初中数学《矩形》优秀教案

| 收藏本文 下载本文 作者:噜噜噜噜

以下是小编收集整理的初中数学《矩形》优秀教案(共含15篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“噜噜噜噜”一样,积极向本站投稿分享好文章。

初中数学《矩形》优秀教案

篇1:初中数学《矩形》教案

初中数学《矩形》教案

一、教学目标

1.理解并掌握矩形的判定方法.

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、重点、难点

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用.

三、例题的意图分析

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的.判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.

四、课堂引入

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形.

矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

五、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的四边形是矩形;                 (×)

(2)有四个角是直角的四边形是矩形;                 (√)

(3)四个角都相等的四边形是矩形;                   (√)

(4)对角线相等的四边形是矩形;                     (×)

(5)对角线相等且互相垂直的四边形是矩形;           (×)

(6)对角线互相平分且相等的四边形是矩形;           (√)

(7)对角线相等,且有一个角是直角的四边形是矩形;   (×)

(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形.   (√)

指出:

(l)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

例2 (补充)已知  ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

解:∵  四边形ABCD是平行四边形,

∴   AO= AC,BO= BD.

∵  AO=BO,

∴  AC=BD.

∴   ABCD是矩形(对角线相等的平行四边形是矩形).

在Rt△ABC中,

∵  AB=4cm,AC=2AO=8cm,

∴   BC= (cm).

例3 (补充)  已知:如图(1), ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.

证明:∵  四边形ABCD是平行四边形,

∴  AD∥BC.

∴ ∠DAB+∠ABC=180°.

又   AE平分∠DAB,BG平分∠ABC ,

∴ ∠EAB+∠ABG= ×180°=90°.

∴ ∠AFB=90°.

同理可证  ∠AED=∠BGC=∠CHD=90°.

∴  四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).

六、随堂练习

1.(选择)下列说法正确的是(    ).

(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形

(C)对角线互相平分的四边形是矩形      (D)对角互补的平行四边形是矩形

2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.

七、课后练习

1.工人师傅做铝合金窗框分下面三个步骤进行:

⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;

⑵ 摆放成如图②的四边形,则这时窗框的形状是     形,根据的数学道理是:          ;

⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是    形,根据的数学道理是:       ;

2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.

篇2:初中数学矩形知识点总结

一.矩形、菱形、正方形的性质

1.矩形的性质①具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形是轴对称图形,它有两条对称轴;⑤直角三角形斜边上的中线等于斜边的一半.

2.菱形的性质①具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴;⑤菱形的面积=底×高=对角线乘积的一半.

3.正方形的性质正方形具有平行四边形,矩形,菱形的一切性质

①边:四边相等,对边平行;②角:四个角都是直角;③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;④正方形是轴对称图形,有四条对称轴.

二.矩形、菱形、正方形的判定

1.矩形的判定①有一个内角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④还有对角线相等且互相平分的四边形是矩形.

2.菱形的判定方法①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等四边形是菱形;④对角线垂直平分的四边形是菱形.

3.正方形的判定①菱形+矩形的一条特征;②菱形+矩形的一条特征;③平行四边形+一个直角+一组邻边相等.

说明一个四边形是正方形的一般思路是:先判断它是矩形,在判断这个矩形也是菱形;或先判断它是菱形,再判断这个菱形也是矩形.

三.例题

1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为 ( )

A.360 B.90 C.270 D.180

2.矩形ABCD中,AE⊥BD于点E,对角线AC与BD相交于点O,BE:ED=1:3,AB=6cm,求AC的长。

3.O是矩形ABCD 对角线的交点, AE平分 ∠BAD,∠AOD=120° ,求∠AEO 的度数。

4.菱形的周长为40cm,两邻角的比为1:2,则较短对角线的长 。

5.已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.

