高中数学《棱锥的概念和性质》说课稿

| 收藏本文 下载本文 作者:流浪的灵魂

下面小编给大家整理的高中数学《棱锥的概念和性质》说课稿(共含14篇),欢迎阅读!同时,但愿您也能像本文投稿人“流浪的灵魂”一样,积极向本站投稿分享好文章。

高中数学《棱锥的概念和性质》说课稿

篇1:高中数学棱锥性质的概念说课稿

一、说教材

1、教材的地位和作用

“棱锥”这节教材是《立体几何》的第2。2节,它是在学生学习了直线和平面的基础知识,掌握了棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。

2、教学内容

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

3、教学目标

根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目标确定为:

(1)知识目标:使学生理解棱锥以及正棱锥的概念,掌握正棱锥的性质,领会应用正棱锥的性质解题的一般方法初步学会应用性质解决相关问题。

(2)能力目标:通过对正棱锥中相关元素的相互转化的研究,培养学生知识迁移的能力及数学表达能力,提高学生的.空间想象能力以及空间问题向平面转化的能力。

(3)德育、美育目标:通过教学进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

4、教学重点,难点,关键

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

二、说教法

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。

因此我把本节的教法确定为:类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质的启发式教学。

三、说学法

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生“动手做,动脑想;严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

篇2:棱锥的概念和性质说课稿

教材分析

教材的地位和作用

棱锥这节教材是《立体几何》的第2.2节它是在学生学习了直线和平面的基础知识,掌握若干基本图形以及棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。 因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。

教学内容

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

教学目的

根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目的确定为:

通过棱锥,正棱锥概念的教学,培养学生知识迁移的能力及数学表达能力;

领会应用正棱锥的性质解题的一般方法,初步学会应用性质解决相关问题;

通过对正棱锥中相关元素的相互转化的研究,提高学生的空间想象能力以及空间问题向平面转化的能力;

进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

教学重点,难点,关键

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的.分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

教法分析

类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质。

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。

学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生动手做,动脑想;严格证,多训练,勤钻研。的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生学有新思,思有所得,练有所获。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养创新型人才的需要。

教学流程

课题引入

上一节课我们学习了棱柱的有关知识,当棱柱的上底面缩为一点时,想一想,其底面,侧棱有何变化?

(可将金字塔,帐篷的图片以及不同棱锥的模型依次出示给学生)

将现实生活的实例抽象成数学模型,获得新的几何体――棱锥。(板书课题)

引导启发

请同学们描述一下棱锥的本质特征?(学生观察模型,提示学生可以从底面,侧面的形状特点加以描述)

结论:(1)有一个面是多边形;(2)其余各面是三角形且有一个公共顶点。

由满足(1)、(2)的面所围成的几何体叫做棱锥。

(设计意图:由观察具体事物,经过积极思维,归纳、抽象出事的本质属性,形成概念,培养学生抽象思维能力,提高学习效果。)

观察图1:依次逐个介绍棱锥各个部分

名称及表示法。表示法:棱锥S-ABCDE

或棱锥S-AC。与棱柱相似,棱锥可以按

底面多边形的边数分为三棱锥,四棱锥、五棱锥,,n棱锥。

(设计意图:从简处理棱锥的表示法,分类等,为后面重点解决正棱锥的性质问题节省时间。)

由于实际生活中,遇到的往往是一种所以下面重点研究正棱锥的概念及性质。

通过对比正棱柱的定义,让学生描述正棱锥。

(拿出各式各样的棱锥模型让学生辨认)

讨论:底面是正多边形的棱锥对吗?联想正棱柱的定义,棱柱补充几点后才是正棱柱?

结论:底面是正多边形,并且顶点在底面射影是底面中心。为什么?

(设计意图:采用观察、联想、类比、猜想、发现的方法引出正棱锥的定义比课本直接给出显得自然,学生好接受)

引导证明

正棱锥的顶点在底面的射影是底面下多边形中心,这是正棱锥的本质特征。它决定了正棱锥的其他性质。下面以正五棱锥为例,请同学们说出其侧棱,各侧面有何性质?(将图2出示给学生)

结论:各棱相等,各侧面是全等的等腰三角形。

为什么?

