下面小编给大家整理高中数学《平面向量数量积》说课稿(共含11篇),希望大家喜欢!同时,但愿您也能像本文投稿人“NolElla”一样,积极向本站投稿分享好文章。
《平面向量数量积》说课稿
一:说教材
平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
二:说学习目标和要求
通过本节的学习,要让学生掌握
(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三:说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的手段(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四:说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五:说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1) 模的计算公式
(2)平面两点间的距离公式。
(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。
例题1是书上122页例1,此题是直接用平面向量数量积的'坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。
例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。
再配以练习,让学生能熟练的应用公式,掌握今天所学内容。
然后是学习小结(由学生完成)
最后作业布置!
(2)能力目标:
通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。
(3)情感目标:
通过本节课的学习,激发学生学习数学的兴趣,体会学习的快乐。
3、教学重点:平面向量的数量积定义。
4、教学难点:平面向量的数量积定义及平面向量数量积的运用。
第二部分:教法分析:
采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。
第三部分:教学程序设计:
完整版
济南世纪英华实验学校—周鹏
尊敬的各位评委、各位老师:
大家好!
今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。
第一部分:教学内容分析:
1、教材的地位及作用:
将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的.数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。
2、教学目标的设定:
(1)知识目标:
平面向量数量积练习题
平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)
1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )
A.-2 B.2
C.-12 D.不存在
解析:由题设知:a=(m+1,-3),b=(1,m-1),
∴a+b=(m+2,m-4),
a-b=(m,-m-2).
∵(a+b)⊥(a-b),
∴(a+b)(a-b)=0,
∴m(m+2)+(m-4)(-m-2)=0,
解之得m=-2.
故应选A.
答案:A
2.设a,b是非零向量,若函数f(x)=(xa+b)(a-xb)的图象是一条直线,则必有( )
A.a⊥b B.a∥b
C.|a|=|b| D.|a|≠|b|
解析:f(x)=(xa+b)(a-xb)的图象是一条直线,
即f(x)的表达式是关于x的一次函数.
而(xa+b)(a-xb)=x|a|2-x2ab+ab-x|b|2,
故ab=0,又∵a,b为非零向量,
∴a⊥b,故应选A.
答案:A
3.向量a=(-1,1),且a与a+2b方向相同,则ab的范围是( )
A.(1,+∞) B.(-1,1)
C.(-1,+∞) D.(-∞,1)
解析:∵a与a+2b同向,
∴可设a+2b=λa(λ>0),
则有b=λ-12a,又∵|a|=12+12=2,
∴ab=λ-12|a|2=λ-12×2=λ-1>-1,
∴ab的范围是(-1,+∞),故应选C.
答案:C
4.已知△ABC中, ab<0,S△ABC=154,
|a|=3,|b|=5,则∠BAC等于( )
A.30° B.-150°
C.150° D.30°或150°
解析:∵S△ABC=12|a||b|sin∠BAC=154,
∴sin∠BAC=12,
又ab<0,∴∠BAC为钝角,
∴∠BAC=150°.
答案:C
5.(辽宁)平面上O,A,B三点不共线,设 则△OAB的面积等于( )
A.|a|2|b|2-(ab)2
B.|a|2|b|2+(ab)2
C.12|a|2|b|2-(ab)2
D.12|a|2|b|2+(ab)2
解析:cos〈a,b〉=ab|a||b|,
sin∠AOB=1-cos2〈a,b〉=1-ab|a||b|2,
所以S△OAB=12|a||b|
sin∠AOB=12|a|2|b|2-(ab)2.
答案:C
6.(2010湖南)在Rt△ABC中,∠C=90°,AC=4,则 等于( )
A.-16 B.-8
C.8 D.16
解析:解法一:因为cosA=ACAB,
故 cosA=AC2=16,故选D.
解法二: 在 上的投影为| |cosA=| |,
故 cosA=AC2=16,故选D.
答案:D
二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)
7.(2010江西)已知向量a,b满足|b|=2,a与b的夹角为60°,则b在a上的投影是________.