(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;

(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式。

篇3:初中数学矩形教学设计

初中矩形教学设计

初中数学矩形教学反思

本堂课根本达到教学目的,重难点突出,但课后发现还有许多不足:

1、讲解例题浮于表面,没有讲透讲彻。几何标题是考核学生逻辑思维是否严密的重要手腕,思维是否发散的重要体现,但我在讲解是只重视例题本身,而忽略了这一特色,造成了学生认知就知,知识学的比较死板。

2、 没有重视讲解几何题的方法。教几何题,重在教解题方法而不是仅教会这道题。而我在这一点上本末倒置,造成了学生只知其一不知其二的场面,学习的知识很僵硬。

3、不能及时有效的处置学生课堂上涌现的过错。数学课中学生涌现思维过错是常有的事,教师要把它引导到自己精确的思维上去,训练学生思维的灵活性,但我没有精确的加以引导,而是草草阐明之后就另寻解题思路,抹杀了学生的积极性。

总之,几何教学是体现一个教师根本功的重要方面,在这一方面我还有待进一步学习与提高,盼望在一后的教学中有所改良。

篇4:矩形初中数学第一课时说课稿

矩形初中数学第一课时说课稿

各位领导、老师大家好:

今天说课的题目是八年级(下册)第六章第一节《矩形》第一课时。下面我分设计理念与思路、教材分析、学生分析、教学目标、教学过程设计、板书设计等六个方面说一下这节课。

一、设计理念与思路:

新课标以培养学生的能力为目标,积极倡导他们亲身经历探究为主的学习活动,培养他们的好奇心和探究欲,发展他们对科学本质的理解,使他们学会探究解决问题的策略,为他们的终身学习和生活打好基础。在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。在课堂教学中,帮助学生检视和反思自我,唤起学生成长的渴望;帮助学生寻找、搜集和利用学习资源,设计恰当的学习活动;帮助学生发现他们所学东西的实际意义,营造和维持学习过程中积极的心理氛围;故此本课从生活中的数学(做窗框)入手,充分展示“观察、操作-猜想、探索-说理”的认识过程,使学生能在直观的基础上学习说理,体现直观与简单推理的融合基础知识的掌握与能力的形成。

二、教材分析:

本节课是平行四边形与特殊平行作业(矩形、菱形和正方形)之间第一课时,起到承上启下的作用,是本章内容的一个重点。同时,矩形又是人们日常生活中最常见的应用最广泛的一种几何图形,使学生体会到几何知识来源于实际又作用于实际的辨证关系。在研究几个图形之间的从属关系时也涉及了辨证思维和认识论的一些观点,这对于发展学生的逻辑思维能力和渗透辨证唯物主义观点的教育,都有一定的作用。

三、学生分析:

学生在小学学习过长方形的简单知识,有了这样的基础,再加上八年级学生思维活跃,兴趣广泛,获取信息渠道多,对新事物的追求与敏感,他们完全有能力通过自主探究的学习方式借助老师恰当的点拨,来学好矩形的性质。这就要求我们在课堂上要敢于放手,让学生去想,去说,去做,去表达,去自我评价,去体会成功的喜悦。面对问题,让学生大胆实践,使学生在实践中发现真知,从而体验到成功的喜悦,更加增强了学好数学的信心,促进学生形成积极乐观的态度和正确的人生观。

四、教学目标:

知识目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.

2、会初步运用矩形的概念和性质来解决有关问题.

3、渗透运动联系、从量变到质变的观点.

能力目标:使学生能应用矩形定义、性质等知识,解决有关问题,进一步培养学生的逻辑推理能力。

情感目标:通过引入,使学生加深对矩形概念的理解,并以此激发学生的探索精神。

教学重点:矩形的性质。

教学难点:矩形的性质的灵活运用、学生的书写。

五、教学过程设计:

1、情境创设:让学生从生活中的数学引入(做窗框)入手,引导学生注重观察生活,从而进一步研究矩形的性质进入学习情境。

2、探索活动:活动一操作-观察-探索

活动分三个层次:第一层次:让学生了解做窗框的过程,即从中包含的数学知识,平行四边形的判定,两组对边分别相等的四边形是平行四边形。

第二层次:引导学生探索四边形ABCD的特点。学生通过进一步探究可以发现平行四边形ABCD中有一个角是直角,这样就为引入矩形的概念做好铺垫。

第三层次:概括得出矩形概念。在第二层次的基础上概括得出矩形概念,同时,要启发学生注意:矩形的概念有两方面的涵义,它既是矩形的一条性质,又是矩形的一种判定方法。

活动二探索矩形的性质

活动分四个层次:

第一层次:让学生举例说明生活中的矩形,使学生直观初步认识矩形,及矩形在生活中的广泛应用。

第二层次:让学生通过量课堂课本封面来了解矩形的'性质,复习近平行四边形的性质,并使学生理解矩形与平行四边形的特殊与一般的辨证关系,矩形具备一般平行四边形的性质,从而让学生叙述矩形具备的一般平行四边形的性质。

