PWM交流斩控技术在交流稳压电源中的应用

| 收藏本文 下载本文 作者:沙漠风

以下是小编帮大家整理的PWM交流斩控技术在交流稳压电源中的应用(共含3篇),仅供参考,希望能够帮助到大家。同时,但愿您也能像本文投稿人“沙漠风”一样,积极向本站投稿分享好文章。

PWM交流斩控技术在交流稳压电源中的应用

篇1:PWM交流斩控技术在交流稳压电源中的应用

PWM交流斩控技术在交流稳压电源中的应用

摘要:讨论了交流斩控技术在交流稳压电源中的应用原理,分析了主电路及控制电路的结构,并阐述了交流斩控补偿式交流稳压电源的优点。

关键词:交流斩控;补偿稳压;非互补控制

引言

交流稳压技术的发展一直倍受广大用户和生产厂商的关注,其原因在于我国市场上现有的各种交流电力稳压产品,在技术性能上都有不尽人意之处。

在我国应用较早,且用户最广的交流电力稳压电源当属柱式(或盘式)交流稳压器,虽然这种稳压电源有很多优点,但由于它是用机械传动结构驱动碳刷(或滚轮)以调节自耦变压器抽头位置的方法进行稳压,所以存在工作寿命短,可靠性差,动态响应速度慢等难以克服的缺陷。

近年来不少生产厂家针对柱式交流电力稳压器所存在的缺点,纷纷推出无触点补偿式交流稳压器,大有取代柱式稳压器之势。这种电源实质上仍然是采用自耦方式进行调压,所不同的只是通过控制若干个晶闸管的通断,改变自耦变压器多个固定抽头的组合方式,来代替通过机械传动驱动碳刷改变自耦变压器抽头位置的一种调压方法。这种方法固然提高了稳压电源的可靠性和动态响应速度,但却失去了一个重要的调节特性――平滑性,即调节是有级的,其必然结果是稳压精度低(一般只有3%~5%),并且在调节过程中,当负载电流很大时会冲击电网并产生低频次谐波分量,对负载也会产生冲击;另外采用这种方法所用变压器较多(一相至少需二台,即一台自耦变压器,一台补偿变压器),这就增加了电源的自重和空载损耗。

伴随着全控开关器件的容量和性能以及模块化程度的提高,集成控制电路功能的不断完善,吉林市长城科技有限责任公司凭借自己的科技实力,率先研制出采用PWM技术,通过全控开关器件IGBT,对交流进行斩波控制的新型补偿式交流稳压电源――JJY-ZK/BW系列斩控补偿式交流稳压电源。为我国交流稳压技术的创新和满足市场对高性能交流稳压电源的.需求开创了新局面,下面对PWM交流斩控技术在该种交流稳压电源中的应用原理及性能做一简要介绍。

1PWM交流斩控调压原理

图1(a)所示,假定电路中各部分都是理想状态。开关S1为斩波开关,S2为考虑负载电感续流的开关,二者均为全控开关器件与二极管串联组成的单相开关[见图1(b)]。S1及S2不允许同时导通,通常二者在开关时序上互补。定义输入电源电压u的周期T与开关周期Ts之比为电路工作载波比Kc,(Kc=T/Ts)。图1(c)表示主电路在稳态运行时的输出电压波形。显然输出电压uo为:

式中:E(t)为开关函数,其波形示于图1(c),函数由式(2)定义。

在图1(a)电路条件下,则

E(t)函数经傅立叶级数展开,可得

式中:D=ton1/Ts,ωs=2π/Ts,θn=nπ/Ts;

D为S1的占空比;

ton1为一个开关周期中S1的导通时间。

将式(4)代入式(3)可得

式(5)表明,uo含有基波及各次谐波。谐波频率在开关频率及其整数倍两侧±ω处分布,开关频率越高,谐波与基波距离越远,越容易滤掉。

在经LC滤波后,则有

把输出电压基波幅值与输入电压基波幅值之比定义为调压电压增益,即

由此可见电压增益等于占空比D,因此改变占空比就可以达到调压的目的。

2控制方案设计与工作原理

一般情况下,PWM交流斩控调压器的控制方式与主电路模型、电路结构及相数有关。

若采用互补控制,斩波开关和续流开关在换流过程中会出现短路,产生瞬时冲击电流;如设置换相死区时间,又可能造成换相死区时间内二个开关都不导通使负载开路,在有电感存在的情况下,会产生瞬时电压冲击。本方案采用有电压、电流相位检测的非互补控制方式,如图2所示。对相数而言本方案采用三相四线制,即用三个单相电路,组合成三相电源,这样可以避免相间干扰,保持各相电压输出稳定。