篇3:棱锥的概念和性质的课件

关于棱锥的概念和性质的课件

教材分析

1、教材的地位和作用

“棱锥”这节教材是《立体几何》的第2.2节它是在学生学习了直线和平面的基础知识,掌握若干基本图形以及棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。 因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。

2、教学内容

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

3、教学目的

根据教学大纲的`要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目的确定为:

(1) 通过棱锥,正棱锥概念的教学,培养学生知识迁移的能力及数学表达能力;

(2) 领会应用正棱锥的性质解题的一般方法,初步学会应用性质解决相关问题;

(3) 通过对正棱锥中相关元素的相互转化的研究,提高学生的空间想象能力以及空间问题向平面转化的能力;

(4) 进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

4、教学重点,难点,关键

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

二、教法分析

类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质。

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。

三、学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生“动手做,动脑想;严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

四、教学流程

1、课题引入

上一节课我们学习了棱柱的有关知识,当棱柱的上底面缩为一点时,想一想,其底面,侧棱有何变化?

(可将金字塔,帐篷的图片以及不同棱锥的模型依次出示给学生)

将现实生活的实例抽象成数学模型,获得新的几何体――棱锥。(板书课题)

2、引导启发

请同学们描述一下棱锥的本质特征?(学生观察模型,提示学生可以从底面,侧面的形状特点加以描述)

结论:(1)有一个面是多边形;

(2)其余各面是三角形且有一个公共顶点。

由满足(1)、(2)的面所围成的几何体叫做棱锥。

(设计意图:由观察具体事物,经过积极思维,归纳、抽象出事的本质属性,形成概念,培养学生抽象思维能力,提高学习效果。)

e

例2,已知:正三棱锥v-abc,v为高,

ab=6,v= ,求侧棱长及斜高。

(要求学生独立思考,多种方法求解)

帮助学生理清题意,作出图形,图5。

(设计意图:在例一的基础上,让

学生自己分析,按照所获得的解题方法完

成解题过程,训练解题技能,并通过一题

多解,培养学生的发散思维能力。)

6、小结:

(1)本节课重点研究了正棱锥的性质,揭示了正棱锥的最本质特征。 (2)掌握用基本图形去解决正棱锥中有关问题的方法。

(设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习)

7、作业布置:

课本p62,2。3

补充题:已知:正棱锥的底面边长为a ,底面多边形的边心距为r,棱锥的高为h,

求:它的侧棱长。

(设计意图:使学生能巩固本节课所学知识和所获得的解题方法,培养学生自学学习的习惯,同时,对有余力的学生留出自由发展的空间)

篇4:高中数学棱锥的性质知识点总结

棱锥的性质:

如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点至截面距离与棱锥高的平方比。

棱锥的概念:

棱锥的底面: 棱锥中的多边形叫做棱锥的底面。如下图中的面ABCD就是棱锥的底面。

棱锥的侧面: 棱锥中除底面以外的各个面都叫做棱锥的侧面。如图中的面PAB、面PCD等都是棱锥的侧面。

棱锥的侧棱: 相邻侧面的公共边叫做棱锥的侧棱。如图中PA、PB等都是棱锥的侧棱。

棱锥的顶点; 棱锥中各个侧面的公共顶点叫做棱锥的顶点。如图中P是各个侧面的公共顶点,P是棱锥的顶点。

棱锥的高: 棱锥的顶点到底面的距离叫做棱锥的高。如图中,若PO⊥底面ABCD,垂足是O,那么PO就是棱锥的高。

棱锥的对角面; 棱锥中过不相邻的两条侧棱的截面叫做对角面。

篇5:高中数学棱锥的性质知识点总结

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12 两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48 定理 四边形的内角和等于360°

49 四边形的外角和等于360°

50 多边形内角和定理 n边形的内角的和等于(n-2)×180°

篇6:高中数学《导数概念》说课稿

一、教材分析

导数的概念是高中新教材人教A版选修2―2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1气球平均膨胀率――→瞬时膨胀率

