以下是小编帮大家整理的初中物理教学中的思维对话(共含14篇),仅供参考,希望能够帮助到大家。同时,但愿您也能像本文投稿人“蓉泽新”一样,积极向本站投稿分享好文章。
江苏省宿迁市钟吾初级中学王利梅
【摘要】对话是课堂上必备的环节,也是教师了解学生学习状况的手段,但由于初中物理课的特性,课堂上的对话容易变成师生的尴尬,某些问题难以讲解,加上学生的理解能力有限,教师往往成了课堂上唯一的主角。如何让对话成为师生之间的传输媒介?这是提高课堂教学效率的关键所在。
在课堂教学越来越重要的今天,人们更关注如何才能提升课堂效率,让学生在课堂中能够更快地接受知识,消化知识,特别是初中物理知识的深入,让学生在课堂上成了被动的角色,如何能够让学生重回主动地位,将课堂还给学生?
一、对话
从言语方面来说,对话就是几个人之间的语言交流或者谈判,人们在进行对话的同时也是了解彼此、确立彼此关系的过程,对话不仅仅是语言的表达,更是对话人之间思维的碰撞,当然,这并不代表对话的人们必须具有相同的社会地位、社会背景及专业经历。所谓的见面会其实就是一种对话、交流,可见“对话”在生活中的地位可谓举足轻重。
二、对话教学
对话教学和教学对话不只是两个词语顺序上的区别,前者即为思维对话,通过对学生思维的引导,将学生的注意力聚集在将要学习的知识上,并通过问题引发他们的思考与讨论,把课堂还给学生;而教学对话更多的是对于教学的具体方式层面上的关注,所以前者其实是后者的升级版,因为对话教学不仅仅是一种语言的对话交流,还应该看作是师生主体之间的平等地位下信息、思想等交流为基础的教学活动。
对话教学作为一种教学活动,下面笔者就从教学理念和教学方式上分析它对于初中物理教学的意义。首先,它作为一种教学理念,将对话这种生活方式融入教学之中,并将其通过多元化的表现方式在课堂上展现出来,特别是这种理念不再只是简单的师生之间的一问一答,还可以是生生之间的'问答模式,甚至是学生和书本之间的思维交流,所以无论它的表现方式有几种,对话教育就是将对话作为主要授课方式,实现学生与教师的思维交流,让枯燥的课堂丰富起来,让学生主动起来。
1.实验引导,让学生亲身体验。例如,学习“密度计算”内容时,学生对密度这个名词很陌生,致使他们对于其计算方法感到手足无措,所以只是靠书本上的例题很难让学生明白其中的原理,即使只记住了公式?籽=mv,同样也只是课后忘记,下面通过对话来加强学生记忆并让他们理解这个公式:
首先,准备两套三个有刻度的量杯,准备清水和香油,然后准备一个天平,接着开始进行实验,在实验过程中让学生做好数据的记录:
师:先看装清水的这三个有刻度的量杯,把他们分别装上三杯不同量的水,使其能都够从杯子刻度上直接读取出来体积,然后进行称量,并记录下数据和体积;另一组再用另一套杯子倒入三杯不同体积的香油(但要保持与三杯水的量分别对应相同),然后进行称量,并且记录下这三组数据。下面请问,装清水的三个杯子的质量一样吗?
生:不一样。
师:那装香油的呢?
生:不一样。
师:那这说明了什么?
生:深浅不同的水质量不相同,香油也是一样。
师:那这是为什么呢?
生:因为它们的体积都不同。
师:既然体积不同就让它们质量不同了,那么这三杯水里面有没有相同的呢?
生A:杯子的大小相同。
(一片哄堂大笑)
师:对,很不错,观察得很仔细,还有没有呢?
(一片沉默)
生B(偷偷地说):它们相互除的结果好像相同。
师:对,非常正确,那这两组实验之间有没有关系呢?