解析:b在a上的投影是|b|cos〈a,b〉=2cos60°=1.
答案:1
8.(2010浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.
解析:由于α⊥(α-2β),所以α(α-2β)=|α|2-2αβ=0,故2αβ=1,所以|2α+β|=4|α|2+4αβ+|β|2=4+2+4=10.
答案:10
9.已知|a|=2,|b|=2,a与b的夹角为45°,要使λb-a与a垂直,则λ=________.
解析:由λb-a与a垂直,(λb-a)a=λab-a2=0,所以λ=2.
答案:2
10.在△ABC中,O为中线AM上的'一个动点,若AM=2,则 )的最小值是________.
解析:令| |=x且0≤x≤2,则| |=2-x.
=-2(2-x)x=2(x2-2x)=2(x-1)2-2≥-2.
∴ 的最小值为-2.
答案:-2
三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)
11.已知|a|=2,|b|=1,a与b的夹角为45°,求使向量(2a+λb)与(λa-3b)的夹角是锐角的λ的取值范围.
解:由|a|=2,|b|=1,a与b的夹角为45°,
则ab=|a||b|cos45°=2×1×22=1.
而(2a+λb)(λa-3b)=2λa2-6ab+λ2ab-3λb2=λ2+λ-6.
设向量(2a+λb)与(λa-3b)的夹角为θ,
则cosθ=(2a+λb)(λa-3b)|2a+λb||λa-3b|>0,且cosθ≠1,
∴(2a+λb)(λa-3b)>0,∴λ2+λ-6>0,
∴λ>2或λ<-3.
假设cosθ=1,则2a+λb=k(λa-3b)(k>0),
∴2=kλ,λ=-3k,解得k2=-23.
故使向量2a+λb和λa-3b夹角为0°的λ不存在.
所以当λ>2或λ<-3时,向量(2a+λb)与(λa-3b)的夹角是锐角.
评析:由于两个非零向量a,b的夹角θ满足0°≤θ≤180°,所以用cosθ=ab|a||b|去判断θ分五种情况:cosθ=1,θ=0°;cosθ=0,θ=90°;cosθ=-1,θ=180°;cosθ<0且cosθ≠-1,θ为钝角;cosθ>0且cosθ≠1,θ为锐角.
12.设在平面上有两个向量a=(cosα,sinα)(0°≤α<360°),b=-12,32.
(1)求证:向量a+b与a-b垂直;
(2)当向量3a+b与a-3b的模相等时,求α的大小.
解:(1)证明:因为(a+b)(a-b)=|a|2-|b|2=(cos2α+sin2α)-14+34=0,故a+b与a-b垂直.
(2)由|3a+b|=|a-3b|,两边平方得3|a|2+23ab+|b|2=|a|2-23ab+3|b|2,
所以2(|a|2-|b|2)+43ab=0,而|a|=|b|,所以ab=0,则-12cosα+32sinα=0,
即cos(α+60°)=0,
∴α+60°=k180°+90°,
即α=k180°+30°,k∈Z,
又0°≤α<360°,则α=30°或α=210°.
13.已知向量a=(cos(-θ),sin(-θ)),b=cosπ2-θ,sinπ2-θ,
(1)求证:a⊥b;
(2)若存在不等于0的实数k和t,使x=a+(t2+3)b,y=-ka+tb满足x⊥y,试求此时k+t2t的最小值.
解:(1)证明:∵ab=cos(-θ)cosπ2-θ+
sin(-θ)sinπ2-θ=sinθcosθ-sinθcosθ=0.
∴a⊥b.
(2)由x⊥y,得xy=0,
即[a+(t2+3)b](-ka+tb)=0,
∴-ka2+(t3+3t)b2+[t-k(t2+3)]ab=0,
∴-k|a|2+(t3+3t)|b|2=0.
又|a|2=1,|b|2=1,∴-k+t3+3t=0,
∴k=t3+3t,
∴k+t2t=t3+t2+3tt=t2+t+3
=t+122+114.