问题2高台跳水的平均速度――→瞬时速度

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

二、教学目标

1、知识与技能:

通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、过程与方法:

①通过动手计算培养学生观察、分析、比较和归纳能力。

②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。

3、情感、态度与价值观:

通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣。

三、重点、难点

重点:导数概念的形成,导数内涵的理解。

难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵。

通过逼近的.方法,引导学生观察来突破难点。

四、教学设想(具体如下表)

教学设想(具体如下表)

五、学法与教法

学法与教学用具

学法:

(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。(如问题2的处理)

(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。(如问题3的处理)

(3)探究学习:引导学生发挥主观能动性,主动探索新知。(如例题的处理)

教学用具:电脑、多媒体、计算器

教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动――师生互动、共同探索。②导――教师指导、循序渐进。

(1)新课引入――提出问题,激发学生的求知欲。

(2)理解导数的内涵――数形结合,动手计算,组织学生自主探索,获得导数的定义。

(3)例题处理――始终从问题出发,层层设疑,让他们在探索中自得知识。

(4)变式练习――深化对导数内涵的理解,巩固新知。

六、评价分析

这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。提出问题、计算观察、发现规律、给出定义,让学生经历了知识再发现的过程,促进了个性化学习。

从旧教材上看,导数概念学习的起点是极限,即从数列的极限,到函数的极限,再到导数。这种概念建立方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质的理解。

新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。

通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生容易理解;这样定义导数的优点:

1.避免学生认知水平和知识学习间的矛盾;

2.将更多精力放在导数本质的理解上;

3.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义。

篇7:高中数学说课稿《导数概念》

高中数学说课稿《导数概念》

一、教材分析

导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1:气球平均膨胀率→瞬时膨胀率问题2高台跳水的平均速度→瞬时速度

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

二、教学目标

1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、过程与方法:

①通过动手计算培养学生观察、分析、比较和归纳能力②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣。

三、重点、难点重点:

导数概念的形成,导数内涵的理解难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点

四、教学设想

(略)

五、学法与教法学法与教学用具学法:

(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。(如问题2的处理)

(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。(如问题3的处理)

(3)探究学习:引导学生发挥主观能动性,主动探索新知。(如例题的处理)教学用具:电脑、多媒体、计算器教法:整堂课围绕“一切为了学生发展”的教学原则,突出:

①动——师生互动、共同探索。

②导——教师指导、循序渐进

(1)新课引入——提出问题,激发学生的求知欲。

(2)理解导数的`内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义。

(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。

(4)变式练习——深化对导数内涵的理解,巩固新知。

六、评价分析

这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。提出问题、计算观察、发现规律、给出定义,让学生经历了知识再发现的过程,促进了个性化学习。从旧教材上看,导数概念学习的起点是极限,即从数列的极限,到函数的极限,再到导数。这种概念建立方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质的理解。新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生容易理解;这样定义导数的优点:

1、避免学生认知水平和知识学习间的矛盾;

2、将更多精力放在导数本质的理解上;

3、学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义。

篇8:高中数学《导数概念》说课稿教案

高中数学《导数概念》说课稿教案模板

一、教材分析

导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的.关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础,

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1 气球平均膨胀率--→瞬时膨胀率

问题2 高台跳水的平均速度--→瞬时速度

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点

二、教学目标

1、知识与技能:

通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,

2、过程与方法:

① 通过动手计算培养学生观察、分析、比较和归纳能力

② 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法

3、情感、态度与价值观:

通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.

三、重点、难点

 重点:导数概念的形成,导数内涵的理解

 难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵

通过逼近的方法,引导学生观察来突破难点

四、教学设想

篇9:高中数学说课稿

一、教学目标

1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.

2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验.

3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.

4.培养学生求真务实、实事求是的科学态度.

二、重点、难点、关键

重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.

难点:把三角函数理解为以实数为自变量的函数.

关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).

三、教学理念和方法

教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.

根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.

四、教学过程

[执教线索:

回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业]

(一)复习引入、回想再认

开门见山,面对全体学生提问:

在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?

