高中高考数学高效答题

| 收藏本文 下载本文 作者:成y1989年生

下面小编给大家整理了高中高考数学高效答题(共含6篇),供大家阅读参考。同时,但愿您也能像本文投稿人“成y1989年生”一样,积极向本站投稿分享好文章。

高中高考数学高效答题

篇1:高中高考数学答题技巧

1.养成良好的考试习惯。

拿到试卷,首先填写好姓名和考号,快速浏览试卷,把握全卷的难易,高中英语,把容易的题的题号写在草稿纸的最顶端,再做题,遇到卡壳,马上跳过去做容易的题。这样保证最大限度发挥你的实力,也解决了由于过度紧张导致的暂时遗忘影响考试发挥的问题。注意机读卡的填涂问题,做完一道大题就填一部分,把第一卷做完后及时填涂,以避免全部做完再填时没时间。

2.把握好审题关。

很多学生练习了很多题,题与题之间有些相似,但又有区别,做题一不小心就会习惯性主观附加已知条件,导致最终出错。要求“字字看清,句句读懂,理解题意”,审两遍题,明确已知条件和隐含的已知条件。

3.深刻理解“长题不难,难题不后”。

一般高考试卷中总会出现题干很长,语句环绕的试题。乍一看很难理解,摸不清意图。但往往多读几遍,把其中关系弄清,做起来就比较简单。这种题主要是考你的审题能力与心理素质。做长题的关键是审题。“难题不后”,主要是说最后一题一般不是最难的,所以要学会总体把握全卷,先做简单的后做难的。

篇2:高中高考数学答题技巧

选择题

运算要快,力戒小题大做。变形要稳,防止操之过急。答案要全,避免对而不全。解题要活,不要生搬硬套审题要细,不能粗心大意。

填空题

常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。

解答题

不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明。解答题的考点相对较多,综合性强,难度较高,解答题成绩评定不仅看最后的结论,也看推演和论证过程来判分。

数学常用思维

第一:高中数学答题方法函数与方程思想

(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用

(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础

高考把函数与方程思想作为七种重要思想方法重点来考查

第二:高中数学答题方法数形结合思想:

(1)数学研究的对象是数量关系和空间形式,即数与形两个方面

(2)在一维空间,实数与数轴上的点建立一一对应关系

在二维空间,实数对与坐标平面上的点建立一一对应关系

数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

篇3:高考数学答题

高考数学万能答题模板

选择填空题

1.易错点归纳

九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题方法:

选择题十大速解方法:

排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题

专题一、三角变换与三角函数的性质问题

1、解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

2、构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题

1、解题路线图

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题

1、解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题

1、解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

专题五、圆锥曲线中的范围问题

1、解题路线图

①设方程。

②解系数。

③得结论。

2、构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

专题六、解析几何中的探索性问题

1、解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

专题七、离散型随机变量的均值与方差

1、解题路线图

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

专题八、函数的单调性、极值、最值问题

1、解题路线图

(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板

①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

高考数学解题技巧有哪些

特值检验法:

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

极端性原则:

极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

剔除法:

剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

数形结合法:

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

递推归纳法:

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

顺推解法:

顺利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

逆推验证法(代答案入题干验证法):

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

正难则反法:

正从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

特征分析法:

特对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

高中数学考试技巧

掌握时间

由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。

先易后难

所以,只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。

后三题尽量多得分

第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。

篇4:高考数学答题策略

一、历年高考数学试卷的启发 1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;

2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性;

3.注意题目中的小括号括起来的部分,那往往是解题的关键;

二、答题策略选择

1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取暂时性放弃,把自己可做的题目做完再回头解答;

2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要小题大做。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。

三、答题思想方法

1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用三合一定理。

2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴;

4.选择与填空中出现不等式的题目,优选特殊值法;

[高考数学答题策略]

篇5:高考数学答题规范

数学考试以题多、计算复杂著称。通常综合性的数学考试中,一张数学试卷会包含几十个知识点。更要命的是,有些题目不止考察一个知识点,而是多个知识点融合在一起,解答的难度就大大增加了。此外,时间一紧就不免会紧张,而紧张就容易计算错误,这也是历年数学丢分的主要原因之一。今天就来谈谈几个节约数学考试时间的小技巧。

一、善于利用草稿

数学考试肯定会发草稿纸,通常都是一人两张,不够也可以再找监考老师要。那么考试过程中一定要充分利用好草稿纸。不要像鬼画符一样用草稿纸,尤其是东一块西一块地打草稿,这样不仅看起来一团乱麻,打完草稿自己回头也不知道在写什么。想要充分利用草稿,可以将草稿按题目顺序打好,随着题目顺序横着或者竖着以此打过去,并且题与题的草稿留好空隙,不要挤在一块。这样打出来的草稿就会清晰明了,过程和答案都一目了然。这当然不是为好看,而是这样的草稿有利于后期的迅速检查以及遇到计算过程复杂时对前步骤的回溯,就可以避免算着算着不知道自己算到哪里的尴尬场景。

二、同步运算与检查

基本上每一个数学老师考前都会三令五申,叮嘱学生要检查。可现实通常是学生连试卷都做不完,谈何从头检查一遍。但是的确,每年在数学计算错误或者看错题这种小错误翻跟头的人也是比比皆是。在这里,我们可以做到的是,一边做题一边检查。请注意,这里的关键是,一定要大脑清醒。当你做一道题时,无论是选择题填空题计算题,得出答案时不要立马填到答卷上去,用几分钟时间理一遍你的运算过程(也就是草稿纸上),权当检查一遍。运算过程中也是要步步谨慎,每一步都要仔细审过,按照运算逻辑一遍算一遍回溯检查。当你做完一道题回头看一眼发现计算失误了,就会感到十分庆幸了。

