初中八年级数学上册优秀教案《梯形》

| 收藏本文 下载本文 作者:sharkzqh

下面是小编为大家整理的初中八年级数学上册优秀教案《梯形》(共含12篇),仅供大家参考借鉴,希望大家喜欢,并能积极分享!同时,但愿您也能像本文投稿人“sharkzqh”一样,积极向本站投稿分享好文章。

初中八年级数学上册优秀教案《梯形》

篇1:数学八年级上册《梯形》优秀说课稿

探究二、特殊梯形

为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?

让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形, 什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义.

(四)总结反思,纳入系统1.通过本节课的学习你得到了哪些新知识?2.解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识.

(五)布置作业,拓展思维学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:⒈基础性作业:课本121面习题4.8节1.2.3题⒉拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:(1)等腰梯形(2)直角梯形. 要求:所拼成的图形互不重叠且不留空隙.设计意图:进一步培养学生动手操作能力及独立分析问题解决问题的能力,让学生更好的会学数学,用数学的理念.同时为下节课的学习埋下伏笔.五、板书设计 六、教学评价本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”.学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题。

篇2:初中数学八年级上册教案有哪些

13.2.3 三角形全等的条件(三)

教学目标

1.三角形全等的条件:角边角、角角边.

2.三角形全等条件小结.

3.掌握三角形全等的“角边角”“角角边”条件.

4.能运用全等三角形的条件,解决简单的推理证明问题.

教学重点

已知两角一边的三角形全等探究.

教学难点

灵活运用三角形全等条件证明.

教学过程

Ⅰ.提出问题,创设情境

1.复习:(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边.

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:①定义;②SSS;③SAS.

2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

Ⅱ.导入新课

问题1:三角形中已知两角一边有几种可能?

1.两角和它们的夹边.

2.两角和其中一角的对边.

问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.

提炼规律:

两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).

问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.

②画线段A′B′,使A′B′=AB.

③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

④射线A′D与B′E交于一点,记为C′

即可得到△A′B′C′.

将△A′B′C′与△ABC重叠,发现两三角形全等.

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).

思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

探究问题4:

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).

[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

Ⅲ.随堂练习

(一)课本P99练习1、2.

(二)补充练习

图中的两个三角形全等吗?请说明理由.

答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.

Ⅳ.课时小结

至此,我们有五种判定三角形全等的方法:

1.全等三角形的定义

2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)

推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.

Ⅴ.作业

1.课本习题13.2─5、6、11题.

课后作业:<<课堂感悟与探究>>

板书设计

篇3:初中数学八年级上册教案有哪些

13.3 角的平分线的性质(一)

教学目标

1、应用三角形全等的知识,解释角平分线的原理.

2.会用尺规作一个已知角的平分线.

教学重点

利用尺规作已知角的平分线.

教学难点

角的平分线的作图方法的提炼.

教学过程

Ⅰ.提出问题,创设情境

问题1:三角形中有哪些重要线段.

问题2:你能作出这些线段吗?

Ⅱ.导入新课

在学直角三角形全等的条件时做过这样一个题:

在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.

求证:∠MOC=∠NOC.

通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.

受这个题的启示,我们能不能这样做:

在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.

思考:这个方案可行吗?

(学生思考、讨论后,统一思想,认为可行)

议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?

要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.

∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.

看看条件够不够.

所以△ABC≌△ADC(SSS).

所以∠CAD=∠CAB.

即射线AC就是∠DAB的平分线.

作已知角的平分线的方法:

已知:∠AOB.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

议一议:

1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

总结:

1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

练一练:

任意画一角∠AOB,作它的平分线.

探索活动

按以下步骤折纸

1、在准备好的三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。

2、在折痕(即平分线)上任意找一点C,

3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。

4、将纸打开,新的折痕与OB边交点为E。

角平分线的性质:角平分线上的点到角的两边的距离相等.

下面用我们学过的知识证明发现:

如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。

求证:OE=OD。

Ⅲ.随堂练习

课本P106练习.

练后总结:

平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.

Ⅳ.课时小结

本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.

Ⅴ.课后作业

1.课本P108习题13.2─1、2.