探索任意角的三角函数(板书课题),请同学们回想,再明确一下:

(情景1)什么叫函数?或者说函数是怎样定义的?

让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:

传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.

现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.

设计意图:

函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.

(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?

学生口述后再投影展示,教师再根据投影进行强调:

设计意图:

学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.

(二)引伸铺垫、创设情景

(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!

留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.

能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.

设计意图:

从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程.

教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

师生共做(学生口述,教师板书图形和比值):

把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.

根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:

设计意图:

此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).

(情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?

追问:锐角α大小发生变化时,比值会改变吗?

先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化.

引导学生观察图3,联系相似三角形知识,

探索发现:

对于锐角α的每一个确定值,六个比值都是

确定的,不会随P在终边上的移动而变化.

得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数.

设计意图:

初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念.

(三)分析归纳、自主定义

(情境5)能将锐角的比值情形推广到任意角α吗?

水到渠成,师生共同进行探索和推广:

对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):

终边分别在四个象限的情形:终边分别在四个半轴上的情形:

(指出:不画出角的方向,表明角具有任意性)

怎样刻画任意角的三角函数呢?研究它的六个比值:

(板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:

α=kππ/2时,x=0,比值y/x、r/x无意义;

α=kπ时,y=0,比值x/y、r/y无意义.

追问:α大小发生变化时,比值会改变吗?

先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化.

再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.

综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).

因此,六个比值分别是以角α为自变量、以比值为函数值的函数.

根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):

=sinα(正弦)=cosα(余弦)=tanα(正切)

=cscα(余割)=sec(正弦)=cotα(余切)

教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此

投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:

(图六)

指导学生识记六个比值及函数名称.

教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).

引导学生进一步分析理解:

已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便.

设计意图:

把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对“三角函数可以看成是以实数为自变量的函数”的理解有半信半疑之感,有待通过后续的应用加深理解.

(四)探索定义域

(情景6)(1)函数概念的三要素是什么?

函数三要素:对应法则、定义域、值域.

正弦函数sinα的对应法则是什么?

正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα.

(2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:

三角函数

sinα

cosα

tanα

cotα

cscα

secα

定义域

引导学生自主探索:

如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围.

关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.

对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}..........

教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆.

(关于值域,到后面再学习).

设计意图:

定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握.

(五)符号判断、形象识记

(情景7)能判断三角函数值的正、负吗?试试看!

引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:

(同好得正、异号得负)

sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负

设计意图:

判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键.

(六)练习巩固、理解记忆

1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值.

要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义.

课堂练习:

p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值.

要求心算,并提问中下学生检验,--------

点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).

补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值.

师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略.

2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.

提问,据反馈信息作点评、修正.

师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。

取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:

角α(角度)

90°

180°

270°

360°

角α(弧度)

sinα

cosα

tanα

处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义.

强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值.

设计意图:

及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把“培养学生分析解决问题的能力”贯穿在每一节课的课堂教学始终.

(七)回顾小结、建构网络

要求全体学生根据教师所提问题进行总结识记,提问检查并强调:

1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)

2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)

3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)

设计意图:

遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力.

(八)布置课外作业

1.书面作业:习题4.3第3、4、5题.

2.认真阅读p22“阅读材料:三角函数与欧拉”,了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况.

教学设计说明

一、对本节教材的理解

三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.

星星之火,可以燎原.

直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础.

三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.

二、教学法加工

数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻“以学生的发展为本”的科学教育观,“将数学的学术形态转化为教育形态”(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力.

在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时.

教学经验表明,三角函数定义“简单易记”,学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持“教师主导、学生主体”的原则,采用“启发探索、讲练结合”的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力.

将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了.

教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学.

三、教学过程分析(见穿插在教案中的设计意图).

篇10:高中数学说课稿

尊敬的各位专家,评委:

上午好!