第三层次:引导学生思考,促使学生理解,由于矩形比一般平行四边形多一个特殊条件:有一个角是直角,因此矩形具有一些特殊性质,探索它的特殊性质要从它的特殊处有一个角是直角入手。引导学生观察:改变平行四边形形状,它的边、角、对角线有怎样的变化?当一个角为直角时,它的四个角有什么特点?两条对角线有怎样的特殊关系?这一层次旨在利用四边形的不稳定性,借助直观,引导学生通过合情推理去探索、发现结论。同时在演示的过程中,学生可以体会到知识发生的过程,渗透了量变到质变的辩证唯物主义观点的教育。

第四层次:在第三层次的基础上,引导学生对矩形的角、对角线的性质进行说理,同时发展学生有条理地表达能力。

3、例题讲解:

讲解课本例1。本例设计的目的直接应用矩形的有关性质;同时为总结矩形中具有的一些特殊图形(四个等腰三角形)做铺垫。也进一步培养学生的数学表达能力和书写能力。

4、课堂练习:例题讲解完毕后,通过问题链来归纳总结矩形的相关特点:由OA=OB=OC=OD可知图中有几个等腰三角形?这些三角形全等吗?面积相等吗?几个直角三角形?研究矩形的轴对称性。有关矩形的问题往往转化为直角三角形或等腰三角形的问题解决。

5、课堂小结:引导学生归纳总结,教师补充升华:矩形的性质

6、知识拓展

1、培养学生用多种方法解决实际和积极思考的习惯,同时为下一节课创设问题情境,(引入课中问题中另一种解决办法)

2、通过生活知识引导学生探究数学,应用数学,培养学生的学习数学的兴趣(门框窗框为什么要做成矩形的?)

7、布置作业:课本P134T1、2、3、4;作业本(2)P33

六、板书设计:

矩形的性质(一)、定义:(二)、矩形的性质(三)、例题

七、反思:

本节课的容量决定学生板书时间太少。

篇5:初中数学说课稿《矩形的判定》

初中数学说课稿《矩形的判定》

各位评委、各位老师:

你们好!本日我要为各人讲的课题是《矩形的判断》,凭据新课标理念,对应本节,我将以教什么、怎样教以及为什么如许教为思绪,从课本阐发、讲授目的阐发、讲授计谋阐发、讲授历程阐发四个方面加以阐明,

一、教材分析(说教材):

1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

2、教学目标:1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。3、使学生经历探究矩形判定的.过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

3、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用

下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

三、教学过程

环节一:创设情境、导入新课

通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

回顾:1、矩形的定义:有一个角是直角的平行四边形叫矩形2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。3、平行四边形的性质:

平行四边形的性质平行四边形判定

平行四边形两组对边分别相等

平行四边形两组对边分别平行 两组对边分别平行(或相等)的四边形是平行四边形

平行四边形一组对边平行且相等

平行四边形对角线互相平分 一组对边平行且相等的四边形是平行四边形

对角线互相平分的四边形是平行四边形

平行四边形两组对角分别相等 两组对角分别相等的四边形是平行四边形

环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由,

(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。

定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

环节三:应用辨析,巩固定理

总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

二、填空题:

1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。

2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:

判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

环节四:开放训练,发散思维

变式训练

如图,△ABC中,点O是AC边上的一个动点,

过点O作直线MN∥BC,设MN交∠BCA的

平分线于点E,交∠BCA的外角平分线于点F。

(1)求证:EO=EF(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在讲堂上的积极互助,大胆思索接纳肯定,提出盼望。

关键六:部署作业,反馈回授通过作业反馈对所学知识的掌握结果,并进一步巩牢固理,应用定理。

篇6:初中数学优秀教案精选

初中数学正弦和余弦教案设计

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

初中数学优秀有理数的乘法教案

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

教学设计示例

(第一课时)

教学目标

1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

2.通过运算,培养学生的运算能力;

3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

教学重点和难点

重点:依据法则,熟练进行运算;

难点:有理数乘法法则的理解.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.计算(-2)+(-2)+(-2).

2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、师生共同研究有理数乘法法则

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

解:3×2=6(厘米) ①

答:上升了6厘米.

问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

解:-3×2=-6(厘米) ②

答:上升-6厘米(即下降6厘米).

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数.

这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

此外,(-3)×0=0.