课后作业:<<课堂感悟与探究>>

思考

1.在一节数学课上,老师要求同学们练习一道题,题目的图形如图所示,图中的BD是∠ABC的平分线,在同学们忙于画图和分析题目时,小明同学忽然兴奋地大声说:“我有个发现!”原来他自己创造了一个在直角三角形中画锐角的平分线的方法.他的方法是这样的,在AB上取点E,使BE=BC,然后画DE⊥AB交AC于D,那么BD就是∠ABC的平分线.

有的同学对小明的画法表示怀疑,你认为他的画法对不对呢?请你来说明理由.

板书设计

篇4:初中八年级上册音乐精选教案优秀

一、说教材

(一)本课教学内容

欣赏《梁祝》小提琴协奏曲,学唱爱情主题《化蝶》。

(二)本课地位和作用

《梁祝》小提琴协奏曲是在借鉴欧洲协奏曲这种艺术表现形式的基础上,以独具特色的民族风格,塑造了鲜明、感人的音乐形象,成为中国交响音乐民族化的成功之作,并以其中华民族鲜明的风格特点,得到国际公认。

(三)教材重点、难点

理解主要音乐片断的含义、视唱爱情主题为本节课重点;使学生理解奏鸣曲式结构特点为本节课难点。

二、说学法、教法

根据教材内容特点和学生特点,这节课主要运用以下学法:

1、在良好的问题情景中,自主地欣赏《梁祝》小提琴协奏曲。

2、理解乐器运用形式,与作品内容有着紧密联系。

3、认真感受乐曲中不同节奏速度变化,对不同主题中能正确区分判断。

4、积极讨论,大胆设想故事结局,引申音乐的尾声发展。

教法与设想:

运用多媒体、录音机、磁带这些教具欣赏、讲解结合,通过启发引导让学生自己展开联想,领悟主题,感受作品精神内涵,通过讨论分析让学生探索创新。

三、说教学过程

本课本人的教学思路为:组织教学----欣赏音乐----讲解分析----课堂小结----课堂作业

1、让学生先欣赏感受、聆听《梁祝》小提琴协奏曲

2、用多媒体课件出示作者、创作时间、名词解释及奏鸣曲式结构图解,并让生自由讨论什么是奏鸣曲。

3、进行音乐作品完整欣赏

4、教师讲解、引导、小结。

《梁祝》小提琴协奏曲所表达的思想感情:

描述梁、祝二人真挚爱情,对封建礼教进行愤怒控诉与鞭笞,反映了人民反封建的思想感情及对这一爱情悲剧深切同情。

5、课堂作业

(1)分组讨论,设想音乐结局。

(2)视唱爱情主题。

附板书设计:

梁山伯与祝英台

(1)曲作者:何占豪陈钢

(2)创作时间:1959年

(3)题材:民间传说

(4)素材:吸取越剧中曲调

(5)体裁:奏鸣曲

(6)名词解释

曲式:是指音乐作品构成统一整体和各部分的结构规律,包括音乐作品的结构形式、主题和非主题成分的组合及其调性的布局。

协奏曲:一种独奏乐器和乐队协调演出的大型乐曲。

篇5:数学八年级上册梯形说课稿

北师大版数学八年级上册梯形说课稿

大家好!今天我说课的内容是北师大版八年级上册第四章第五节《梯形》.我从以下六个方面来说明我是如何分析教材和设计教学过程的.

一、教材分析:

(一)教材的地位及作用:梯形是人们最为熟悉的几何图形之一,在生活中有着极为广泛的应用.在小学阶段学生对梯形已经有了初步的认识.本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节。

(二)教学目标;(根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为)

知识与技能目标:⑴掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质.  ⑵培养学生初步应用等腰梯形的性质解决问题的能力.

过程与方法目标:⑴使学生经历探究梯形相关的概念,等腰梯形性质的过程.⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略.

情感、态度与价值观目标:⑴在简单的操作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力.⑵体会探索发现的乐趣,增强学习数学的自信心.

( 三 ) 教学重点、难点:本着课程标准,在钻研教材的基础上,我确定:

本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题.

教学难点:梯形有关计算和推理中的常用策略.

二、教法分析

针对本节课的特点,采用“创设情境—动手操作—合作交流—知识运用”为主线的教学方法.