由图2可见,V1,VD1与V2,VD2构成双向斩波开关,Vf1,VDf2与Vf2,VDf1构成双向续流开关;Lof及Cof分别为滤波电感、电容;u1为补偿变压器初级绕组两端电压,u2为向主电路补偿的电压。本方案采用了有电压、电流相位检测的非互补控制方式。图3为在RL负载下,这种非互补的斩波开关和续流开关门极驱动信号的时序配合及一个电源周期中输出电压的理想波形。

由图3可见根据负载电压电流相位,一个电源工作周期可分为4个区间.

上述工作状态,可用逻辑表达式表示为:

为保证电源满足负载特性的要求及运行可靠性,本方案采用了图4所示的控制电路结构。

3补偿稳压原理及控制

图5示出补偿稳压电路。

图5中电网电压u,补偿电压uc,输出电压uo均为工频。当u与uc相位差?=0°时,uo=u+uc;当?=180°时,uo=u-uc。因此,当电网电压u变化时调节uc的大小以及与u的相对极性即可保证uo的恒定。

u与uc相对极性变换的控制如图6所示。其输出uQ接双向晶闸管的过零触发电路。采样信号取自uo经整流滤波后的输出。电位器Rp用于调节输入信号的门槛电压,其传输特性如图6(b)所示。

4结语

PWM交流斩控技术用于交流稳压,显著地提高了交流稳压电源的技术性能,其主要特点是:

1)可采用全固态器件,真正做到了无触点、无抽头,因而可靠性高、工作寿命长;

2)平滑调节,输出无级差,对电网及用户无冲击,不产生低频次谐波干扰;

3)输出精度高,实际精度可达到±0.5%,即便在正补偿与负补偿变换瞬间,输出电压波动也不超过额定电压的1%;

4)动态响应速度快,可达ms级;

5)负载无选择性,对感性负载、阻性负载、容性负载都适用;

6)每相只需一台变压器,因而重量轻,自身功耗少。

篇2:PWM交流斩控技术在交流稳压电源中的应用

PWM交流斩控技术在交流稳压电源中的应用

摘要:讨论了交流斩控技术在交流稳压电源中的应用原理,分析了主电路及控制电路的结构,并阐述了交流斩控补偿式交流稳压电源的优点。

关键词:交流斩控;补偿稳压;非互补控制

引言

交流稳压技术的发展一直倍受广大用户和生产厂商的关注,其原因在于我国市场上现有的各种交流电力稳压产品,在技术性能上都有不尽人意之处。

在我国应用较早,且用户最广的交流电力稳压电源当属柱式(或盘式)交流稳压器,虽然这种稳压电源有很多优点,但由于它是用机械传动结构驱动碳刷(或滚轮)以调节自耦变压器抽头位置的`方法进行稳压,所以存在工作寿命短,可靠性差,动态响应速度慢等难以克服的缺陷。

近年来不少生产厂家针对柱式交流电力稳压器所存在的缺点,纷纷推出无触点补偿式交流稳压器,大有取代柱式稳压器之势。这种电源实质上仍然是采用自耦方式进行调压,所不同的只是通过控制若干个晶闸管的通断,改变自耦变压器多个固定抽头的组合方式,来代替通过机械传动驱动碳刷改变自耦变压器抽头位置的一种调压方法。这种方法固然提高了稳压电源的可靠性和动态响应速度,但却失去了一个重要的调节特性――平滑性,即调节是有级的,其必然结果是稳压精度低(一般只有3%~5%),并且在调节过程中,当负载电流很大时会冲击电网并产生低频次谐波分量,对负载也会产生冲击;另外采用这种方法所用变压器较多(一相至少需二台,即一台自耦变压器,一台补偿变压器),这就增加了电源的自重和空载损耗。