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0.

四、小结

今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

五、作业

初中数学角平分线的性质教案范文

(一)创设情境 导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流 探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AO B.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识。

篇7:初中数学优秀教案

2.7有理数的加减混合运算

一、 教材内容及设置依据

【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用

本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理

【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

四、关于教学方法的选用

根据本节课的内容和学生的实际水平,本节课可采用的方法:

1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的.情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

五、关于学法的指导

“授人以鱼,不如授人以渔”,在教o学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

六、课时安排:1课时

教学程序:

一、复习铺垫:

首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

1、45+(-23) 2、9-(-5)

3、-28-(-37)4、(-13 )+0

5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

从四排学生中个推选一名学生代表板演6、7、8、题。

通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

二、新知探索:

1、 出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作

上升4.5千米 +4.5千米

下降3.2千米 -3.2千米

上升1.1千米 +1.1千米

下降1.4千米 -1.4千米

此时飞机比起飞点高了多少米?

让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4) =1.3+1.1-1.4

=2.4+(-1.4) =2.4-1.4

=1千米 =1千米

教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

篇8:初中数学优秀教案

《平移》教学设计说明

湖南广益实验中学李智敏

一、教学内容

义务教育课程标准实验教科书教科书(人教版)七年级下册第五章相交线与平行线,

5.4平移

二、教学目标

知识与技能目标:

掌握平移的概念,发现并归纳平移的性质,学会利用平移绘制某些特殊的图案.

过程与方法目标:

经历操作、探究、归纳和总结平移性质的过程,感受数学知识的发生和发展,培养学生的抽象概括能力;体会从数学的角度理解问题,提高综合运用所学知识和技能解决问题的水平.

情感、态度与价值观目标:

通过丰富多彩的活动,让学生感受数学充满了探索性与创造性,激发学生的探究热情,并培养学生良好的团队合作意识和创新精神.

三、教学重点、难点

重点:学习习近平移的有关定义及平移的性质.

难点:1、对平移的两要素的理解;2、如何运用平移的性质解决问题.

四、学情分析

对于理解掌握平移的概念及性质,学生要对生活中的平移现象有一些感性的认识,同时必须具有线段相等及平行线的判定等知识储备.七年级的孩子正处于思维活跃,模仿能力强,对新知事物满怀探求欲望的阶段,同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.

五、教学过程设计:

一、创设情景 感知平移

活动一 观看:李老师的生活片段(视频)

片段一 开窗户

片段二 开抽屉

片段三 开车

片段四 乘坐电梯

看完后,我将引导学生仔细分析从中抽象出的平面图形的变换,提出问题:“在刚才的过程中,图形是怎么移动的呢?”

通过教师的引导,学生不难得出:“图形是沿着一条直线移动的”.

【设计意图】

1.以老师的生活片段作为引入,可以在最短时间内激发学生的兴趣,引起学生的高度注意力,进入情景,感受生活中的平移.

2. 渗透将实际问题转化为数学问题的思想.

二、动手操作 探究平移

活动二 观看下列美丽的图案,并回答问题.

(1)这些图形有什么共同特点?

(2)能否根据其中一部分绘制整个图案?

在老师用动画演示的启发下,经过同学们的热烈讨论,大家将达成共识:

“可以将其中的一部分沿一条直线移动,得出若干个形状、大小完全相同的图形,组合成图案”.

活动三 指导学生用平移的方法绘制图案

请大家试试看!在一张白纸上划一条直线,将手中的硬纸板图形沿着这条直线移动,并把每一次移动后的图形画下来!

我先在黑板上演示,然后学生动手作图,完成后用实物投影仪展示部分同学的作品,并告诉学生:“我们刚才做的就是将图形进行平移”.

【设计意图】

让学生感受到通过平移可以创造生活中的美,并进一步加深对平移的印象:

“一个图形的整体沿一条直线移动”.

三、合作交流 学习习近平移

1.平移的定义: 将一个图形沿某一直线方向移动一定的距离,图形的这种移动叫做平移变换,简称平移

.

接着我将引导学生关注定义中包含平移的两要素:方向和距离.

对应点的定义:

新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.

在教师的引导下,通过观察多媒体再一次演示平移,学生很容易得出平移的第一条性质:

(1)平移不改变图形的形状和大小,只改变图形的位置.