根据新课改的理论标准,我将从教材分析,学情分析,教学目标分析,学法、教法分析,教学过程分析,以及板书设计这六个方面来谈谈我对教材的理解和教学的设计。

一、教材分析

地位和作用:

《______________________》是北师大版高中数学必修二的第______章“__________”的第________节内容。

本节是在学习了________________________________________之后编排的。通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。

二、学情分析

1、学生已熟悉掌握______

2、学生的认知规律,是由整体到局部,具体到抽象发展的。

3、学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力

4、学生层次参差不齐,个体差异还比较明显

三、教学目标分析

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

1、知识与技能:

2、过程与方法:通过___学习,体会__的思想,培养学生提出问题,分析问题,解决问题的能力,提高交流表达能力,提高独立获取知识的能力。

3、情感态度与价值观:培养把握空间图形的能力,欣赏空间图形所反应的数学美(认识数学内容之间的内在联系,加强数形结合的思想,形成正确的数学观)。

教学重点:

难点:

四、学法、教法分析

(一)学法

首先,通过自学探究,培养学生的分析、归纳能力,提高学生合作学习的能力,学生课堂中体现自我,学会寻找问题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开。

其次,教学过程中,我想适时地根据学生的“最近发展区”搭建平台,充分发挥“教师的主导作用和学生的主体地位相统一的教学规律”,

从学生原有的知识和能力出发,指导学生学会观察、分析、归纳问题的能力。

学生只有不断地解决问题、产生成就感的过程中,才能真正地提高学习的兴趣,也只有这样才能“学”有新“思”,“思”有新“得”。

(二)教法

数学教育家波利亚曾经说过:“学习任何知识的最佳途径即是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的发展规律、性质和联系。”根据学生的认知特点和知识水平,为落实重点、突破难点,本着以人为本,以学为中心的思想,本节课我将采用启发式、合作探究的方式来进行教学。运用多媒体演示辅助教学的一种手段,以激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现问题、分析问题和解决问题。

五、教学过程分析

1、创设情境,引入问题。

新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

2、发现问题,探究新知。

数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历

“数学化”、“再创造”的活动过程.

3、深入探究,加深理解。

有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

4、当堂训练,巩固提高。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

5、小结归纳,拓展深化。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

6、作业设计

作业分为必做题和选做题。

针对学生能力和水平的差异,进行分层训练,在所有学生获得共同知识基础和基本能力的同时,让学有余力的学生将学习从课堂延伸到课外,获得更大的能力提升,这体现新课改理念,也是因材施教的教学原则的具体运用。

现代数学教学观和新课改要求教学能从“让学生学会”向“让学生会学”转变,使数学教学真正成为数学活动的教学。所以,本节课我们不仅仅是单纯的传授知识,而更应该重视对数学方法的渗透。从熟悉的知识出发,学生自主探索、合作交流激发学生的学习兴趣,突破难点,培养学生发现问题、解决问题的能力

六、板书设计

板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;突出本节重难点,能指导教师的教学进程、引导学生探索知识,启迪学生思维。

我的说课到此结束,敬请各位专家、评委批评指正。

谢谢!

篇11:高中数学说课稿

函数的单调性

今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

一、说教材

1、教材的地位和作用

本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

2、学情分析

本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

教学目标分析

基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

1.知识与技能(1)理解函数的单调性和单调函数的意义;

(2)会判断和证明简单函数的单调性。

2.过程与方法

(1)培养从概念出发,进一步研究性质的意识及能力;

(2)体会数形结合、分类讨论的数学思想。

3.情感态度与价值观

由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

三、教学重难点分析

通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

重点:

函数单调性的概念,判断和证明简单函数的单调性。

难点:

1.函数单调性概念的认知

(1)自然语言到符号语言的转化;

(2)常量到变量的转化。

2.应用定义证明单调性的代数推理论证。

四、教法与学法分析

1、教法分析

基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

2、学法分析

新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

五、教学过程

为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

(一)知识导入

温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

(二)讲授新课

1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。

2.观察函数y=x2随自变量x变化的情况,设置启发式问题:

(1)在y轴的右侧部分图象具有什么特点?

(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1

(3)如何用数学符号语言来描述这个规律?