伴随着全控开关器件的容量和性能以及模块化程度的提高,集成控制电路功能的不断完善,吉林市长城科技有限责任公司凭借自己的科技实力,率先研制出采用PWM技术,通过全控开关器件IGBT,对交流进行斩波控制的新型补偿式交流稳压电源――JJY-ZK/BW系列斩控补偿式交流稳压电源。为我国交流稳压技术的创新和满足市场对高性能交流稳压电源的需求开创了新局面,下面对PWM交流斩控技术在该种交流稳压电源中的应用原理及性能做一简要介绍。

1 PWM交流斩控调压原理

图1(a)所示,假定电路中各部分都是理想状态。开关S1为斩波开关,S2为考虑负载电感续流的开关,二者均为全控开关器件与二极管串联组成的单相开关[见图1(b)]。S1及S2不允许同时导通,通常二者在开关时序上互补。定义输入电源电压u的周期T与开关周期Ts之比为电路工作载波比Kc,(Kc=T/Ts)。图1(c)表示主电路在稳态运行时的输出电压波形。显然输出电压uo为:

式中:E(t)为开关函数,其波形示于图1(c),函数由式(2)定义。

在图1(a)电路条件下,则

[1] [2] [3]

篇3:PLC和交流伺服在数控钻铣床中的应用

引言:

在新开发的产品中有一个型号为Q7的长条铝基台,要在上面加工两个φ3.7×1.65的平底盲孔,由于要求精度高,批量大,故无法用传统的钻模在钻床上加工,也很难在传统铣床上面加工,即使能加工效率也很低,并且设备损耗和电力损耗也很大,此工件的加工有着非常广泛的代表性,生产的很多产品有着类似的要求,为此,我们设计制做了一台用于此类产品加工的设备——通用型数控钻铣床。

一、系统概述

控制部分采用PLC,并配以人机界面进行程序参数修改、设定,以及运行状态显示监控,可编程设置人机界面的内容。三轴均为全数字交流伺服系统,各轴伺服电机通过连轴器带动滚珠丝杠,以移动配有直线导轨的工作台和主轴铣头,其定位准确,速度快。主轴铣头由变频器控制,根据刀具及工件和进给量,来设置主轴合理的转速,并在程序中设定它的启动停止。各轴均设二端极限传感器和原点传感器,冷却和润滑也都有异常检测,在报警灯和人机界面处显示报警信息。为便于调试和检修,各项操作均设手动功能,如手动各轴快慢移动、主轴高低速旋转、切削液及润滑开关等。此机床整体虽为半闭环控制,只要选件、装配、程序编制及操作合理,精度和稳定性还是能满足使用要求的。

二、硬件配置

PLC选用永宏的FBS-40MCT,该型机具有较高的性价比,体积小,功能强,24点输入,其中有16点高速计数器,频率可达120K,16 点输出,其中有4轴步进或伺服输出整合在里面,输出频率可达120K,使应用起来非常方便,接线简捷。编程软件WinProladder有梯形图大师之称,易学易用且功能强大,编辑、监视、除错等操作非常顺手,按键、鼠标并用及在线即时指令功能查询与操作指引,使编辑、输入效率倍增。

接点分配:取各轴伺服电机的Z相信号作原点开关,要分接在几个高速输入点上,用中断进行机床原点复归,其余限位开关、操作开关、液位检知等常规接点可按顺序依次接入。X、Y、Z三轴伺服电机连在前3轴伺服输出点,主轴高低速、冷却、报警等接在其余输出点上。

X、Y、Z3轴伺服系统均选用相同的,和利时的ES系列全数字交流伺服驱动器0040E-CBCEE-02,和60系列小惯量的伺服电机 60CB040C-2DE6E。该伺服系统功能比较完善,如能耗制动、电子齿轮、自动加减速等,具备多种脉冲串输入,保护功能也比较完备,有欠压、过压、过流、过载、堵转、失速、位置超差、编码器异常等。在此设备中按集电极开路驱动方式连接至PLC,最高脉冲输入频率为200K,伺服ON、Z相信号等也做相应连接。

变频器选用富凌的DZB70B0015L2A,规格为单相1500W,400Hz,有多步速供编辑使用。由于正常使用时不频繁变速,故速度调节设定不引出,只在变频器操作面板上调节,设定两个速度,高速用于加工,低速用于对刀。调节相关参数与主轴匹配,如基频、基压、运行频率上限、载频等,并改动相应跳线。