接着,我要求学生观察课本P28图中A、B、C点与它们的对应点的连线,并提问:“这些线段有怎样的数量关系和位置关系呢?”

在本节课之前,学生已经掌握了对线段大小的比较和平行线的判定的方法.在这里他们可以使用刻度尺、量角器、圆规等工具,通过度量线段、画截线和比较角的大小等方法,探究出平移的第二条性质:

(2)连接对应点的线段平行且相等.

【设计意图】

在了解平移定义的基础上,通过观察猜想、动手操作、合作交流,让学生自主探讨出平移的性质,既培养了学生的探索精神和协作意识,又有利于学生对新知识的理解和掌握.

四、师生互动 应用平移

1、请大家举出生活中平移的现象

【设计意图】

让学生在寻找身边的平移的过程中,进一步认识到“数学来源于生活”,激发他们学好数学,将来更好地让“数学服务于生活”.

2、 例题1.

(1)平移改变的是图形的( )

B

A.位置B.大小 C.形状 D.位置、大小和形状

(2)在平移变换中,连接对应点的线段( )

A .平行不相等 B. 相等不平C.平行且相等 D. 既不平行,又不相等

(3)经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是( )

A. 不同的点移动的距离不同 B. 既可能相同也可能不同

C. 不同的点移动的距离相同 D. 无法确定

【设计意图】

为了学生加深对平移性质的理解,突破了重、难点.

例题2.下列变换中可能属于平移的有哪些?

C A B

【设计意图】 D E

强调平移“是图形沿一条直线运动”,让学生意识到“不符合平移性质的不是平移”,突出了重点,突破了难点.

3、 练习:

(1)下图中,每个方格的边长为一个单位长度,左边的小船是右边的小船向平移 单位长度后得到的;

(2)请找出A、B、C的对应点A′、B′、C′;

(3)请找出与线段AA′相等且平行的两条线段,它们的长度是多少?

【设计意图】

练习题的设计,是为了巩固对平移两要素与性质的理解和掌握,实现重、难点的落实,

并为下一步“平移作图和用坐标表示平移”的学习作好铺垫.

五、小结拓展回味平移

1. 欣赏与回味(一)

用同样的基本图形绘制的图案,其效果为什么会有这么大的差异呢?”

【设计意图】

通过对图形欣赏和对比,让学生体会到:用同样一个基本图形,如果平移的方向不同或平移的距离不一样,将会产生出不同的视觉效果,从而加深对平移的两要素的理解.

欣赏与回味(二)

【设计意图】

通过观察多媒体绘制这幅图片的过程,让学生感受到用一个基本图形通过不同的平移可以构造出生活中的美,激发学生运用平移设计图案的兴趣.

2. 请大家谈谈这节课的收获!

――平移的定义―平移的两要素

――平移的性质

篇9:初中数学优秀教案

教学目标

(一)教学知识点

1.利用方程解决实际问题.

2.训练用配方法解题的技能.

(二)能力训练要求

1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.

2.能根据具体问题的实际意义检验结果的合理性.

3.进一步训练利用配方法解题的技能.

通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.

教学重点

利用方程解决实际问题

教学难点

对于开放性问题的解决,即如何设计方案

教学方法

分组讨论法

教具准备

投影片二张

第一张:练习(记作投影片2.2.3 A)

第二张:实际问题(记作投影片2.2.3 B)

教学过程

Ⅰ.巧设情景问题,引入新课

[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3 A)

用配方法解下列一元二次方程:

(1)x2+6x+8=0;

(2)x2-8x+15=0;

(3)x2-3x-7=0;

(4)3x2-8x+4=0;

(5)6x2-11x-10=0;

(6)2x2+21x-11=0.

[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、

(4)、(6).

[师]各组做完了没有?

[生齐声]做完了.

[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.

[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即

x-3x=7,

x2-3x+32=7+32 应为(-23

2)2.

[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?

[生乙]方程(3)的解为x1=

[师]好,继续. 3?237,x2?3?237.

[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=52,x2=-32.

[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即

方程(2)的解:x1=5,x2=3,

方程(4)的解:x1=2,x2=

方程(6)的解:xl=32, 12,x2=-11.

[师]利用配方法求解方程时,一定要注意:

①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.

②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.

另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.

这节课我们就来解决一个实际问题.

Ⅱ.讲授新课

[师]看大屏幕.(出示投影片2.2.3B)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?

[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.