教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

类似地分析图象在y轴的左侧部分。

通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1

仿照单调增函数定义,由学生说出单调减函数的定义。

教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

(三)巩固练习

1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

练习2:练习2:判断下列说法是否正确

①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。

②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。

1③已知函数y=,因为f(-1)

1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

(四)归纳总结

我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

(五)布置作业

必做题:习题2-3A组第2,4,5题。

选做题:习题2-3B组第2题。

新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

篇12:高中数学说课稿

我今天说课的课题是新课标高中数学人教版A版必修第二册第三章“3.1.1倾斜角与斜率”。我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。

一、说教材:

1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。

2、教学目标

根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)知识与技能目标:

了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。

(2)过程与方法目标:

引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力

(3)情感、态度与价值观目标:

在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。

3、教学重点、难点

(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。

(2)教学难点:斜率公式的推导

二、说教法

课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自已的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。

三、说学法

在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、说教学程序:

1、导入新课:

提出问题:如何确定一条直线的位置?

(1)两点确定一条直线;

(2)一点能确定一条直线吗?

过一点P可以作无数条直线,这些直线的倾斜程度不同,如何描述直线的倾斜程度?本节课将解决这个问题。

设计意图:打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,直线的倾斜角这一概念的产生是因为研究直线的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。

2、探究发现:

(1)直线的倾斜角:

有新课导入直接引出此概念,学生易于接受,但是容易忽视其中的重点字。因此重点强调定义的几个注意点:①x轴正半轴;②直线向上方向;③当直线与x轴平行或重合时,直线的倾斜角为0度。由此得出直线倾斜角的取值范围。

(2)直线的确定方法:

确定平面直角坐标系中一条直线位置的几何要素:直线上的一个定点以及它的倾斜角,二者缺一不可。

(3)直线的斜率:

注:直线的倾斜角与斜率的区别:

所有的直线都有倾斜角;但是不是所有直线都有斜率(倾斜角为90°的直线没有斜率,因为90°的正切不存在。)

(4)由两点确定的直线的斜率:

先让学生自主探究、学生之间互相交流,然后再由师生共同归纳得出结论:

经过两点P1(x1.y1),P2(x2,y2)直线的斜率公式:(x1≠x2)。

3、学用结合:

(1)例题讲解:P89-90/例题1和例题2。

例题的讲解主要关注思路的点拨以及解题过程的规范书写。

(2)课堂练习:

P91/练习第1、2题

4、总结归纳:

直线的倾斜角直线的斜率直线的斜率公式

定义

取值范围

5、布置作业:P 91/练习第3、4题。

篇13:高中数学说课稿

教材地位及作用

本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

教学重点

理解古典概型的概念及利用古典概型求解随机事件的概率。

根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。

教学难点

如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。

教学目标

1.知识与技能

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。

教学过程分析

一,提出问题引入新课

在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。

教师最后汇总方法、结果和感受,并提出问题?

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?

学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。

通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

二,思考交流形成概念

在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是;

在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是。

我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。

学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。

让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。

三,思考交流形成概念

例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?

分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。

我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。

(树状图)

解:所求的基本事件共有6个:

,,,

,,

观察对比,发现两个模拟试验和例1的共同特点:

试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

经概括总结后得到:

1,试验中所有可能出现的基本事件只有有限个;(有限性)

2,每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

思考交流:

(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环。。。。。。命中5环和不中环。你认为这是古典概型吗?为什么?

答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环。。。。。。命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。学生互相交流,回答补充,教师归纳。将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。

两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

四,观察分析推导方程

问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

分析:

实验一中,出现正面朝上的概率与反面朝上的概率相等,即

P(“正面朝上”)=P(“反面朝上”)

由概率的加法公式,得

P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1

因此P(“正面朝上”)=P(“反面朝上”)=

即试验二中,出现各个点的概率相等,即

P(“1点”)=P(“2点”)=P(“3点”)

=P(“4点”)=P(“5点”)=P(“6点”)

反复利用概率的加法公式,我们有

P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

所以P(“1点”)=P(“2点”)=P(“3点”)

=P(“4点”)=P(“5点”)=P(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

即根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。

鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

提问:

(1)在例1的实验中,出现字母“d”的概率是多少?