三、学法指导

《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式.为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法.使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥.

四、教学过程

(一)创设情境,导入课题

让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形?  学生动手操作,我参与到学生活动中,及时搜集学生可能出现的情况.    学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题.

设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,顺利过渡到梯形的研究.

(二)动手操作,合作探究

探究一、梯形的相关概念

由剪纸的体验,学生很容易概括出梯形的定义,进一步引导学生认识梯形的相关概念.强调:上下底的区分是根据长度,而不是根据其位置.

紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,上海世博会中国会馆的的图片,让学生发现图片中的梯形,感受梯形的美.接着,利用多媒体展示一组图片,让学生进一步感受生活中的梯形.设计意图:让学生学会用数学的.眼光看世界,体会数学与现实生活的联系.为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高.待学生画好后,分别指出梯形的上底、下底和高.设计意图:让学生体会梯形高的作法,理解梯形高的意义以及梯形的高有无数条.学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调.并进一步提出以下问题:

1.梯形是平行四边形吗

2.一组对边平行这组对边不相等的四边形是梯形吗?

设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支。

探究二、特殊梯形

为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?

让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形, 什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义.

(三)总结反思,纳入系统

1.通过本节课的学习你得到了哪些新知识?2.解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识.

(四)布置作业

拓展思维学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:⒈基础性作业:课本121面习题4.8节1.2.3题⒉拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:(1)等腰梯形(2)直角梯形.

要求:所拼成的图形互不重叠且不留空隙.设计意图:进一步培养学生动手操作能力及独立分析问题解决问题的能力,让学生更好的会学数学,用数学的理念.同时为下节课的学习埋下伏笔.五、板书设计   六、教学评价本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”.学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题.

篇6:精选数学平行四边形和梯形教案优秀

教学目标

1 知识与技能:

认识平行四边形和梯形,掌握特征,理解四边形间的关系。

2 过程与方法:

经历把四边形分类,抽象概括特征的过程,动手操作,合作交流,探讨平行四边形和长方形、正方形之间的关系,发展学生的空间观念和空间思维能力,培养创新意识。

3 情感态度与价值观:

培养学生学以致用的习惯,体会数学的应用于没敢,激发学生学习数学的兴趣、增强自信心。

教学重难点

1 教学重点:

掌握平行四边形和梯形的特征。

2 教学难点:

探讨平行四边形和长方形、正方形的关系。

教学工具

多媒体设备

教学过程

1 谈话引入

一、复习旧知,导入新课

1.复习旧知

师:同学们,你们认识平行线吗?请看屏幕,这里面哪一组是平行线?

课件出示:

(1)提问:第②组是平行线吗?第⑤组呢?我们来看这三组平行线,请同学们仔细观察。

课件动态依次演示:

(2)师:认识这个四边形吗?

2.点明课题

师:今天我们就来学习──平行四边形的认识。

(二)自主探究,合作交流

1.平行四边形的意义

(1)提供感性材料

师:生活中你见过平行四边形吗?在哪见过,能给大家说一说吗?

①学生尝试举例。

②教师课件出示生活中与平行四边形有关的实例。

a.引导学生找一找、说一说课件实例中的平行四边形。

b.课件呈现:上面的各图中都有平行四边形。

(2)合作探究平行四边形的特征

①师:我们把刚才找到的平行四边形放在一起来观察一下,结合我们对平行四边形初步的认识,谁能说一说它们有哪些共同的特点?

预设:对边平行、对边相等、对角相等

(4)巩固平行四边形的定义。

师:现在,请同学们闭上眼睛想一想平行四边形什么样?想好了吗?下面三个图形中哪一个是平行四边形?

2.认识平行四边形的底和高

(1)介绍平行四边形的底和高。(可以用学生探究平行四边形边的特点时素材为例)

刚才同学们证明平行四边形对边平行的特点时用到了平行线的性质。这条垂直线段就是平行四边形的高。说一说什么是平行四边形的高?

教师帮助学生梳理语言:从平行四边形一条边上的一点向对边引一条垂线,这点到垂足之间的距离就是平行四边形的的一条高。垂足所在的边就是底。

(2)还以这条边为底,还能再画一条高吗?可以作多少条高?这些高长度相等吗?为什么?