主轴没有采用传统方式,而是根据加工需要,采用了雕刻机用的电主轴,安阳莱必泰的ADX80-24Z/1型,其体积小、噪音低,直径只有80mm,这样使整个主轴箱便于整体密封,可有效地防止加工中的碎屑飞溅到Z轴的丝杠和导轨上造成损害,也使主轴箱外表显得美观,

它的最高转速为24000转/分,使正常工作转速6000-14000转有一个合适的余量范围。人机界面选用人机电子的通用可编程文本显示器MD204L,它可以以文字或指示灯等形式监视、修改PLC内部寄存器或继电器的数值及状态。

三、软件设计

开机后先检测手动开关是否有效,若手动开关有效即利用各手动控制开关执行手动操作的项目。若手动开关无效,则启动原点复归程序,各轴进行机床原点复归,先回Z轴再回其它两轴,当所有轴都原点复归成功后才能进行到下一步。若刀具和工装夹具、工件程序均没有变动,可复位到加工预备状态而不进行对刀,若需对刀,则打开对刀开关启动对刀程序,3轴分别对刀,即找工件原点,利用手动各轴移动开关快慢移动各轴,使工件的三个面分别碰触低速旋转的刀具,刚好碰上为止。对好后,按对刀OK确认,再输入刀补,经过程序处理,即形成工件原点也就是编程0点,编程时根据此0点按照图纸计算刀具路径,可使操作者思路清晰,编辑运算简单。操作者编辑的是用户程序,可以编辑刀具轨迹,就是各轴移动坐标,还有移动速度、循环加工时的循环次数等。编好程序后或使用当前程序时,即复位到预备状态:各轴移动到初始位—一个合适的位置,装卸工件方便、不易碰触刀具时,装上工件,按启动即可开始加工,主轴运转,冷却液开,各轴按程序设定坐标移动。当加工结束时,机床复位,即各轴又移动到初始位,主轴停,冷却关,这时可卸下工件,完成加工过程。

工件的加工流程图如图3所示,以Q7产品为例,胎具上一次装夹15只工件,那么就有30个φ3.7的平底盲孔需要加工,刀具选用φ3.7的2刃钨钢立铣刀,钻削加工,钻削深度1.65mm。在预备状态时紧靠工作台上的定位固定好胎具,按启动后,主轴旋转,待主轴即将达到额定转速时,X、Y轴同时运转到第一加工工位,也就是第一个孔的X、Y工件坐标值,此时冷却液打开、Z轴快速下降到加工区,即铣刀端面即将触及工件加工面,迅速变用缓慢的工进速度开始钻削加工。当加工深度到达设定深度(1.65mm)时,Z轴带动铣刀迅速抬起,抬起的高度为铣刀端面水平方向上碰触不到工件及胎具为准。计数器加1后程序进行比较运算,判断加工是否完了,如否,则X、Y轴继续运转到下一加工工位,再重复Z轴下降加工动作。如加工完了,产量计数器加数、主轴停转、冷却液关闭,同时发出5s声光报讯,用以提醒操作者,各轴移动到初始位:Z轴到上端;X轴到左端;Y轴到外端。卸下胎具后,一个加工周期完成,装上胎具再按启动即开始进行下一轮加工。

四、一些着重的电气措施

1.主回路加装漏电断路器,相应回路都安装合适的断路器。

2.PLC和伺服系统的电源处都分别加有电源滤波器。

3.各直流继电器线圈都并接反峰二极管,交流接触器线圈并接阻容吸收回路。

4.润滑、主轴冷却都设液位低报警器。

5.伺服控制线、人机界面通讯线等使用屏蔽线,并远离电源线。

6.在拖链内走线,使用耐折的柔性电缆,并尽量增大拖链的弯曲半径。

7.变频器与PLC、伺服驱动器等保持一定距离。

面试中的交流

超声波技术在废水处理中的应用

多媒体技术在初中语文中的应用

无损检测技术在姿控发动机总装中的应用探析

干涉技术在天体测量中的应用

反渗透技术在废水处理中应用的研究进展

微生物在废水处理技术中的应用现状

属性技术在油气检测中的应用

正确看待多媒体技术在英语教学中的应用

GPS-RTK技术在地形测量中的应用

PWM交流斩控技术在交流稳压电源中的应用(整理3篇)

欢迎下载DOC格式的PWM交流斩控技术在交流稳压电源中的应用,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档