小红:律师
小丽:律师
这6人中的一个杀了其余5人中的一个。
(1)假如这个凶手和受害者有一定的亲缘关系,那么说明凶手是男性;
(2)假如这个凶手和受害者没有一定的亲缘关系,那么说明凶手是个医生;
(3)假如这个凶手和受害者的职业一样,那么说明受害者是男性;
(4)假如这个凶手和受害者的职业不一样,那么说明受害者是女性;
(5)假如这个凶手和受害者的性别一样,那么说明凶手是个律师;
(6)假如这个凶手和受害者的性别不一样,那么说明受害者是个医生。
根据上面的条件,请问凶手是谁?
提示:根据以个陈述中的假设与结论,判定哪3个陈述组合在一起不会产生矛盾。
14.小王是怎么算出来的
某企业老板在对其员工的思维能力进行测试时出了这样一道题:某大型企业的员工人数在1700~1800之间,这些员工的人数如果被5除余3,如果被7除余4,如果被11除余6。那么,这个企业到底有多少员工?员工小王略想了一下便说出了答案,请问他是怎么算出来的?
15.幼儿园里有多少小朋友
老师让幼儿园的小朋友排成一行,然后开始发水果。老师分发水果的方法是这样的:从左面第一个人开始,每隔2人发一个梨;从右边第一个人开始,每隔4人发一个苹果。如果分发后的结果有10个小朋友既得到了梨,又得到了苹果,那么这个幼儿园有多少个小朋友?
16.桌子分别是什么价格
一个家具店里有三种桌子,其价格分别如下:
(1)他们的单价各不相同;
(2)它们的单价加起来共4000元;
(3)第二种桌子比第一种桌子便宜400元;
(4)第三种桌子的单价是第二种的2倍。
那么这三种桌子的单价各是多少?
17.打碎了多少个陶瓷瓶
一个陶瓷公司要给某地送2000个陶瓷花瓶,于是就找一个运输公司运陶瓷花瓶。运输协议中是这样规定的:
(1)每个花瓶的运费是1元;
(2)如果打碎1个,不但不给运费,还要赔偿5元。
最后,运输公司共得运费1760元。那么,这个运输公司在运送的过程中打碎了多少个陶瓷花瓶?
18.分苹果
妈妈要把72个苹果给分兄弟两人,她的分法是这样的:
(1)第一堆的2/3与第二堆的5/9分给了哥哥;
(2)两堆苹果余下的共39个苹果分给了弟弟。
那么,这两堆苹果分别有多少个呢?
19.两对双胞胎。
在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。这四对双胞胎中,姐姐分别是ABCD,妹妹分别是abcd。一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊?”
B说:“C的妹妹是d。”
C说:“D的妹妹不是c。”
A说:“B的妹妹不是a。”
D说:“他们三个人中只有d的姐姐说的是事实。”
如果D的话是真话,你能猜出谁和谁是双胞胎吗?
20.奇怪的两姐妹。
有一个人在一个森林里迷路了,他想看一下时间,可是又发现自己没带表。恰好他看到前面有两个小女孩在玩耍,于是他决定过去打听一下。更不幸的是这两个 小女孩有一个毛病,姐姐上午说真话,下午就说假话,而妹妹与姐姐恰好相反。但他还是走近去他问她们:“你们谁是姐姐?”胖的说:“我是。”瘦的也说:“我 是。”他又问:现在是什么时候?胖的说:“上午。”“不对”,瘦的说:“应该是下午。”这下他迷糊了,到底他们说的话是真是假?
21.走哪条路?
有一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。第一个木牌上写着:这条路上有宾馆。第二个木牌上写着:这条路上没有宾馆。第三个木牌上写着:那两个木牌有一个写的是事实,另一个是假的。相信我,我的话不会有错。假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,那条路上有宾馆哪条路上有宾馆?
22.今天星期几?
有一富翁,为了确保自己的人身安全,雇了双胞胎兄弟两个作保镖。兄弟两个确实尽职尽责,为了保证主人的安全,他们做出如下行事准则:
a.每周一、二、三,哥哥说谎;
b.每逢四、五、六,弟弟说谎;
c.其他时间两人都说真话。
一天,富翁的一个朋友急着找富翁,他知道要想找到富翁只能问兄弟俩,并且他也知道兄弟俩个的做事准则,但不知道谁是哥哥,谁是弟弟。另外,如果要知道答案,就必须知道今天是星期几。于是他便问其中的一个人:昨天是谁说谎的日子?结果两人都说:是我说谎的日子。你能猜出今天是星期几吗?
23.玩扑克。
Jack夫妇请了Tom夫妇和Henrry夫妇来他们家玩扑克。这种扑克游戏有一种规则,夫妇两个不能一组。Jack跟Lily一组,Tom的队友是Henrry的妻子,Linda的丈夫和Sara一组。那么这三对夫妇分别为:
A.Jack一Sara,Tom一Linda,Henrry一Lily;
B.Jack一Sara,Tom~Lily,Henrry一Linda;
C.Jack一Linda,Tom一Lily,Henrry一Sara;
D.Jack一Lily,Tom一Sara,Henrry一Linda
24.谁是冠军?
