下面是小编为大家整理的做高三数学选择题技巧(共含7篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“好想变成猫”一样,积极向本站投稿分享好文章。
一.做高三数学选择题技巧
1、剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破-解法:利用数学公式、定理、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
二.解题思路方法
通览试卷,树立自信。
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。
审题要慢,做题要快,下手要准
题目本身就是破-解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
形数兼备
数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
解法多样化
以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
最后,做完题后要仔细检查
有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。
1、审题和解题的关系:克服对审题重视不够,匆匆一看急于下笔的不严谨做法,要吃透题目的条件与要求,更要挖掘题目中隐含条件,达到启发解题思路。只有耐心仔细地审题,准确地把握题目中的关键词才能从中获取尽可能多的信息,才能迅速找准解题方向。
2、“会做”与“得分”的关系:要将你的解题思路转化为得分点,主要靠准确、完整的推理和精确、严密的计算,要克服卷面上大量出现的“会而不对”、“对而不全”的情况。只有重视解题过程的严密推理和精确计算,“会做”的题才能“得分”。
3、快与准的关系:在目前题量大、时间紧的情况下,“准”字尤为重要。而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点,准一点,可多得一点分;相反,快一点,错一片,花了时间还得不到分。
4、难题与容易题的关系:做中考试题要按先易后难,先简后繁的顺序作答,要合理安排时间,不要在某个卡住的题上打“持久战”,这样会造成既耗费时间又拿不到分,会做的题目又被耽误了的严重后果。把会做的题目先做完,再去攻不会做的题,这样既能得分,又能产生心理上的胜利效果,平静下来再做难题可能就迎刃而解了。
总的时间分配因人而异,比如选择和填空题,对于中档水平以下的同学可以适当多用一点儿时间,在这个地方尽可能的拿分。对于水平比较高的同学,选择和填空题不能费时太多,不然解答大题就会感到时间紧张。但总的原则是以准确为主。我们首先要将三部分的容易题先拿下来,以兴奋自己的情绪,稳定自己的心态,进入考试的状态。当你的心态比较平稳,感到旁若无人的时候,你的水平才能够正常的发挥。这时候过去的各种经验才能派上用场。如果一开考就在难题的地方打转,往往会影响情绪,焦躁不安,使大脑受到抑制,使本来会做的题目也会出现问题。因此要尽量避免这种情况的发生。
1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。在解决时可将问题提供的条件特殊化。使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
高考数学5种答题思路
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解高考数学题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
高考数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答高考数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解高考数学选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求高考数学主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:
一、对于所求的未知量,先设法构思一个与它有关的变量;
二、确认这变量通过无限过程的结果就是所求的未知量;
三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想
同学们在高考数学解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类高考数学讨论解题时,要做到标准统一,不重不漏。
一.做高三数学选择题技巧蒙题
数学蒙题技巧1
蒙题也是一门学问,本人高三学生,数学蒙题成功率在70以上。首先,要明确一点,蒙题不能纯粹蒙,你看过题就要有看题的效果。看完题后不会做,就先看选项,有些就可以排除,然后根据题设条件进行分析,有可能又会排除一些选项,这样就容易多了。
若果一个也排除不了,那就琢磨选项,如果有关于课外的(课内很少出现的)答案就很有可能就是那个。如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。
数学蒙题技巧2
据我所知的有数学第一题一般不会是A;最后一题不会是A;选择题的答案分布均匀;填空题不会就填0或1;答案有根号的,不选;答案有1的,选;三个答案是正的时候,在正的中选;有一个是正X,一个是负X的时候,在这两个中选;题目看起来数字简单,那么答案选复杂的,反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不;以上都不实用的时候选B。
在计算题中,要首先写一答字。如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。和图形有关的选择填空可以取特值。
大题不会做,看上问的结论能不能用,还不会就照条件把你能想到的结论推出来,一般都有分,运气好可以拿1大半。填空题仔细点,2分钟没思路就跳,不会做写个最可能的答案,对的几率也不很小。
二.做高三数学选择题技巧蒙题原则
数学蒙题技巧守则
1、答案有根号的,不选
2、答案有1的,选
3、三个答案是正的时候,在正的中选
4、有一个是正X,一个是负X的时候,在这两个中选
5、题目看起来数字简单,那么答案选复杂的,反之亦然
6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条
7、答题答得好,全靠眼睛瞟
8、以上都不实用的时候选B
数学从易到难复查
填空题:慎重再慎重在数学的主观题当中,填空题并不像后面的大题,要求给出具体的解题步骤,它只要求考生给出一个最后的答案。这就要求考生在答题时更加慎重,按部就班来进行解题。
大题:步骤需明确在大题(计算题和证明题)阅卷过程中,一般是过程分和结论分分开给的。因此考生在答题时还是应该将步骤写明确,这样不但能够获得步骤分,同时也利于自己后来的检查。否则就跟填空题一样,答案一错就没有分了。
自身:定位需理性近年来,高考当中出现了一些奇怪的现象,就是一些学生平时的表现还不错,但他们的卷面得分就是上不去。这主要是学生自身的定位出现了问题。因为这些考生将过多的时间花在了难题上,这样一来,在容易题上出错的概率就大大增加。其实,难题在考试当中所占的比例仅仅为20%。因此,考生在答题时不要有“一定要把难题啃下来”的非理性念头。只要老老实实把容易题的分数拿全,那么考试的分数就不会很低。