生B接着说:水的质量和体积的比值是一样的,香油的三组比值也是一样的,可是水和香油的不一样。
师:嗯,很好,那接下来请看。
(老师拿起其中一杯香油倒入了其中一杯清水里,等过了一会儿,放在了实验台上。)
生:为什么不结合在一起呢?
师:对啊,为什么不结合在一起呢?
(然后老师分别把剩下的那两杯水和两杯香油倒在一起放在实验台上。)
生:这两杯结合了,可是那杯为什么不融合在一起呢?
生C:他们俩不是一种东西,肯定不融合。
师:回答得很对,请大家再想想,如何通过实验数据来证明它们为什么不是一种东西。
生C:因为他们两个的质量和体积比值不相同。
师:对了!这就是两种东西本质的特征,就是这个比值的不同。
(此时,教师拿出另外两个空杯子,让学生分别装满石子和沙子,并放置在实验台上。)
师:现在我们就用实验那个比值起个名字,看现在我把石子放入装满沙子的杯子。
生:沙子都满了,根本就放不石子了。
师:那我们就用沙子倒入石子的杯子里面。
(学生瞪大了眼睛,脸上都写着:这能行吗?)
随着沙子慢慢倒入石子杯子中,学生开始讨论:为什么能够倒入装满沙子的杯子里呢?随着讨论的深入,学生开始提出来:因为石子之间的距离比较大,所以沙子能够倒进去。
师:嗯,正是因为疏密程度的不同才会让沙子能够倒入石子的杯子中,而石子无法放入沙子杯子中,所以我们为那个比值起一个名字——密度。那密度应该怎么计算呢?
生:用质量除以体积。
就这样,师生共同在轻松的对话过程中完成了密度的学习,教学过程的轻松会让学生更加自主地参与到教学中去,让教学变成交流,让书本的知识灵活起来,这样才能实现对话教学的初衷。当然,对话就必然会出现争论,但在课堂上的争论反而会让学生的兴趣更高涨,知识掌握得更清晰、明白。
2.亲身体验,争论中求真理。从物理的基本知识来看:如何去描述一个物体的运动状态呢?
师:大家谁能告诉我,在我们的课堂上什么东西是能够一动不动的?
生A:黑板。
生B:墙上的灯管。
生C:……
师:大家说得都对,接下来请两个同学上讲台,以同样的步幅和速度一起走路,并且互相看着对方。
师:请问他们是动的还是静的呢?
下面的学生:动的。
参加的两个学生:我感觉我们没有动。
师:大家说得都对,可是为什么会有不同的答案呢?
下面生A:我看见他们从那里走到了这里,所以动了。
上面生B:我看着我的小伙伴一直和我在一起并没有改变。
(由此,学生们的意见产生了,教师就可以进行引导了。)
师:其实大家都对了,只是描述运动选的参照不同而已,下面的同学选的是自己或者是静止的墙壁、讲台,而上面的同学选的是和自己一同运动的小伙伴,所以就产生了两种答案,请问,大家以后在描述一个运动时候要注意什么呢?
生:参照物。
就这样,原本很难解释的抽象事物就被学生很好地理解了。
世界上的事物本就是一个个矛盾体,而事物也是在不断地运动中发生发展的,课堂的知识在争论中才更容易让学生接受,对话教育在初中物理教学中是符合教学要求的一剂良药。对话教育不但能让学生接受知识,更能让学生在自己已经掌握的知识上,发现自己知识的问题和疏漏,以及自己的思维定势产生的思路错误,能让学生的知识掌握得更好、更准确。
对话教育,不仅强调对话,更强调对话中的思维活动,让学生在对话中调动自己的思维,让教师和学生真正达到思想上的统一和交流,让学生学会发现知识,通过对话学习知识,通过倾听修正自己的知识,更好地实现初中的物理课堂教育。
参考文献:
[1]姜艳,路永宁.思维对话在物理教学中的应用[J].物理,,(5):3-6.
[2]王家鑫.高中物理课堂对话教学研究[D].长春:东北师范大学,.
[3]郭红.让思维在教学对话中“行走”[J].教学月刊小学版,,(11):11-12.