故当t=-12时,k+t2t有最小值114.
一、教学内容分析
1、教学主要内容
(1)平面向量数量积及其几何意义
(2)用平面向量处理有关长度、角度、直垂问题
2、教材编写特点
本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。
3、教学内容的核心教学思想
用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。
4、我的思考
本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。
二、学生分析
1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形
a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣
即a·b=∣a∣∣b∣cosθ理解并记忆。
对于cosθ= ,等的变形应用,同学们甚感兴趣。
2、我的思考
对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。
三、 学习目标
1、知识与技能
(1)掌握平面向量数量积及其几何意义。
(2)平面向量数量积的应用。
2、过程与方法
通过学生小组探究学习,讨论并得出结论。
3、情感态度与价值观
培养学生运算推理的能力。
四、教学活动
内容 师生互动 设计意图 时间 1、课题引入 师:请同学请回忆我们所学过的相关同里的运算。
生:加法、减法,数乘
师:这些运算所得的结果是数还是向量。
生:向量。
师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。 3min 2、平面向里的数量积定义 师:平面向星数量积(内积或点积)的定义:
已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab
②O与任何向量的数里积为O。 直接给出定义,可以让学习对新知识的求知数得到满足,并对新知识的探究有一个方向性。 5min 3、几何意义 师:同学们猜想
a·b=∣a∣∣b∣cosQ
用图怎么表示
生:a·b=∣a∣·∣b∣cosθ
=∣OM∣·∣OB∣
师:数里积a·b等于a的长度与b在a方向上的投影∣b∣cosθ的面积。
师:请同学们讨论数量积且有哪些性质
通过自己画图培养学生把问题转化到图形上,到图形上解决问题的能力。
5min 性 质 师:同学们a·b为非零向果,a·b=∣a∣·∣b∣cosθ。当θ=0°,90°,180°时,a·b有什么性质呢。
生:①当θ=90°时
a·b= a·b=∣a∣·∣b∣cosθ
②当a与b同向时
即θ= 0° ,则a·b=∣ a∣·∣b∣
当a与b反向时,
即θ= 180°,则a·b=∣ a∣·∣b∣
特别a·a=∣ a∣2 成 ∣ a∣= a·a
③∣a∣·∣b∣≤∣ a∣ ∣b∣
学生自己的探究性质,体会并深入理解向里数量的运算性质。 8min 生:①a·b= b·a(交换)
②(λa)·b=λ (a·b)
教材分析:
前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。
在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。
教学目标:
(一)知识与技能
1.掌握数量积的定义、重要性质及运算律;
2.能应用数量积的重要性质及运算律解决问题;
3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。
(二)过程与方法
以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。
(三)情感、态度与价值观
创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。
教学重点:
1.平面向量的数量积的定义;
2.用平面向量的数量积表示向量的模及向量的夹角。
教学难点:
平面向量数量积的定义及运算律的理解和平面向量数量积的应用。
教学方法:
启发引导式
教学过程:
(一)提出问题,引入新课
前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?
这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?
我们知道:W=|F||s|cosθ,
功是一个标量(数量),而力它等于力F和位移s都是矢量(向量),功等于力和位移这两个向量的大小与它们夹角余弦的乘积。这给我们一种启示:能否把功W看成是两向量F和s的一种运算的结果呢,为此我们引入平面向量的数量积。
(二)讲授新课
今天我们就来学习:(板书课题)
2.4平面向量的数量积
一、向量数量积的定义
1.已知两个非零向量 与 ,我们把数量| || |cosθ叫做 与 的数量积(或内积),记作 ,即 =| || |cosθ , 其中 θ是 与 的夹角。
2.规定:零向量与任一向量的数量积为0,即 =0
注意:
(1)符号“ ”在向量运算中既不能省略,也不能用“×”代替。
(2) 是 与 的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。
(3)两个向量的数量积是一个数量,而不是向量。而且这个数量的大小与两个向量的模及其夹角有关。
(4)两非零向量 与 的数量积 的符号由夹角θ决定:
cosθ
= cosθ = 0
cosθ
前面我们学习了向量的加法、减法及数乘运算,他们都有明确的几何意义,那么向量的数量积的几何意义是什么呢?