[生甲]我们组

的设计方案如右图

所示,其中花园四

周是小路,它们的

宽度都相等.

这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.

[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.

[生乙]甲组的设计符合要求.

我们可以假设小路的宽度为x m,则根据题意,可得方程 (16-2x)(12-2x)= 1

2×16×12,

也就是x2-14x-24=0.

然后利用配方法来求解这个方程,即

x-14x=-24,

x2-14x+72=-24+72,

(x-7)=25,

x-7=±5,

即x-7=5,x-7=-5.

∴x1=12.x2=2.

因此,小路的宽度为2 m或12 m.

由以上所述知:甲组的设计方案符合要求.

[生丙]不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.

[师]大家来作判断,谁说的合乎实际?

[生齐声]丙同学说得有理.

[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.

[生丁]我们组

的设计方案如右图.

我们是以矩形

的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.

因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得

πx2=22

1

2×12×16.

解得x=±96

?≈±5.5.

因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.

[生戊]由丁同

学组的启发,我又

设计了一个方案,

如右图.

以矩形的对角

线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.

[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.

[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?

[生庚]我们组

设计的方案如右图.

顺次连结矩形

各边的中点,所

得到的四边形即

是作为花园的场

地.

因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即1

2×6×8),所以四

个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.

[生辛]我们组设计的方案如下图.

图中的阴影部分可作为建花园的场所.

因为阴影部分的面积为96 m,正好是矩形面积的一半,所以这个设计也符合要求.

[生丑]我们组

设计的方案如右图.

图中的阴影部

分可作为建花园的

场地.

经计算,它符合要求.

[生癸]我们组的设计方案如下图.

2

图中的阴影部分是作为建花园的场地.

[师]噢,同学们能帮癸组求出图中的x吗?

[生]能,根据题意,可得方程

2×1

2 (16-x)(12-x)

=1

2

2×16×12, 即x-28x+96=0,

x2-28x=-96,

x2-28x+142=-96+142,

(x-14)2=100,

x-14=±10.

∴x1=24,x2=4.

因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.

[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.

接下来,我们再来看一个设计方案.

Ⅲ.课堂练习

(一)课本P55随堂练习1

1.小颖的设计方案如图所示,你能帮助她求出图中的x吗

?

解:根据题意,得 (16-x)(12-x)=

212×16×12, 即x-28x+96=0.

解这个方程,得

x1=4,x2=24(舍去).

所以x=4.

(二)看课本P53~P54,然后小结.

Ⅳ.课时小结

本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性. 另外,还应注意用配方法解题的技能.

Ⅴ.课后作业

(一)课本P55习题2.5 1、2

(二)1.预习内容:P56~P57

2.预习提纲

如何推导一元二次方程的求根公式.

Ⅵ.活动与探究

汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S甲(米)与车速x(千米/时)之间有下列关系:S甲=0.1x+0.01x2;乙种车的刹车距离S乙(米)与车速x(千米/时)的关系如下图所示.

篇10:初中数学优秀教案

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1:菱形的四条边都相等;

性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2四边都相等的四边形是菱形.

五、例习题分析

例1(教材P109的例3)略

例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵四边形ABCD是平行四边形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四边形AFCE是平行四边形.

又EF⊥AC,

∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是

(A)两条对角线相等(B)两条对角线互相垂直

(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

篇11:初中数学优秀教案

一、教学目标:

1.知识目标:

①能准确理解绝对值的'几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材P641、2,P66习题2.4A组1、2.

练习二:

1.绝对值小于4的整数是____.

2.绝对值最小的数是____.

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材P66习题2.4A组3、4、5.

篇12:初中数学优秀教案

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

篇13:初中数学优秀教案

相似三角形

教学建议

知识结构

本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

重难点分析

相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误.

教法建议

1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念

3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识

4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解

6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

教学设计示例

一、教学目标

1.使学生理解并掌握相似三角形的概念,理解相似比的概念.

2.使学生掌握预备定理,并了解它的承上启下的作用.

3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

4.通过学习,培养由特殊到一般的唯物辩证法观点.

二、教学设计

类比学习、探索发现.

三、重点、难点

1.教学重点:是相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.

2.教学难点:是相似比的概念及找对应边.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

1.什么叫做全等三角形?它在形状上、大小上有何特征?

2.两个全等三角形的对应也和对应角有什么关系?