(3)练习:(课件出示)

①这是平行四边形的高吗?为什么?

②从这点怎样作平行四边形的高吗?

4、认识梯形的特征。

(1)感知梯形。

①你在生活中见过梯形吗?让学生先说一说。

②老师也搜集了一些实物图片,找一找哪儿有梯形?

课件出示后随着学生的回答逐步隐去情境图,抽象出梯形几何图形。

(2)探究梯形的特征。

刚才我们在生活中找到了这么多的梯形,梯形有什么共同的特点呢?我们一起来研究这个问题。

教师:你发现梯形有哪些共同的特征?与学生一同归纳并板书。

预设:是四边形,只有一组对边平行。

教师:哪些图形不具备这样的特征?为什么?

预设:第二组中的第3个和第5个图形不具备梯形的特征,第3个图形没有一组对比平行,第5个图形不是四边形。

⑤归纳总结梯形的概念。

教师:看来同学们对梯形的认识很深刻,你能用一句比较简练的语言说一说什么是梯形吗?

学生:只有一组对边平行的四边形叫做梯形。

5、认识梯形的各部分名称。

(1)介绍梯形的底和腰。

教师:你知道四条边在梯形中叫什么吗?

学生:平行的一组对边分别叫梯形的上底和下底,不平行的一组对边叫梯形的腰。

(2)介绍梯形的高。

教师:什么是梯形的高?

学生:从上底的一个点出发向下底作一条垂线,这条垂线段叫做梯形的高。

教师:梯形有多少条高?

学生:梯形的高有无数条,只要夹在两条平行线之间,也就是两底之间的垂线段,都是梯形的高。

(三)内化理解,沟通联系

教师:刚才我们对梯形有了一个完整的、全面的认识。现在我们来打开学具袋,找出梯形。没有,那我们就利用这些平面图形制作一个梯形吧。

要求:每个图形只沿直线剪一下,使之变成梯形。四人一组,合作完成。

1.内化理解。

(1)用长方形剪出直角梯形。

教师:谁是用长方形材料剪的?你是怎么剪的?

学生汇报。

预设:

看看他剪的梯形有什么特点?

教师:有一个角是直角的梯形叫做直角梯形。

在剪裁的过程中,你发现哪几个图形在剪裁的方法上与长方形有共同之处?同样是四边形为什么任意四边形的裁剪方法不同?

小结:平行四边形、长方形、正方形都是两组对边分别平行的四边形,所以只需要破坏一组对边的平行关系;而任意四边形则需要创造出一组具有平行关系的对边。

2.沟通联系。

(1)现在我们都已经认识了哪些四边形?

(2)我们用一个椭圆形的大圈表示所有的四边形,这个椭圆形的圈就表示所有的长方形,以此类推分别表示正方形、平行四边形和梯形。

(3)长方形、正方形、平行四边形和梯形都属于四边形,课件演示:长方形、正方形、平行四边形和梯形进入四边形的大圈,能这样表示它们之间的关系吗?

(4)相互说一说应该怎样表示出这些四边形之间的关系,为什么?

让学生两人一组适当交流,在本上画一画。

(5)结合学生的回答,教师逐步完善关系图,课件呈现:

3 巩固提升

1.选择:(课件出示)

上图中相对应的底和高是( B D )。

A.6和1 B.5和4 C.2和4 D.3和1

2.说一说下图平行四边形的底和高分别是多少厘米?(每个方格边长1厘米)

课后小结

这节课学习了什么?你有什么收获?(小组说--组内总结--组间交流)

1、认识平行四边形和梯形,了解平行四边形和梯形的特征。

2、使学生了解长方形、正方形、平行四边形和梯形四种图形的关系。

3、认识平行四边形的不稳定性。

板书

平行四边形和梯形

平行四边形:两组对边分别平行的四边形叫做平行四边形。

梯形:只有一组对边平行的四边形叫梯形。

关文章:

1.小学四年级数学上册《平行四边形和梯形》教案优质范文3篇

2.三年级上册数学四边形的认识教案

3.初中数学《梯形》教学方法

4.数学垂直与平行教学反思

5.北师大版四年级数学下册平行四边形练习题

篇7:八年级数学上册教案

初二数学上册教案:与三角形有关的线段

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系.