电视上正在进行足球世界杯决赛的实况转播,参加决赛的国家有美国、德国、巴西、西班牙、英国、法国六个国家。足球迷的李锋、韩克、张乐对谁会获得此次世界杯的冠军进行了一番讨论:韩克认为,冠军不是美国就是德国;张乐坚定的认为冠军决不是巴西;李锋则认为,西班牙和法国都不可能取得冠军。比赛结束后,三人发现他们中只有一个人的看法是对的。那么哪个国家获得了冠军?
25.甲是哪个部落的人
有一个人到墨西哥探险,当他来到一片森林时,他彻底迷路了,即使他拿着地图也不知道该往哪走,因为地图上根本就没有标记出这一地区。无奈,他只好向当地的土著请求帮助。但是他想起来在曾有同事提醒他:这个地区有两个部落,而这两个部落的人说话却是相反的,即A部落的人说真话,B部落的人说假话。恰在这时,他遇到了一个懂英语的当地的土著甲,他问他:“你是哪个部落的人?”甲回答:“A部落。”于是他相信了他。但在途中,他们又遇到了土著乙,他就请甲去问乙是哪个部落的。甲回来说:“他说他是A部落的。”忽然间这个人想起来同事的提醒,于是他奇怪了,甲到底是哪个部落的人,A还是B?
26.猜城市。
对地理非常感兴趣的几个同学聚在一起研究地图。其中的一个同学在地图上标上了标号A、B、C、D、E,让其他的同学说出他所标的地方都是哪些城市。甲说:B是陕西。E是甘肃;乙说:B是湖北,D是山东;丙说:A是山东,E是吉林;丁说:C是湖北,D是吉林;戊说:B是甘肃,C是陕西。这五个人每人只答对了一个省,并且每个编号只有一个人答对。你知道ABCDE分别是哪几个省吗?
27.各有多少人民币?
爸爸为了考考儿子的智力,给儿子出了道题。爸爸说:“我手里有1元、2元、5元的人民币共60张,总值是200元,并且1元面值的人民币比2元的人民币多4张。儿子,给爸爸算算这三种面值的人民币各有多少张?”儿子眨了眨眼睛,摸摸脑袋,也不知道怎么算。你能算出来吗?
28.哪个正确
在一次地理考试结束后,有五个同学看了看彼此五个选择题的答案,其中:
同学甲:第三题是A,第二题是C。
同学乙:第四题是D,第二题是E。
同学丙:第一题是D,第五题是B。
同学丁:第四题是B,第三题是E。
同学戊:第二题是A,第五题是C。
结果他们各答对了一个答案。根据这个条件猜猜哪个选项正确?
a.第一题是D,第二题是A;
b.第二题是E,第三题是B;
c.第三题是A,第四题是B;
d.第四题是C,第五题是B。
29.如何分酒?
一个人晚上出去打了10斤酒,回家的路上碰到了一个朋友,恰巧这个朋友也是去打酒的。不过,酒家已经没有多余的酒了,且此时天色已晚,别的酒家也都已经打烊了,朋友看起来十分着急。于是,这个人便决定将自己的酒分给他一半,可是朋友手中只有一个7斤和3斤的酒桶,两人又都没有带称,如何才能将酒平均分开呢?
30.赔了多少?
一天,小赵的店里来了一位顾客,挑了20元的货,顾客拿出50元,小赵没零钱找不开,就到隔壁小韩的店里把这50元换成零钱,回来给顾客找了30元零钱。过一会,小韩来找小赵,说刚才的是假钱,小赵马上给小李换了张真钱。
问:在这一过程中小赵赔了多少钱?
31.马匹喝水。
老王要养马,他有这样一池水:
如果养马30匹,8天可以把水喝光;
如果养马25匹,12天把水喝光。
老王要养马23匹,那么几天后他要为马找水喝?
32.竞赛成绩。
小强参加学校举行的小学生知识能力竞赛,比赛结束后,乐乐问小强得了第几名,小强故意卖关子,说:“我考的分数、名次和我的年龄的乘积是1958,你猜猜看。”乐乐想了没多久就说出了小强的分数、名次和年龄。
那么,你知道小强多大吗?他的竞赛名次和分数呢?
33.买卖衣服。
小丽花90元买了件衣服,她脑子一转,把这件衣服120元卖了出去,她觉得这样挺划算的,于是又用100元买进另外一件衣服,原以为会150元卖出,结果卖亏了,90元卖出。问:你觉得小丽是赔了还是赚了?赔了多少还是赚了多少?
