证明的方法总结

| 收藏本文 下载本文 作者:sdf2233

下面是小编收集整理的证明的方法总结(共含15篇),供大家参考借鉴,欢迎大家分享。同时,但愿您也能像本文投稿人“sdf2233”一样,积极向本站投稿分享好文章。

证明的方法总结

篇1:证明的方法总结

证明的方法总结

数列极限的证明

数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

1.零点定理和介质定理;

2.微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理

积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

方程根的问题

包括方程根唯一和方程根的个数的讨论。

定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

☆方法篇☆

结合几何意义记住基本原理

重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

借助几何意义寻求证明思路

一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

再如数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的'图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

逆推法

从结论出发寻求证明方法。如第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

篇2:证明函数单调性的方法总结

1、定义法:

利用定义证明函数单调性的一般步骤是:

①任取x1、x2∈D,且x1

②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);

③依据差式的符号确定其增减性.

2、导数法:

设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数.

注意:(补充)

(1)若使得f′(x)=0的x的值只有有限个,

则如果f ′(x)≥0,则f(x)在区间D内为增函数;

如果f′(x) ≤0,则f(x)在区间D内为减函数.

(2)单调性的判断方法:

定义法及导数法、图象法、

复合函数的单调性(同增异减)、

用已知函数的单调性等

(补充)单调性的.有关结论

1.若f(x),g(x)均为增(减)函数,

则f(x)+g(x)仍为增(减)函数.

2.若f(x)为增(减)函数,

则-f(x)为减(增)函数,如果同时有f(x)>0,

为减(增)函数,

为增(减)函数

3.互为反函数的两个函数有相同的单调性.

4.y=f[g(x)]是定义在M上的函数,

若f(x)与g(x)的单调性相同,

则其复合函数f[g(x)]为增函数;

若f(x)、g(x)的单调性相反,

则其复合函数f[g(x)]为减函数.简称”同增异减”

5. 奇函数在关于原点对称的两个区间上的单调性相同;

偶函数在关于原点对称的两个区间上的单调性相反.

函数单调性的应用

(1)求某些函数的值域或最值.

(2)比较函数值或自变量值的大小.

(3)解、证不等式.

(4)求参数的取值范围或值.

(5)作函数图象.

篇3:证明平行四边形方法

1、两组对边分别平行的四边形是平行四边形(定义判定法);

2、一组对边平行且相等的四边形是平行四边形;

3、两组对边分别相等的四边形是平行四边形;

4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);

5、对角线互相平分的四边形是平行四边形。

补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。

平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。

在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。

相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。

篇4:证明平行四边形方法

1、两组对边分别平行的四边形是平行四边形(定义判定法);

2、一组对边平行且相等的四边形是平行四边形;

3、两组对边分别相等的四边形是平行四边形;

4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);

5、对角线互相平分的四边形是平行四边形。

仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。

篇5:证明平行四边形方法

性质(矩形、菱形、正方形都是特殊的平行四边形。):

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等” )

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等” )

(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

(7)平行四边形的面积等于底和高的积。(可视为矩形。)

(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.

(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。

(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。

(13)平行四边形对角线把平行四边形面积分成四等份。

(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

篇6:高中数学证明方法

四大推理方法搞定高中证明题

一、合情推理

1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

高中数学证明题经验技巧

第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

第三步:逆推。从结论出发寻求证明方法。如第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

高中数学推理与证明重难点

一、合情推理

1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

篇7:勾股定理证明方法

【证法1】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.

∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90°,

∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180D90= 90.

又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形.

∴ ∠ABC + ∠CBE = 90.

∵ RtΔABC ≌ RtΔEBD,

∴ ∠ABC = ∠EBD.

∴ ∠EBD + ∠CBE = 90.

即 ∠CBD= 90.

又∵ ∠BDE = 90,∠BCP = 90,

BC = BD = a.

∴ BDPC是一个边长为a的正方形.

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

,

∴ .