二、数量积的几何意义
1.“投影”的概念:已知两个非零向量 与 ,θ是 与 的夹角,| |cos( 叫做向量 在 方向上的投影
思考:投影是向量,还是数量?
根据投影的定义,投影当然算数量,可能为正,可能为负,还可能为0
|(为锐角 (为钝角 (为直角
| |cos( | |cos( | |cos(=0
当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 | |;当( = 180(时投影为 (| |
思考: 在 方向上的投影是什么,并作图表示
2.数量积的几何意义:数量积 等于 的长度| |与 在 方向上投影| |cos(的乘积,也等于 的长度| |与 在 方向上的投影| |cos(的乘积。
根据数量积的定义,可以推出一些结论,我们把它们作为数量积的重要性质
三、数量积的重要性质
设 与 都是非零向量,θ是 与 的夹角
向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。
一、总体设想:
本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。
二、教学目标:
知识和技能:
使学生了解向量的数量积的抽象根源。
使学生理解向是的数量积的概念:
两个非零向量的夹角;定义;本质;几何意义。
使学生了解向量的数量积的运算律
掌握向量数量积的主要变化式: ;
过程与方法:
从物理中的物体受力做功,提出向量的夹角和数量积的概念,然后给出两个非零向量的夹角和数量积的一般概念,并强调它的本质;接着给出两个向量的数量积的几何意义,提出一个向量在另一个向量方向上的投影的概念。
给出向量的数量积的运算律,并通过例题具体地显示出来。
由数量积的定义式,变化出一些特例。
情感、态度和价值观:
使学生学会有效学习:抓住知识之间的逻辑关系。
三、重、难点:
【重点】数量积的定义,向量模和夹角的计算方法
【难点】向量的数量积的几何意义
四、教学方案及其设计意图:
平面向量的数量积,是解决垂直、求夹角和线段长度问题的关键知识,其源自对受力物体在其运动方向上做功等物理问题的抽象。于是在引导学生学平面向量数量积的概念时,要围绕物理方面已有的知识展开,这是使学生把所学的新知识附着在旧知识上的绝好的机会。(如图)首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W ,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。以此为基础引出了两非零向量a, b的数量积的概念: , 是记法, 是定义的实质――它是一个实数。按照推理,当 时,数量积为正数;当 时,数量积为零;当 时,数量积为负。
向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分: 。此概念也以物体做功为基础给出。 是向量b在a的方向上的投影。
一、选择题
1.已知向量满足,且,则与的夹角为( ).
A. B. C. D.
考查目的:考查平面向量的数量积的意义.
答案:C.
解析:根据平面向量数量积的意义,及可得,.
2.已知向量,是不平行于轴的单位向量,且,则等于( ).
A. B. C. D.(1,0)
考查目的:考查平面向量数量积的坐标运算.
答案:B.
解析:利用排除法. ∵在D中,,∴D不合题意;∵在C中向量不是单位向量,∴也不符题意;∵A是向量会使得,同样不合题意,答案只有选B.
3.(四川理)设点M是线段BC的中点,点A在直线BC外,,,则( ).
A.8 B.4 C.2 D.1
考查目的:考查平面向量加、减法运算的几何意义,以及数形结合思想.
答案:C.
解析:∵,∴是以A为直角顶点的直角三角形.又∵M是BC的中点,∴.
二、填空题
4.已知,则与方向相同的单位向量为 .
考查目的.:考查方向相同的单位向量的求法和运算.
答案:.
解析:∵,∴与方向相同的单位向量.
5.已知:,与的夹角为,则在方向上的投影为 .
考查目的:考查平面向量投影的概念与计算.
答案:.
解析:在方向上的投影为.
6.(天津文)若等边的边长为,平面内一点M满足,则= .