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

本节课的教学重点:三角形中的相关概念和三角形三边关系.

本节课的教学难点:三角形的三边关系.

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

(2)理解并且灵活应用三角形三边关系.

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素.

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

四、教学过程设计

1.创设情境,提出问题

问题1 回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

设计意图:三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

设计意图:让学生体会由抽象到具体的过程,培养学生的语言表述能力.

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

设计意图:进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

(1)以AB为一边的三角形有哪些?

(2)以∠D为一个内角的三角形有哪些?

(3)以E为一个顶点的三角形有哪些?

(4)说出ΔBCD的三个角.

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

4.拓广延申,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

三角形按边分类:

设计意图:通过这一活动的设计,提高学生分类讨论和归纳概括的能力,加深学生对三角形按边分类的理解.

5.联系实际,突破难点

情境引入:如图三角形中,假设有一只小虫要从点B出发沿着三角形的边爬到点C,它有几条路线可选择?

各条路线的长一样吗?

师生活动:引导学生讨论分析,得到两条路线:

(1)B直接到C即BC;

(2)先由B到A再到C即BA+AC.

显然,路线(1)中的BC要短一些,即:BC

最后,师生共同得到:

BC

即:三角形的两边之和大于第三边.

设计意图:根据“两点之间线段最短”这一几何公理,推理出三角形任意两边之和大于第三边,让学生亲历知识的形成过程,同时加深对 “三角形两边之和大于第三边”的理解.

6. 应用巩固

例 用一条长为18cm的细绳围成一个等腰三角形.

(1)如果腰长是底边的2倍,那么各边的长是多少?

(2)能围成有一边的长是4cm的等腰三角形吗?为什么?

解:(1)设底边长为xcm,则腰长为2xcm.

x+2x+2x=18.

解得x=3.6.

所以,三边长分别为3.6cm,7.2cm,7.2cm.

(2)因为长为4的边可能是腰,也可能是底边,所以需要分情况讨论.

如果4cm长的边为底边,设腰长为xcm,

则 4+2x=18

解得x=7.

如果4cm长的边为腰,设底边长为xcm,

则 2×4+x=18

解得x=10.

因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4的等腰三角形.

由以上讨论可知,可以围成底边长是4cm的等腰三角形.

引导学生通过解决这样的应用问题,特别是(2)中思想方法,让学生学会什么情况下要用到分类讨论的思想,并通过问题的解答过程加深对三角形三边关系理解.

设计意图:设计有一定综合性的题目,考查学生的灵活运用知识的能力,培养学生分类讨论的数学思想,还能突破难点加深学生对三角形三边关系的理解,一举多得.

补充说明:应用三角形的三边关系时要灵活应变,最简洁的方法只需判断两小边之和大于最大边即可组成三角形.

师生活动:结合具体图形,教师引导学生分析,活学活用.

7.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.

(2)三角形按边的分类.

(3)三角形三边之间的关系.

师生活动:教师引导,学生小结.

设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.

8.布置作业:

教科书第8页第1,2题.

初二数学上册教案:乘法公式

教学设计思想

因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演.所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解.乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式.

首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

教学目标

知识与技能:

1.熟记完全平方公式,并能说出它的几何背景

2.会运用公式进行简单的乘法运算

3.提高进一步地掌握、灵活运用公式的能力

过程与方法:

1.经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力

2.通过对公式的推导及理解,养成思维严密的习惯

情感态度价值观:

感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣

二、学法引导

1.教学方法:学生探索与老师讲解相结合.

重点•难点及解决办法

重点:会推导完全平方公式,并能运用公式进行简单的计算

难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义.

课时安排

1课时.

教具学具准备

投影仪或电脑、自制胶片.

教学过程设计

看谁算得快

(1) (x+2)(x+2)

(2) (1+3a)(1+3a)

(3) (-x+5y)(-x+5y)

(4) (-m-n)(-m-n)

相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?

引例:计算 ,

学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

或合并为:

教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

【教法说明】

看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征.