【证法2】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP‖BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵ ∠BCA = 90,QP‖BC,

∴ ∠MPC = 90,

∵ BM⊥PQ,

∴ ∠BMP = 90,

∴ BCPM是一个矩形,即∠MBC = 90.

∵ ∠QBM + ∠MBA = ∠QBA = 90,

∠ABC + ∠MBA = ∠MBC = 90,

∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90,∠BCA = 90,BQ = BA = c,

∴ RtΔBMQ ≌ RtΔBCA.

同理可证RtΔQNF ≌ RtΔAEF.

【证法3】(赵浩杰证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90,

∴∠ABG +∠CBJ= 90,

∵∠ABC= 90,

∴G,B,I,J在同一直线上,

【证法4】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD. 过C作CL⊥DE,

交AB于点M,交DE于点

L.

∵ AF = AC,AB = AD,

∠FAB = ∠GAD,

∴ ΔFAB ≌ ΔGAD,

∵ ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴ 矩形ADLM的面积 =.

同理可证,矩形MLEB的面积 =.

∵ 正方形ADEB的'面积

= 矩形ADLM的面积 + 矩形MLEB的面积

∴ ,即 .

[编辑本段]勾股定理的别名

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前11)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。

[编辑本段]证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

篇8:证明菱形判定方法

中点四边形:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。

菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为菱形,对角线相等的四边形的中点四边形定为矩形。)

菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的面积计算:1.对角线乘积的一半。(只要是对角线互相垂直的四边形都可用);由把菱形分解成2个三角形,化简得出;2.底乘高;3.设菱形的边长为a,一个夹角为θ,则面积公式是:S=a^2·sinθ。

有一组邻边相等的平行四边形是菱形。

2.四条边都相等的四边形是菱形。

3. 对角线互相垂直的平行四边形是菱形。

篇9:证明菱形判定方法

已知:如图,在◇ABCD中,对角线AC的垂直平分线分别与AD、AC、BC分别交于点E、O、F。则四边形AFCE是菱形。

证明:

∵ 四边形ABCD是平行四边形,

∴ AE∥FC(平行四边形的对边平行),

∴ ∠EAO=∠FCO.

∵ EF平分AC,

∴ AO=OC.

又∵ ∠AOE=∠COF=90°,

∴ △AOE≌△COF(ASA),

∴ EO=FO,

∴ 四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形)。

又∵EF⊥AC,

∴ 四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形)。

篇10:证明菱形判定方法

证明:

∵AB=CD,BC=AD,

∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).

又∵AB=BC,

∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).

2、对角线互相垂直的平行四边形是菱形。

证明:

∵ 四边形ABCD是平行四边形,

∴ OA=OC(平行四边形的对角线相互平分)。

又∵AC⊥BD,

∴ BD所在直线是线段AC的垂直平分线,

∴ AB=BC,

∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。

3、有一组邻边相等的平行四边形是菱形。

RF是三角形ABD的中位线,于是RF∥AD,

同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,

所以四边形RFGH是平行四边形;

第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。

篇11:证明垂直的方法

垂直,是指一条线与另一条线相交并成直角,这两条直线互相垂直。通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。

①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。

② 连接直线外一点与直线上各点的`所有线段中,垂线段最短。简单说成:垂线段最短。

③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

篇12:离散数学证明方法有哪些

直接证明法直接证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有相同的性质,或者符合某一些性质必定是某一类东西。直接证明法有两种思路,第一种是从已知的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,则可以先从已知条件按照定理推出一些中间的条件(这一步可能是没有目的的,要看看从已知的条件中能够推出些什么),接着,选择可以推出结论的那个条件继续往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推一直到已知的条件。通常这两种思路是同时进行的。

反证法反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在”等的题目。它的方法是首先假设出所求命题的否命题,接着根据这个否命题和已知条件进行推演,直至推出与已知条件或定理相矛盾,则认为假设是不成立的,因此,命题得证。