(编辑:朱泽玲)
可行性思维教学初中物理论文
一培养兴趣,激发可行性思维主观能动性
作为物理教师,我们应不断探索新的方式方法,去帮助学生培养对物理学科的兴趣,激发其对物理学习可行性思维,从而提高学习效率,改善学习效果。最主要的还是要通过外界氛围与方法对其的影响来达到此目的,建议运用以下两种方法。
1.通过物理的实用性激发学习兴趣
在实际教学与学习中,教师与学生常常只关注于物理的学术性,从而导致学生只看到了物理知识晦涩、严谨、枯燥的一面,却忽视了物理为人们日常生活带来便利的、实用的一面。所以教师可以在教学中不断强调物理知识的实用性,令学生们意识到他们学习的不是死板的知识,而是与他们的生活息息相关的神奇学科。例如,小汽车的观后镜是一只凸镜,它位于驾驶室的外面,这是专家们利用了凸镜的.相关特性,即为光线遇凸镜即被发散,且凸镜具有成正立、缩小、虚像的特点,因此实物在凸镜中会被缩小,从而扩大人们的观察范围,进而保证了人们的驾车安全。
2.设立与自身相关的问题情境
人们总是对与自己有关的东西更感兴趣,所以教师提的问题越贴近学生自身、越新颖越容易激发其学习兴趣与主动探究的动力,进而提高学习效率,改善学习效果。例如,教师在讲解压强时,可布置类似的课后作业:请每位同学站在水平地面上,测量其双脚与地面间的接触面积,根据自身体重,计算自己对地面的压强是多少?
二创造良好的学习环境
良好的学习环境可以帮助学生尽快地进入学习状态,教师可以利用较为新颖的“教具”,在开讲之前,先为学生做些“神奇”的演示,引发其探究问题的兴趣。如教师在讲解杠杆原理前,可以利用钓鱼竿、筷子、剪刀等生活用品作为“教具”来做演示给学生观察,这样可以极大地开拓学生的思路与视野,也可帮助其对接下来将要讲解的知识进行理解与记忆。此外,现如今很多教室都已实现多媒体化,故而教师可以充分利用此优势,在课堂中为学生播放视频,以激发学生的好奇心,集中注意力。
三鼓励互动式学习
为使方案保持较强的可行性,教学仍要以教师课堂讲解为主,以组建学习小组互动学习为辅,这样的教学模式,可以活跃课堂气氛,同时又可以加强生生之间、师生之间的互动,有利于帮助学生形成良好的学习心态与氛围。通过交流、合作、互助、小组竞赛等方式,可以充分调动学生的积极性与创造力,使每一位学生都参与其中,从而达到良好的学习效果,实现教师的教学目标。
四有效实施探究性教学
探究性教学鼓励学生以通过动手实验观察现象为主、学习教材为辅,来更加全面、系统、深入地学习物理知识原理。教师可以此提问,如为何灌满水的瓶子不易破、汽水是被“吸”上来的吗等,这样可使学生乐在其中、夯实基础。
五结束语
教师在保持教育教学可行性思维的同时,还应持续完善、更新、深化自身的物理知识、教学水平以及可应用于教学的心理学知识,使教师自身的素养得到不断的提高,以及课堂内外多与学生沟通,收集学生对初中物理课程学习的反馈,及时了解学生的学习状态与心理状况,结合实际,对教学予以合理、恰当地调整。
数学思维方法在初中物理教学中的运用论文
摘 要:数学的发展离不开物理学思维的发展, 这两门课程之间存在着不可分割的联系, 数学是研究物理学的基本工具和手段。物理学中取得成绩的各位科学家都具有很好的数学天分, 他们都是从数学的角度去研究物理学中存在的问题该如何去高效地解决。随着物理学的不断发展, 数学思维在物理学中的应用得到了更深的体现, 如用数学方法进行描述、作图、计算、推导等, 所以数学思维在物理学的发展中起到了至关重要的作用。
关键词:数学思维; 物理教学; 应用;