【讲解新课】

1.相似三角形

相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

定义:对应角相等,对应边成比例的三角形,叫做相似三角形

符号“∽”,读作:“相似于”,记作:

,如图所示.

反之亦然.即相似三角形对应角相等,对应边成比例(性质).

, ∴

另外,相似三角形具有传递性(性质).

注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

2.相似比的概念

相似三角形对应边的比K,叫做相似比(或相似系数).

注:①两个相似三角形的相似比具有顺序性.

如果

的相似比是K,那么

的相似比是

.

②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.

3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

,如图所示.

教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截

两边所得,其中

,本质上与右图是一致的.

(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现

的错误,如出现错误,教师要及时予以纠正.

(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.

【小结】

1.本节学习了相似三角形的概念.

2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.

3.重点学习了预备定理及注意的问题.

七、布置作业

教材P238中2,3.

八、板书设计

篇14:《矩形》优秀教案设计

《矩形》优秀教案设计

教学目标

知识与技能:

了解矩形的有关概念,理解并掌握矩形的有关性质.

过程与方法:

经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.

情感态度与价值观:

培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.

重难点、关键

重点:掌握矩形的性质,并学会应用.

难点:理解矩形的特殊性.

关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.

教学准备

教师准备:投影仪,收集有关矩形的图片,制作教具.

学生准备:复习近平行四边形性质,预习矩形这节内容.

学法解析

1.认知起点:已经学习了三角形、平行四边形,积累了一定的经验的基础上学习本节课内容.

2.知识线索:情境与操作→平行四边形→矩形→矩形性质.

3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.

教学过程

一、联系生活,形象感知

【显示投影片】

教师活动:演示平行四边形的形状变化的动态效果,让学生观察变化,引出发现。

矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).

教师活动:介绍完矩形概念后,为了加深理解也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:

问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)

学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,是属于平行四边形,因此它具有平行四边形所有性质.

问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)

学生活动:由平行四边形对边平行以及刚才变角∠α为90°可以得到∠α的补角也是90°,从而得到矩形四个角都是直角.

性质定理1:矩形的四个角都是直角.

几何语言:∵四边形ABCD是矩形

∴∠A=∠B=∠C=∠D=90度

评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.

教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).

学生活动:观察发现:矩形的两条对角线相等,口述证明过程是:充分利用(SAS)三角形全等来证明.

口述:∵四边形ABCD是矩形

∴∠ABC=∠DCB=90°,AB=DC

又∵BC为公共边

∴△ABC≌△DCB(SAS)

∴AC=BD

性质定理2:矩形的对角线相等.

几何语言:∵四边形ABCD是矩形

∴ AC = BD

教师提问:

1.图中有几个三角形?它们分别是什么三角形?

2.在直角△ABC中,OB与AC之间有什么数量关系?为什么?由此你会得出什么结论?

学生活动:观察、思考后发现AO= AC,BO= BD,BO是Rt△ABC的中线.由此归纳直角三角形的一个性质:

直角三角形斜边上的中线等于斜边的一半.

直角三角形中,30°角所对的边等于斜边的一半(师生回忆).

【设计意图】采用观察、操作、交流、演绎的手法来解决重点突破难点.

二、范例点击,应用所学

例1如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=4cm,求矩形对角线的长.(投影显示)

思路点拨:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,可以发现△AOB为等边三角形,这样可求出OA=AB=4cm,

∴AC=BD=2OA=8cm.

【活动方略】

教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程

学生活动:参与教师讲例,总结几何分析思路.

三.随堂练习,巩固深化

1.矩形具有而一般平行四边形不具有的性质是 ( )

A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分

2.判断对错

(1)矩形是平行四边形( )

(2)矩形的两条对角线将矩形分成四个面积相等的等腰三角形( )

3.已知△ABC是Rt△,∠ABC=90度,

BD是斜边AC上的中线。

(1)若BD=3㎝则AC= _______㎝

(2) 若∠C=30°,AB=5㎝,则AC=_____ cm, BD=_____ ㎝.

4.四边形ABCD是矩形

1.若已知AB=8㎝,AD=6㎝,

则AC=_______㎝,OB=_______ ㎝

2.若已知AC=10㎝,BC=6㎝,则矩形的.周长=____ cm

矩形的面积=_______

若已知 ∠DOC=120°,AC=8㎝,则AD= _____cm

AB= _____cm

5.矩形的短边长为3cm,两对角线所成的角是60 °,则它的另一边长是_______cm

6. 已知矩形对角线长为4cm,一边长为是_______ cm,则矩形的面积是________.