构造法证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出矛盾,也可以直接构造出这么一个例子就可以了。这就是构造法,通常这样的题目在图论中多见。值得注意的是,有一些题目其实也是本类型的题目,只不过比较隐蔽罢了,像证明两个集合等势,实际上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以直接构造出这个双射。

数学归纳法数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。作这一类型题目的时候,要注意一点就是所要归纳内容的选择。

篇13:离散数学证明方法有哪些

可以尝试将离散数学拆成三部分来学:集合论与数理逻辑、近世代数(抽象代数)和图论,当然还夹杂部分经典的算法。

离散数学中的概念和定理偏多,思维较抽象,证明强调技巧性但变化不多。我觉得这是一门很需要找“感觉”的数学科目。首先要强记所学内容的相关定义和定理,随后学习证明过程时必须结合定义和定理,即每推一步就弄清其根据的是什么定义或定理。用这种方法学习一段时间后对证明就有一定感觉了,再做证明题就会感觉顺手很多。

了解概念是必要的,如果概念没有了解清楚,就无法很好的了解各种定理了。初学者学习离散数学一定要对概念弄清楚是怎么来的,基于什么客观事实,所有的离散概念都源于实践,因此,如果脱离实践去单纯的了解离散中的概念会很难理解。《离散数学及其应用》是一本我个人觉得比较全面的书,但是建议还是配套一些国内的书籍看,比如现在普遍使用的曲婉玲老师的教材。这两本相互补充。教学中,我会采用曲婉玲老师的教材,难度适中,但是很多定理没有证明,就补充离散数学及其应用帮助理解。

离散数学的内容几乎都可以用编程实现的……然而,用程序员观点写的离散数学还是很少的,我只知道两三本,名字暂时忘了。rosen的那本有不少程序,书很厚!怎么学?看概念,然后做题。快毕业了才发现,离散数学才是最有用的书。

篇14:离散数学证明方法有哪些

离散数学中证明[0,1]是不可数的可以做映射,把无理数还是映到自己。然后把(0,1)上的有理数以某种规律排出来设为r1,r2,r3...然后把0→r1,1→r2,r1→r3,r2→r4 r(n)→r(n+2)

康托尔在1874年和1891年分别用两种不同的方法,证明了实数集是不可数集。其中1891年所用的方法更加为人所熟知,又被称为对角线法。证明发表之后,这种方法在数理逻辑中获得广泛应用。

对角线法证明实数集不可数的大致思路如下:显然实数集不是有限集。反设实数集和自然数集之间存在一个双射,设自然数0对应的实数是a0,1对应实数a1,2对应a2,……i对应ai。注意任意实数可以地表示为不以无限多个9结尾的十进制小数,可设aij为ai小数点后的第j+1位。

现在确定一个实数x,并说明它不能和任何自然数对应。x的整数部分是0;设xj为x小数点后的第j+1位,令xj=0,当aij≠0;xj=1,当aij=0。x的表示形式是一个不以无限多个9结尾的十进制小数,但是它不等于任何一个ai,因为由定义,x小数点后的第i+1位xi不等于aii。因此“实数集和自然数集之间存在一个双射”的假设不成立,所以实数集是不可数集。

篇15:证明正方形方法定义

①对边平行且相等。

②四条边都相等。

③四个角都是直角。

④两条对角线相等,互相垂直平分,且平分每组对角。

⑤正方形是轴对称图形,也是中心对称图形。

周长:正方形的周长等于它的边长的4倍。若正方形的边长为a,周长为C,那么C=4a。

例:一个正方形的边长为4厘米,求这个正方形的周长。

解:C=4a=4×4=16(厘米)。

已知正方形的边长为a,对角线长为d,则正方形的面积 。

证明的方法总结

勾股定理证明方法

勾股定理的证明方法

总结方法

余弦定理的三种证明方法

证明线面平行的方法

勾股定理的证明方法有多少种

开失业证明的方法和领取方法

高三学习总结方法

文科方法总结学习

证明的方法总结(共15篇)

欢迎下载DOC格式的证明的方法总结,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档