数学思维和方法推动了物理学的发展, 它在探求和表示物理规律中具有非常重要的作用, 如我们所熟知的每种物理规律和理论都是经过数学的推导, 最终形成物理理论的数学公式。因此, 数学是形成物理规律和理论的重要基础, 每种物理理论均需要用数学方程式来表达。
一、数学思维和方法与初中物理的关系
数学的研究方法在物理学中是非常重要的研究方法, 许多物理问题的突破, 都利用了数学方法。比如, 通过将数学方法与精密的物理实验相结合, 伽利略成功地总结出了自由落体规律;牛顿利用欧氏几何作工具, 建立了他的力学体系, 开辟了利用数学表达形式来系统地表达物理学理论和公式的先河。在物理规律与理论学中, 数学不仅是一种计算工具, 通过使用数学的抽象和研究方法可定义物理概念, 进而解决物理难题。
例如, 在数学中, 点的几何意义即为在某一个位置上的且不考虑尺寸大小的物体 (即确定位置但却无尺寸的物体) 。在力学中, 质点这一概念的提出也以点的概念作为基础。质点不仅保留了点的几何意义, 而且也对此加以扩充 (即省略掉物体的尺寸大小) , 但仍保存原先的质量。就物体尺寸方面而言, 如果被研究物体的.尺寸与其他物体的尺寸相差较大时, 仍可以把这一物体当作一个质点。例如, 将一个普通圆的直径与绕太阳运转的轨道半径相比时, 圆的直径就可以忽略不计。
在数学中, 圆周可以看作圆内接多边形的极限。在物理学中, 以该概念为基础可知:在质点做匀速圆周运动时, 所在圆周上的质点的切线方向即为它的即时速度方向。然而事实上, 圆内接多边形的边即为质点运动时速度的方向, 当圆的内接多边形边数持续不断增多时, 多边形的每一条边也是圆周上不可或缺的微小部分。就是该微小部分的方向成为了质点的运动方向, 同时也是质点的即时速度方向。因此, 质点速度方向就是圆周上该点的切线方向。
数学上, 函数关系是表示变量之间的依存制约关系, 物理学中广泛应用它来表示各种物理现象的规律。数学上的分析法、综合法、等量关系法等, 都广泛地应用于中学物理中的推理、分析、综合等方面。数学中的定理、公式和法则, 为中学物理计算提供了各种途径和方法。
二、数学思维和方法在初中物理学中的具体应用
(一) 以数理结合的方式, 将物理问题转化成数学问题
以数学理论为基础, 如基础运算、代数式和函数等, 物理理论概念和定理能够较好地被描述, 以帮助学生理解其物理知识。同时, 利用数学思维方法能够很好地解决物理问题, 进而能够更好地学习物理知识。
我们可以将物理学概念划分为两类, 其中一类为仅有质的规定性概念, 比如静止、运动、磁场等;而另一类同时拥有质的规定性和量的规定性, 而这种概念即为物理量, 比如电流、速度、功率、压强、比热容、密度等。因为物理量与数学运算关系密切, 所以, 利用数学知识去学习物理量的概念内涵是很好的方法, 能够全面、准确地掌握此概念。
(二) 以比例法数学工具来解物理问题
在初中物理学中, 比例法是一种最常用到的解题方法之一, 即运用物理量之间的比例关系来解答物理难题。这种解题方式需要明确公式中的物理量意义、每个量在公式中的作用以及各个变量之间的比例关系是否成立。在解题中, 我们需要用比例关系式建立起未知量与已知量之间的关系, 进一步借助比例性质来计算未知量。
在计算物理属性和物体运动特征需求中, 比例法是一种时常被采用的计算方法。同时, 在某些物理实验难题中, 时常会遇到缺少某种器材, 并指定运用给定的器材完成设计的问题, 可运用可测物理量之间的比例关系来解决难题。