答题:大胆再大胆在不是很有把握的情况下,最好不要将原来的答案涂掉,可以将两种答题方法都写在考卷上。阅卷老师一般会按照得分高的那种方法给分的。
三.高考数学选择题蒙题窍门
数量原则
理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3
实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个
三不相同原则
即连续三个问题不会连续出现相同答案
答案排列不会出现ABCDE的英文字母排列顺序
中庸之道
即数值优先选择“中间量”选项,选项优先考虑BCD。在同一道题中优先考虑数值的“中间量”后考虑选项BCD。(如E选项对应数值为中间量时,优先从数值入手考虑)
出现诸如“以上结果都不对”的选项不予考虑
由提干给定信息入手,通过选项特征排除错误选项
选项基本特征如下:
单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值)
正值与负值(考前冲刺P12/25题根据提干排除负值)
有零与无零
区间的开与闭(看极端情况能否取等号)
正无穷与负无穷(通过极限考虑)
整数与小数(分数)
质数与合数
大于与小于
整除与不能整除
带符号与不带符号(例如根号、平方号等等)
少数服从多数原则
即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题
一般情况下选项出现1、2、0、-1、-2的情况比较多
前后无定位,连续几道题均不会都需猜蒙答案的情况
观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。
做数学选择题的十种技巧
特值检验法
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
剔除法
剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
数形结合法
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
顺推破解法
顺利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
逆推验证法
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
正难则反法
当从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
特征分析法
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
估值选择法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
要意识到图是高中数学的生命线
图是高中数学的生命线,能不能用图支撑思维活动是能否学好高中数学的关键。无论是几何还是代数,拿到题的第一件事都应该是画图。一些简单题只要把图画出来,答案就直接出来了。遇到难题时就更应该画图,图可以清楚地呈现出已知条件,做题的时候也好捋顺思路。
首先要在脑中有画图的意识,形成条件反射,拿到一道数学题就先画图。而且要有用图的意识,画了图而不用,等于没画。有了画图用图的意识后,要具备画图的技能。画图最重要的是清晰、准确,这样才会对做题有帮助。最重要的,也是高中生最需要培养的,就是解图能力。要根据给定图形能否提炼出更多有用信息;从而找出最简便的解题思路。
最后,学好数学的核心就是悟,悟就是理解。看笔记,做作业后的反思,章节的总结,改错误时得找原因,整理复习资料,在课外读物中开阔眼界……这一系列的活动都是“悟”。要自觉去“悟”,就要提高主动性,做好学习计划,合理安排时间,制定好自己的长期的短期的目标。这一切措施,就是我们上面所说的5条学习方法。
决定考试成功的不仅是良好的心态,扎实的知识基础,还有应试答题的技巧。掌握了答题技巧,可能得到了原本不一定能得到的分数。那么,做选择题时有什么技巧呢?
首先,要认真读完所给的每一个可供选择的答案。在选择题中,可能所给的.可供选择的几个答案并不是可以清晰地判断出对与错,每一个答案可能都有一部分是正确的,但整体看却是不正确或不完整的,所以每一个答案都可能会很诱人。因此在审题时,我们一定要把题从头到尾读完,包括问题及所给的全部可供选择的答案,这样才会发现其中哪个答案是最正确、最合理的。
其次,求解单项选择题可以应用以下几种方法:
直接法:这类题型可直接从题设的条件出发,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
筛选法:通过筛除一些较易判定、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确答案。如筛去不合题意的以后,结论只有一个,则为应选择。
特殊值法:有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
验证法:通过对试题的观察、分析、确定,将各选择逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择正误的方法。
图像法:在解答选择题的过程中,可先根据题意,作出草图,然后参照图形的作法、形状、位置、性质、综合图像的特征,得出结论。
一.高考数学选择题满分答题技巧
通览试卷,树立自信。
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。
审题要慢,做题要快,下手要准
题目本身就是破-解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
高考数学选择题十大解题技巧
1、剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破-解法:利用数学公式、定理、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
充满思辨性
这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。
形数兼备
数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
解法多样化
以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
最后,做完题后要仔细检查
有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。
二.答好数学题的窍门
掌握时间
由于,数学基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。
先易后难
所以,只做数学选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。
后三题尽量多得分
第二段是数学解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。