小升初数学公式:工程问题公式

| 收藏本文 下载本文 作者:兮兮嘻

下面是小编整理的小升初数学公式:工程问题公式(共含6篇),欢迎您阅读分享借鉴,希望对您有所帮助。同时,但愿您也能像本文投稿人“兮兮嘻”一样,积极向本站投稿分享好文章。

小升初数学公式:工程问题公式

篇1:小升初数学公式:工程问题公式

工程问题公式

(1)一般公式:

工效×工时=工作总量;

工作总量÷工时=工效;

工作总量÷工效=工时。

(2)用假设工作总量为“1”的方法解工程问题的公式:

1÷工作时间=单位时间内完成工作总量的几分之几;

1÷单位时间能完成的几分之几=工作时间。

(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)

今天就和大家就分享到这,祝各位愉快!更多内容尽情关注!

篇2:小学数学公式――和差问题公式

什么是和差问题?已知大小两个数的和,以及了们的差,求这两个数各是多少的应用题叫做和差问题。

什么是和倍问题?已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题叫做和倍问题。

什么是差倍问题?已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题叫做差倍问题。

什么是平均数?平均数是指在一组数据中所有数据之和再除以数据的个数。

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数+1)=大数

小数×倍数=大数

(或小数+差=大数)

平均数问题公式

总数量÷总份数=平均数。

[小学数学公式大全――和差问题公式]

篇3:小学生数学公式植树问题公式

随着社会的发展、科学的进步,在今后2l世纪的信息社会,人人都需要数学。这篇小学生必备数学公式:植树问题公式,希望可以加强你的基础。

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

[小学生必备数学公式植树问题公式]

篇4:数学公式之植树问题公式

数学公式之植树问题公式

小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,为同学们特别提供了数学公式之植树问题,希望对大家的学习有所帮助!

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

为大家整理的数学公式之植树问题,更多小学生辅导相关内容请随时关注小学频道!

[数学公式之植树问题公式]

篇5:小升初数学公式

第一部分: 概念。

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数,乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7.什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.什么叫方程式 答:含有未知数的等式叫方程式。

9.什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20,一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。

22.什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

23.什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

24.比例的基本性质:在比例里,两外项之积等于两内项之积。

25.解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

26.正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

27.反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

28.百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

31.把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

32.把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

33.要学会把小数化成分数和把分数化成小数的化发。

34.最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个, 叫做最大公约数。)

35.互质数: 公约数只有1的两个数,叫做互质数。

36.最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

37.通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

38.约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数)

39,最简分数:分子,分母是互质数的分数,叫做最简分数。

40,分数计算到最后,得数必须化成最简分数。

41.个位上是0,2.4.6.8的数,都能被2整除,即能用2进行

42.约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

43.偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

44.质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

45.合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

46.利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

47.利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

48.自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。 141414

50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3。 141592654

51.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。 141592654……

52.什么叫代数 代数就是用字母代替数。

53.什么叫代数式 用字母表示的式子叫做代数式。如:3x =ab+c

第二部分:定义定理

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

第三部分:几何体。

1.正方形

正方形的周长=边长×4 公式:C=4a

正方形的面积=边长×边长 公式:S=a×a

正方体的体积=边长×边长×边长 公式:V=a×a×a

2.长方形

长方形的周长=(长+宽)×2 公式:C=(a+b)×2

长方形的面积=长×宽 公式:S=a×b

长方体的体积=长×宽×高 公式:V=a×b×h

3.三角形

三角形的面积=底×高÷2。 公式:S= a×h÷2

4.平行四边形

平行四边形的面积=底×高 公式:S= a×h

5.梯形

梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2

6.圆

直径=半径×2 公式:d=2r

半径=直径÷2 公式:r= d÷2

圆的周长=圆周率×直径 公式:c=πd =2πr

圆的面积=半径×半径×π 公式:S=πrr

7.圆柱

圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh

圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的总体积=底面积×高。 公式:V=Sh

8.圆锥

圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh

三角形内角和=180度。

平行线:同一平面内不相交的两条直线叫做平行线

垂直:两条直线相交成直角,像这样的两条直线,

我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

第四部分:计算公式。

数量关系式:

1. 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2. 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3. 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4. 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5. 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6. 加数+加数=和 和-一个加数=另一个加数

7. 被减数-减数=差 被减数-差=减数 差+减数=被减数

8. 因数×因数=积 积÷一个因数=另一个因数

9.被除数÷除数=商 被除数÷商=除数 商×除数=被除数

******************************************************

和差问题的公式:

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

******************************************************

植树问题:

1.非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2.封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

******************************************************

盈亏问题:

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

******************************************************

相遇问题:

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

******************************************************

追及问题:

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

******************************************************

流水问题:

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

******************************************************

浓度问题:

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

******************************************************

利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣〈1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

******************************************************

面积,体积换算:

(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

(4)1公顷=10000平方米 1亩=666。666平方米

(5)1升=1立方分米=1000毫升 1毫升=1立方厘米

******************************************************

重量换算:

1吨=1000 千克

1千克=1000克

1千克=1公斤

******************************************************

人民币单位换算:

1元=10角

1角=10分

1元=100分

******************************************************

时间单位换算:

1世纪=1 1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

[小升初数学公式整理]

篇6:数学公式:平方差公式

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

公式运用

可用于某些分母含有根号的分式:

1/(3-4倍根号2)化简:

1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23

[解方程]

x^2-y^2=1991

[思路分析]

利用平方差公式求解

[解题过程]

x^2-y^2=1991

(x+y)(x-y)=1991

因为1991可以分成1×1991,11×181

所以如果x+y=1991,x-y=1,解得x=996,y=995

如果x+y=181,x-y=11,x=96,y=85同时也可以是负数

所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995

或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

有时应注意加减的过程

常见错误

平方差公式中常见错误有:

①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)

②混淆公式;

③运算结果中符号错误;

④变式应用难以掌握。

三角平方差公式

三角函数公式中,有一组公式被称为三角平方差公式:

(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)

(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)

这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。

注意事项

1、公式的左边是个两项式的积,有一项是完全相同的。

2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。

3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。

例题

一,利用公式计算

(1) 103×97

解:(100+3)×(100-3)

=(100)^2-(3)^2

=100×100-3×3

=10000-9

=9991

(2) (5+6x)(5-6x)

解:5^2-(6x)^2

=25-36x^2

[数学公式:平方差公式]

数学公式口诀

小学数学盈亏问题公式

工程问题心得

工程问题责任书

工程问题说课稿

高中数学公式总结

工程问题教学反思

工程问题整改措施报告

WPS数学公式编辑器使用方法

如何正确记忆数学公式

小升初数学公式:工程问题公式(合集6篇)

欢迎下载DOC格式的小升初数学公式:工程问题公式,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档