三、切忌死磕难题

一般一张数学卷子中难度都是随题数递增的。往往选择题与填空题的倒数两题相对难度较高,大题的难度也是越往后越难。当然,也不排除存在做简单题时脑袋一抽就想不起来了,实话说考场上这也很正常。那么在遇到这种情况时千万不要死磕到底,不仅浪费时间而且会让心情越来越郁闷,考试状态越来越差。首先看到这道题,先在心里预估该使用什么方法,然后迅速权衡题目的难度。如果题目简单,可是你却大脑空白,就赶紧往下做,先别去想,做多几道题再回头看说不定就想起来了。如果做一道难题超过十分钟做不出来,也是赶紧往下做,最后有时间再回头计算。

四、大题先写思路

大题是需要把解题步骤写在答题卷上的,因此一旦写完后发现出错了,重新换答题卷既浪费时间又加大心理压力。也通常有因为答题卷字迹太差太乱,涂涂改改太多导致卷面分丢失的情况发生。因此在答大题的时候,千万不要急哄哄地就开始在答题卷上挥挥洒洒,先在草稿纸上简单地写下解题的思路过程,再根据思路过程在答题卷上写下具体解题流程,可以避免出现思路错乱,写着写着歪楼出错的现象。在书写时,要注意字迹工整,不要求多好看,至少要清楚整齐。

五、衡量大题难度

做大题是有技巧的,通常而言,难度系数比较低的大题,老师判卷会更加注重细节,更加注重书写过程的不完整;而难度系数较大的大题,判卷人则不会太苛责于细节,而是更加注重计算结果。因为难度系数大的试卷学生得分更难,那么这时为了确保整体分数的可视性,判卷人会适当酌情一些。当然,不管试卷难度怎么样,基本的逻辑解题过程都是必须的,该有的还是都得有,基本踩分点都是必要的。

立足自身基础,合理规划备战计划。

第一阶段(5月)以攻为主,

重在思维提升,拔节成长。进攻表现在深刻理解8个C级考点及函数等知识板块,表现在研透通性通法及方法蕴含的数学思想,表现在重点突破中档题(9-12、17、18、22题),表现在适度挑战难题,多思精练,超越自我。

第二阶段(6月~7高考)

以守为攻,重在回归梳理,稳中求胜。要守住双基,守住规范,守住正确率。要重视回归梳理,回归教材、回归真题、回归通法。知识梳理结构化,方法梳理程序化,疑点易错点梳理具体化。

重点提示:以前一直说得语文者得天下,我可以很明确的告诉你,今年高考得数学者得天下,今年的数学会越来越灵活多变,考题在课本上是根本找不到的,今年拉开距离的就是数学,如果考生知识点比较乱,应用知识点的能力就比较差,考分也不会高。大家可以去找一些预测试卷来做,目前有一个很不错的是考前预测压轴秘籍。

答题工具

答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。禁止使用涂改液、修正带或透明胶带改错。

必须用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚。

答题规则与程序

①先填空题,再做解答题。

②先填涂再解答。

③先易后难。

答题位置

按题号在指定的答题区域内作答,如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超出该题答题区域的黑色矩形边框,否则修改的答案无效。

解题过程及书写格式要求

《考试说明》中对选择填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。

关于解答题,考生不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,而且所填结果应力求简练、概括的准确。

其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

在答题过程中,关键语句和关键词是否答出是多得分的关键,如何答题才更规范呢?

答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。

比如要将你的解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生忽视。

因此,卷面上大量出现“会而不对”“对而不全”的情况。如立体几何论证中的“跳步”,使很多人丢失得分,代数论证中的“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转换为“文字语言”,尽管考生“心中有数”却说不清楚,因此得分少,只有重视解题过程的语言表述,“会做”的题才能“得分”。对容易题要详写,过程复杂的试题要简写,答题时要会把握得分点。

常见的规范性的问题

解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示,三角方程的通解中必须加;在写区间或集合时,要正确地书写圆括号、方括号或花括号,区间的两端点之间,几何的元素之间用逗号隔开。

带单位的计算题或应用题,最后结果必须带单位,特别是应用题解题结束后一定要写符合题意的“答”。

分类讨论题,一般要写综合性结论。任何结果要最简。

排列组合题,无特别声明,要求出数值。

函数问题一般要注明定义域(特别是反函数)。

答题规范化的训练

要养成良好的答题习惯,做到解题的规范性,需要从点滴做起,重在平时,坚持不懈,养成习惯,做好以下几点:

①平时作业要落实;

②测试考试看效果;

③评分标准做借鉴。

篇6:数学高考答题技巧

另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分。

1.函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

2.数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3.特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

4.极限思想解题步骤

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

5.分类讨论思想

同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

掌握数学解题思想是解答数学题时不可缺少的一步,小百建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。还有,小百的这些方法一定要在平时训练中加以实际应用尝试一下,不能只是看一遍而已。

高考的数学答题技巧

高考数学选择答题技巧

高考理科数学答题技巧

冲刺高考文科数学答题方法

高考数学答题时间的安排

高考数学答题技巧和经验

GRE填空高效答题流程

高中散文答题

高效学习数学

高考高分数学答题技巧及方法集合

高中高考数学高效答题(推荐6篇)

欢迎下载DOC格式的高中高考数学高效答题,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档