出现字母“d”的概率为:

提问:

(2)在使用古典概型的概率公式时,应该注意什么?

归纳:

在使用古典概型的概率公式时,应该注意:

(1)要判断该概率模型是不是古典概型;

(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。除了画树状图,还有什么方法求基本事件的个数呢?

教师提问,学生回答,加深对古典概型的概率计算公式的理解。

深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

四,例题分析推广应用

例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

分析:

解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。

解:

这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:

课后思考:

(1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

(2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?

学生先思考再回答,教师对学生没有注意到的关键点加以说明。

让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

巩固学生对已学知识的掌握。

例3同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。(可由列表法得到)

由表中可知同时掷两个骰子的结果共有36种。

(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:

(1,4),(2,3),(3,2),(4,1)

(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。

引导学生用列表来列举试验中的基本事件的总数。

利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。

培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

五,探究思考巩固深

化问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果将是:

(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为

这就需要我们考察两种解法是否满足古典概型的要求了。

可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件,另外还可以利用Excel展示第二种方法中构造的21个基本事件不是等可能事件。从而加深印象,巩固知识。

要求学生观察对比两种结果,找出问题产生的原因。

通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

六,总结概括加深理解

1.我们将具有

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

这样两个特点的概率模型称为古典概率概型,简称古典概型。

2.古典概型计算任何事件的概率计算公式

3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏。

学生小结归纳,不足的地方老师补充说明。

使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

七,布置作业

P123练习1、2题

学生课后自主完成。

进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

八,板书设计教法与学法分析教法分析

根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

学法分析

学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

评价分析评价设计

本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。

在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。整个教学设计的顺利实施,达到了教师的教学目标。

篇14:高中数学说课稿

各位老师:

大家好!

我叫xxx,来自xx。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1、教材所处的地位和作用

在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。

2教学的重点和难点

重点:⑴能利用频率颁布直方图估计总体的众数,中位数,平均数。

⑵体会样本数字特征具有随机性

难点:能应用相关知识解决简单的实际问题。

二、教学目标分析

1、知识与技能目标

(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。

(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。

2、过程与方法目标:

通过对本节课知识的学习,初步体会、领悟“用数据说话”的统计思想方法。

3、情感态度与价值观目标:

通过对有关数据的搜集、整理、分析、判断培养学生“实事求是”的科学态度和严谨的工作作风。

三、教学方法与手段分析

1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。

2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。

四、教学过程分析

1、复习回顾,问题引入

「屏幕显示」

〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。

提出问题:什么是平均数,众数,中位数?

(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)

「设计意图」使学生对本节课的学习做好知识准备。

(进一步提出实例、导入新课。)

「屏幕显示」

〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)

分组计算这两组50名员工的月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。

(学生分组分别求两组数据的平均工资。

学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。

所以我选乙公司。

学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。

学生丙:我要根据我的能力选择。)

「设计意图」学生按“常理”做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。

2讲授新课,深入认识

⑴「屏幕显示」

例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?

(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)

「设计意图」让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。

⑵〈提出问题〉根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的探究问题制定一个合理平价用水量的的标准。

(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)

「设计意图」使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。

⑶总结出众数、中位数、平均数三种数字特征的优缺点。

(先由学生思考,然后再老师的引导下做出总结)

「设计意图」使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。

3、反思小结、培养能力

①学习利用频率直方图估计总体的众数、中位数和平均数的方法。

②介绍众数、中位数和平均数这三个特征数的优点和缺点。

③学习如何利用众数、中位数和平均数的特征去分析解决实际问题。

「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力

4、课后作业,自主学习

课本练习

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

5、板书设计

高中数学《指数函数及其性质》说课稿

高中数学概念教学设计

高中数学概念教学论文

高中数学说课稿

《二氧化碳的制取和性质》的说课稿

等腰三角形性质说课稿

高中数学说课稿精选

高中数学的说课稿

关于高中数学说课稿

高中数学说课稿模板

高中数学《棱锥的概念和性质》说课稿(精选14篇)

欢迎下载DOC格式的高中数学《棱锥的概念和性质》说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档