证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2

公式特征:

(1)积为二次三项式;

(2)积中两项为两数的平方和;

(3)另一项是两数积的2倍,且与乘式中间的符号相同.

(4)公式中的字母a,b可以表示数,单项式和多项式

1.首平方,尾平方,积的2倍放中央.

2.结合图形,理解公式

根据图形完成下列问题:

如图:A、B两图均为正方形,

(1)图A中正方形的面积为 ,(用代数式表示)

图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为 .

(2)图B中,正方形的面积为 ,

Ⅲ的面积为 ,

Ⅰ、Ⅱ、Ⅳ的面积和为 ,

用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积 .

分别得出结论:

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想.

3.例题

(1)引例:计算

教师讲解:在 中,把x看成a,把3y看成b,则 就可用完全平方公式来计算,即

【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

(2)例2 运用完全平方公式计算:(2) ;(3)

学生活动:学生独立在练习本上尝试解题,2个学生板演.

【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

(3)(补充)例3 你觉得怎样做简单:

① 102²

② 99²

思考

(a+b)²与(-a-b)²相等吗?

(a-b)²与(b-a)²相等吗?

(a-b)²与a²-b²相等吗?

为什么?

4.尝试反馈,巩固知识

练习一(P90)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

练习二

运用完全平方公式计算:

(l) (2) (3) (4)

学生活动:学生分组讨论,选代表解答.

练习三

(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想, 与 相等吗?为什么?

与 相等吗?为什么?

学生活动:观察、思考后,回答问题.

【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

7. 总结、扩展

⑴学习了完全平方公式.

⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

8.布置作业

P91 A组 1,4,5

篇8:八年级数学上册教案

一、创设情景,明确目标

多媒体展示:内角三兄弟之争

在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分.

三、合作探究,达成目标

三角形的内角和

活动一:见教材P11“探究”.

展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.

小组讨论:有没有不同的证明方法?

反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.

针对训练:见《学生用书》相应部分

三角形内角和定理的应用

活动二:见教材P12例1

展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

小组讨论:三角形的内角和在解题时,如何灵活应用?

反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

1.本节学习的数学知识是:三角形的内角和是180°.

2.三角形内角和定理的证明思路是什么?

3.数学思想是转化、数形结合.

《三角形综合应用》精讲精练

1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )

A.1个 B.2个 C.3个 D.4个

2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

A.5 B.6 C.7 D.10

3.下列五种说法:①三角形的三个内角中至少有两个锐角;

②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).

《11.2与三角形有关的角》同步测试

4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?

(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

篇9:八年级数学上册教案

一、创设情景,明确目标

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标

多边形的定义及有关概念

活动一:阅读教材P19。

展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分

多边形的对角线

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分

正多边形的有关概念

活动二:阅读教材P20。

展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标

1、下列叙述正确的是(D)

A、每条边都相等的多边形是正多边形

B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

C、每个角都相等的多边形叫正多边形

D、每条边、每个角都相等的多边形叫正多边形

2、小学学过的下列图形中不可能是正多边形的是(D)

A、三角形B。正方形C。四边形D。梯形

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

篇10:八年级数学上册教案

教学目标

1.认识变量、常量.

2.学会用含一个变量的代数式表示另一个变量.

教学重点

1.认识变量、常量.

2.用式子表示变量间关系.

教学难点

用含有一个变量的式子表示另一个变量.

教学过程

Ⅰ.提出问题,创设情境

情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.

1.请同学们根据题意填写下表:

t/时 1 2 3 4 5

s/千米

2.在以上这个过程中,变化的量是________.变变化的量是__________.

3.试用含t的式子表示s.

Ⅱ.导入新课

首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.

从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.

这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.

[活动一]

1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?

2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?

引导学生通过合理、正确的思维方法探索出变化规律.

结论:

1.早场电影票房收入:150×10=1500(元)

日场电影票房收入:205×10=20xx(元)

晚场电影票房收入:310×10=3100(元)

关系式:y=10x

2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)

挂2kg重物时弹簧长度:2×0.5+10=11(cm)

挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)

关系式:L=0.5m+10

通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.

[活动二]

1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?

2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?

结论:

1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S= r2r=

面积为10cm2的圆半径r= ≈1.78(cm)

面积为20cm2的圆半径r= ≈2.52(cm)

关系式:r=

2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.