考查目的:考查平面向量的加、减法运算和平面向量的数量积运算.
答案:-2.
解析:∵,∴,,∴.
三、解答题
7.已知,若,试求实数的值.
考查目的:考查平面向量的数量积运算和平面向量垂直的性质等.
答案:.
解析:∵,∴,即,得.
8.已知向量,,.
⑴求的最小值及相应的值;
⑵若与共线,求实数.
考查目的:考查平面向量的坐标运算与求函数最值等的综合运算.
解析:⑴∵,∴,∴,当且仅当时取等号;⑵∵,与共线,∴,∴.
一、 教材分析
1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。
2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。因此结合中学生的认知结构特点和学生实际。我将本节教学目标确定为:
1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题
2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。
教学重点
教学难点
探究发现公式
二、 教学方法和手段
1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的.参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。
2教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。
三、 学法指导
改善学生的学习方式是高中数学课程追求的基本理念。独立思考,自主探索,动手实践,合作交流等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。为了实现这一目标,本节教学让学生主动参与,让学生动手,动口、动脑。通过思考、计算、归纳、推理,鼓励学生多向思维,积极活动,勇于探索。具体体现在:1、通过提出问题,把问题的求解与探究贯穿整堂课,使学生在自主探究中发现了结论,推广了命题,使学生感到成果是自己得到的,增强了成就感,培养了学生学好数学的信心和良好的学习动机。2、通过数与形的充分挖掘,通过对向量平行与垂直条件的坐标表示的类比,培养了学生数形结合的数学思想,教给了学生类比联想的记忆方法。
四、教学程序
本节课分为复习回顾、定理推导、引申推广、例题讲析、练习与小结五部分。
复习回顾部分通过两个问题,复习了与本节内容相关的数量积概念,为本节内容的学习作了必要的铺垫。
定理推导部分通过设问,引出寻求向量的数量积的坐标表示的必要性,引入课题,并引导学生应用前述知识共同推导出数量积的坐标表示。
引申推广部分,让学生自主推导出向量的长度公式,向量垂直条件的坐标表示、夹角公式等三个结论,强化了学生的动手能力和自主探究能力。
例题讲析,通过四道紧扣教材的例题的精讲,突出了结论的应用,也起到了示范作用。
练习及小结:通过练习题验收教学效果,突出训练主线,小结部分画龙点睛,强调本节重点。再结合课后作业,进一步实现本节课的教学目的。同时小结也体现主体性,由教师提出问题学生总结得出。
教学目的:
1 掌握平面向量数量积运算规律;
2 能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3 掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题
教学重点:平面向量数量积及运算规律
教学难点:平面向量数量积的应用
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量 与 ,作 = , = ,则∠aob=θ(0≤θ≤π)叫 与 的夹角
2.平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || |cos叫 与 的数量积,记作 ,即有 = | || |cos,
(0≤θ≤π) 并规定 与任何向量的数量积为0
3.“投影”的概念:作图
定义:| |cos叫做向量 在 方向上的投影
投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 | |;当 = 180时投影为 | |
4.向量的数量积的几何意义:
数量积 等于 的长度与 在 方向上投影| |cos的乘积
5.两个向量的数量积的性质:
设 、 为两个非零向量, 是与 同向的单位向量
1 = =| |cos;2 = 0
3当 与 同向时, = | || |;当 与 反向时, = | || |
特别的 = | |2或
4cos = ;5| | ≤ | || |
6.判断下列各题正确与否:
1若 = ,则对任一向量 ,有 = 0 ( √ )
2若 ,则对任一非零向量 ,有 0 ( × )
3若 , = 0,则 = ( × )
4若 = 0,则 、 至少有一个为零 ( × )
5若 , = ,则 = ( × )
6若 = ,则 = 当且仅当 时成立 ( × )
7对任意向量 、 、 ,有( ) ( ) ( × )
8对任意向量 ,有 2 = | |2 ( √ )
★ 高中数学说课稿
★ 平面镶嵌说课稿
★ 高中数学的说课稿