四.课堂小结

矩形定义:有一个角是直角的平行四边形叫做矩形.

矩形是轴对称图形。

性质定理1:矩形的四个角都是直角.

性质定理2:矩形的对角线相等.

直角三角形斜边上的中线等于斜边的一半.

五.拓展应用

如右图,在矩形ABCD中,DE平分∠ADC交AC于E,

交BC于F,若∠BDF=15度,求∠COF的度数.

六.作业

必做题

教与学整体设计练案《矩形第(1)课时》

选做题

如右图:在ABCD矩形中AB=6cm,BC=8cm,

将矩形折叠,使B点与点D重合,求折痕EF的长。

篇15:数学矩形教学设计

一、教学目标:

1、学习“矩形”、“圆角矩形”等工具的使用方法。

2、让学生能运用矩形和圆组合出一些基本图形。

3、通过画大卡车,让学生感受一个整体图形的完成过程。

4、让学生了解图形组合的奥秘,从而培养学生的创造力。

二、课时安排:1课时。

三、教学重点:“矩形”、“圆角矩形”工具的使用方法。

四、教学难点:让学生能运用矩形和圆组合出一些基本图形。

五、教学设计

1、情景创设,激活课堂

听,什么声音?哈哈,是我们可爱的多多,乘着大卡车来到了我们的教室。

先请大家观察一下:多多乘坐的这辆大卡车是由哪些图形组成的?

指名生汇报:这辆大卡车是由圆、椭圆、长方形、圆角长方形组成的。

在数学里面我们把长方形和正方形都叫做矩形,今天我们就来一起学习画矩形。

2、出示课题:画矩形

3、提出任务,共同探究

会画长方形和圆角长方形的'同学举手。现在我们来比赛,分别画一个长方形和一个圆角长方形,并涂上自己喜欢的颜色,看谁画得又快又好。

学生动手操作,奖励画得快、好的学生。

指名学生上台演示:画一个长方形和一个圆角长方形。

师:是不是只要会画这四个基本图形,我们就能很快地画出多多乘坐的这辆大卡车呢?答案是……

出示图片:

多多要是坐着这样的车,让人肯定很担心。我们一起来做个小小汽车修理师,找找下面几辆大卡车中哪些部件需要“修理”。

指名学生演示画第4幅图中的轮子,提醒学生两个车轮要画得同样大小,引导学生一边使用Shift键,一边注意观察状态栏内信息。

把要修理的部件小组里交流一下,然后说说看,怎样可以避免这样的错误。

师:好,现在我们自己来画出这辆大卡车。

在操作过程中如遇困难,可以从书中找解决办法,也可寻求会画的同学的帮助。

指名学生上台演示操作,学生给予评价、教师评价。

4、技巧巩固,实践提高

好了,大卡车造好了。任务完成。那么多多乘着大卡车去做什么呢?原来,它要搬家。要搬哪些东西呢?

生答:公文包、小床、书橱、冰箱。

师:小组内说一说这些物品分别是由哪些图形组成的。

学生小组内交流,集体汇报。

师:请大家选择两幅自己喜欢的物品,动手画一画。

学生练习,教师巡视,发现问题及时解决。

5、展示学生作品,学生进行评价。

请小朋友们充分发挥自己的想象力,把画上再添加一些你认为应该有的东西。

学生先说说自己准备添加的物品。

学生1:我准备在公文包下面添加画两个轮子。

学生2:我准备在小床上添加画枕头和被子。

学生3:我准备在书橱上添加画一个闹钟。

学生4:我准备在冰箱上添加画一个花瓶。

……

学生动手操作。

展示学生作品,学生给予评价,之后老师评价,及时给予鼓励和赞扬。

师生共同评选出今天的优秀作品,给予表扬,颁给“艺术多多”章。

6、回顾总结 感悟升华

这节课你有什么收获?

人教版初中数学矩形说课稿

初中数学优秀教案

数学矩形教学设计

初中数学《分式》优秀教案

矩形练习题

初中数学等边三角形教案

初中数学三角形教案

初中数学数轴教案

初中数学因式分解教案

初中数学一次函数教案

初中数学《矩形》优秀教案(精选15篇)

欢迎下载DOC格式的初中数学《矩形》优秀教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档