若长为1cm,则宽为5-1=4(cm)

据矩形面积公式:S=1×4=4(cm2)

若长为2cm,则宽为5-2=3(cm)

面积S=2×(5-2)=6(cm2)

… …

若长为xcm,则宽为5-x(cm)

面积S=x?(5-x)=5x-x2(cm2)

从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.

Ⅲ.随堂练习

1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.

2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.

解:1.买1支铅笔价值1×0.2=0.2(元)

买2支铅笔价值2×0.2=0.4(元)

……

买x支铅笔价值x×0.2=0.2x(元)

所以y=0.2x

其中单价0.2元/支是常量,总价y元与支数x是变量.

2.根据三角形面积公式可知:

当高h为1cm时,面积S= ×5×1=2.5cm2

当高h为2cm时,面积S= ×5×2=5cm2

… …

当高为hcm,面积S= ×5×h=2.5hcm2

篇11:八年级数学上册教案

Ⅰ.教学任务分析

教学目标

知识与技能 使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.

过程与能力 培养学生数学建模的能力.

情感与态度 实例引入,激发学生学习数学的兴趣.

教学重点 探索正比例函数的性质.

教学难点 从实际问题情境中建立正比例函数的数学模型.

Ⅱ.教学过程设计

问题及师生行为 设计意图

一、创设问题,激发兴趣

【问题1】将下列问题中的变量用函数表示出来:

(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间x变化而变化;

(2)三角形的底为10cm,其面积y随高x的变化而变化;

(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量x的变化而变化.

解:(1)y=4x;(2)y=5x;(3)y=3x.

教师提出问题,学生独立思考并回答问题.

教师点评,并且提醒学生注意用x表示y. 问题引入,为新知作好铺垫.

二、诱导参与,探究新知

思考:观察函数关系式:

① y=4x; ② y=5x; ③ y=3x.

这些函数有什么特点?

都是y等于一个常量与x的乘积.

教师提出问题,并引导学生观察:

学生观察思考并回答问题.

三、引导归纳,提炼新知

(板书)正比例函数的概念:

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.

注意:x 的取值范围是全体实数.

由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.

通过板书,突出本节课的重点.

四、指导应用,发展能力

1.下列函数是否是正比例函数?比例系数是多少?

(1) 是,比例系数k=8. (2) 不是.

(3) 是,比例系数k= . (4) 不是.

填空

1.若函数y=(2m2+8)xm2-8+(m+3)是正比例函数,则m的值是___-3____.

题 1请学生口答, 题2学生独立完成,并到黑板板书,教师评价书写规范.

在本次活动中,教师要关注:

学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.

五、探究新知

例1 画出正比例函数y=x的图象.

解:(1)列表:

x --- -2 -1 0 1 2 ---

y --- -2 -1 0 1 2 ---

画出函数y=x的图象.

(1)列表: (2)描点: (3)连线:

想一想

除了用描点法外,还有其他简单的方法画正比例函数图象吗?

根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.

同理,画出y=-x的图象.

师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=x的图象从左向右呈上升状态,即随着x的增大y也增大,经过第一、三象限.

函数y=-x的图象从左向右呈下降状态,即随x增大y反而减小,经过第二、四象限.

归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线.

当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;

当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.

由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

六、指导应用,发展能力

例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点.

相同点:图象经过一、三象限,从左向右上升;

不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近.

例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点.

相同点:图象经过二、四象限,从左向右下降;

不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近.

在y=kx中,k的绝对值越大,函数图象越靠近y轴.

篇12:八年级数学上册教案

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1.请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)· (3ab2– 5ab3)

(2)(- 4x) ·(2x2+3x-1)

解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年级数学上册教案

八年级数学上册教案

人教版八年级数学上册教案

人教版八年级数学上册教案

数学八年级上册教学教案

初中地理八年级上册教案

初中八年级生物教案上册

幼儿园数学《认识梯形》教案

初中数学优秀教案

数学二年级上册优秀教案

初中八年级数学上册优秀教案《梯形》(合集12篇)

欢迎下载DOC格式的初中八年级数学上册优秀教案《梯形》,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档