34.鸡妈妈数数。
鸡妈妈领着自己的孩子出去觅食,为了防止小鸡丢失,她总是数着,从后向前数到自己是8,从前向后数,数到她是9。鸡妈妈最后数出来她有17个孩子,可是鸡妈妈明明知道自己没有这么多孩子。那么这只糊涂的鸡妈妈到底有几个孩子呢?鸡妈妈为什么会数错?
35.过桥。
星期天,洛洛全家人出去游玩,由于玩的太高兴了,忘记了时间,他们慌慌张张来到一条小河边,河上有座桥,一次只允许两个人通过。如果他们一个一个过桥的话,洛洛需要15秒,妹妹要20秒,爸爸要8秒,妈妈要10秒,奶奶要23秒。如果两个一块过桥的话,只能按着走路慢的人的速度来走。过桥后还要走2分钟的路。洛洛一家人急着到对面去赶最后一班的公交车。他们只有3分钟的时间,问小明一家能否赶上公交车?他们该怎样过桥?过桥用了多长时间?
36.卖苹果。
一个商人赶一辆马车走50公里的路程去县城卖50箱苹果,一个箱子里有30个苹果。马车一次可以拉10箱苹果。但商人进城时喜欢带上他的儿子。在进城的路上他的儿子每走一公里由于口渴都要吃掉一个苹果。那么商人走到县诚可以卖出多少个苹果?
37.青蛙跳井。
有一口深4米的井,井壁非常光滑。井底有只青蛙总是往井外跳,但是,这只青蛙每次最多能跳3米,你觉得这只青蛙几次能跳到井外去吗?为什么?
38.分桃子。
幼儿园的老师给三组小孩分桃子,如只分给第一组,则每个孩子可得7个;如只分给第二组,则每个孩子可得8个;如只分给第三组,则每个孩子可得9个。
老师现在想把这些苹果平均分别三组的孩子,你能告诉她要每个孩子分几个吗?
39.运大米。
有100石大米,需要用牛车运到米行,米行恰巧找来了100辆牛车,牛车有大小之分,大牛车一次可以运三石,中型的牛车可以运两石,而小牛车却需要用两辆才能运一石。请问如果既要把大米运完又要把100辆车用够,该如何分配牛车?
40.弹珠有多少?
天天跟甜甜一块到草地上玩弹珠,天天说:“把你的弹珠给我2个吧,这样我的弹珠就是你的3倍了。”甜甜对天天说:“还是把你的弹珠给我2个吧,这样我们的弹珠就一样多了。”分析一下,天天跟甜甜原来各有多少个弹珠?
41.天会黑吗?
6点放学,雨还在下,丽丽为了考考青青,便对青青说:“青青,雨已经下了三天了,看样子不打算停了,你觉得40小时后天会黑吗?”
42.开灯。
妈妈跟小军一块去逛街,回来后天已经黑了,妈妈叫小军开灯,小军想捉弄一下妈妈,连拉了7次灯,猜猜小军把灯拉亮没?如果拉20次呢?25次呢?
43.分书架。
毕业了,寝室的5个人需要分书架,一共有3个一模一样的书架,把这三个书架分给3个人,然后分到书架的三个人各拿出1000元,平均分给其余两人。这样一分,大家都觉得挺合理的。事后,其中一人算了半天也不知道到底一个书架是多少钱,你能告诉他吗?
44.买饮料。
小李有40元钱,他想用他们买饮料,老板告诉他,2元钱可以买一瓶饮料,4个饮料瓶可以换一瓶饮料。那么,小李可以买到多少瓶饮料?
45.切西瓜。
用水果刀平整地去切一个大西瓜,一共切10刀,最多能将西瓜切成多少块?最少能切多少块?
46.年龄各是多少?
一个家庭有4个儿子,把这四个儿子的年龄乘起来积为15,那么,这个家庭四个儿子的年龄各是多大?
47.哪个数最小?
有A、B、C、D四个数,它们分别有以下关系:A、B之和大于C、D之和,A、D之和大于B、C之和,B、D之和大于A、C之和。请问,你可以从这些条件中知道这四个数中那个数最小吗?
48.做题。
老师给全班60个学生布置了两道作业题,其中有40个人做对了第一道题,有31个人做对了第二道题,有4个人两道题都做错了。那么,你能算出来两道题都做对的人数吗?
49.解题
弟弟让姐姐帮他解答一道数学题,一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。姐姐看了以后,心里很是着急,觉得自己摸不到头绪,你能帮姐姐得到这首题的答案吗?
50.头巾的颜色。
有一队人一起去郊游,这些人中,他们有的人戴的是蓝色的头巾,有的人戴的是黄色的头巾。在一个戴蓝色头巾的人看来,蓝色头巾与黄色头巾一样多,而戴黄色头巾的人看来,蓝色头巾比黄色头巾要多一倍。那么,到底有几个人戴蓝色头巾,几个人黄色头巾?
★ 逻辑思维读后感
★ 逻辑思维训练题
★ 如何练习逻辑思维
★ 逻辑思维恐怖故事
★ 少儿逻辑思维课