在解决计算类的物理问题时, 比例法不仅能够省略反复套用公式带来的复杂计算, 也能够解决因条件不足而难以直接计算的物理难题。运用比例方法既能够通过定量计算得出结果, 也能够经过定性分析来比较大小。
(三) 利用数形结合的数学思想来解决物理问题
把数形结合思想运用到物理教学中, 可以发挥积极作用。物理学具有一定的抽象性, 它描述的是事物的本质, 并且受某些因素的影响, 使其在具体的物理教学中有一定的物理学科的特征。利用数形结合思想解决物理问题具有以下特点:1.通过把物理中对象的特点和相关内容抽象化, 运用数形结合的方法进行处理。2.在进行相关对象的讨论时, 可以实现符号化, 把物理对象的性质、特征等多个影响因素转变成符号, 进行形式化演算。
因此, 在新的物理教学模式中, 数形结合思想发挥着巨大的作用。通过数形结合思想可以帮助学生更好地理解物理知识, 提高自我思考能力。
(四) 运用逆向思维解决物理学中的问题
逆向思维为一种反向思考问题的方式, 在具体应用中, 逆向思维有逻辑反向、顺序反向、路径反向等各种应用方法。我们可以借助逆向思维能力推导出事物发展的结果和原因。与正向思维相比, 将事物发展的过程颠倒过来并逆着事物发展的时间顺序去考虑问题, 可以突破常规的思维方式, 巧妙分析问题并简洁地解决问题, 取得意想不到的效果。
总之, 初中物理与数学是息息相关的两门学科。中学生物理学习的好坏, 很大程度上取决于他的数学素养水平。初中物理教学大纲中, 规定学生要有运用数学知识解决物理问题的能力。因此, 将数学思维方法应用于初中物理教学中具有一定的现实意义。
参考文献
[1]朱晓峰.浅谈数学方法在初中物理解题中的应用[J].新课程 (教育学术) , (11) .
[2]王琼玲.浅谈数学思维和方法在初中物理教学中的应用[J].读写算 (教师版) , (5) .
[3]李华.数学方法在物理研究中的重要性[J].科技信息, (30) .
初中物理思维的培养
一、活化概念,培养抽象思维能力。
物理学中有许多概念比较抽象,学生难以理解,只有死记,无法进入创造思维情境。教学时,设置有趣的小实验和诱导性问题,如果将抽象的概念活化,使学生能形象直观地“顿悟”概念的内涵,把抽象的问题具体化。如,人们时刻跟大气打交道,从来未感觉到大气压强。在讲大气压强前增加一个小实验:将小试管插入盛满水的大试管中,竖直倒悬于空中。当学生看到小试管不断进入大试管时,会惊讶地发出疑问:“为什么小试管不掉下来?”为鼓励学生猜想,教师提出:“是不是水把小试管吸进去了?”“是不是有一种什么力把小试管推进去了?”当学生发现是空气压力“作怪”时,一种成功的喜悦顿时由心底溢于言表。但学生还会怀疑水的粘性,为此,演示在杯里水中加两个彩色玻璃珠并在杯底钻一小孔,用手指堵住小孔演示覆杯实验,让学生看见水和珠子不会掉下来,当手指移开小孔,水和水珠立即掉下来,这就排除了水的粘性起作用,大气压的概念自然而然地在学生头脑中形成、扎根。
二、穿插置疑,训练发散思维能力。
发散思维和收敛思维的训练是培养创造性思维的有效途径。为培养学生的发散思维,在讲物理概念、规律之前,穿插置疑,促使学生广泛地搜寻自己的记忆贮存,尽可能提起更多的信息项目来寻求答案。如,用实验方法研究电流、电压、电阻之间的关系时,首先提出:要研究三个物理量之间的变化,怎么办?可否设想使其中的一个量保持不变,研究其余两个量间的变化关系;将三个量之间的变化转化成二个量之间的变化,再使另外一个量保持不变,研究剩下的两个量间的变化关系,然后通过实验结果归纳得出三个量之间的变化关系。最后介绍德国物理学家用实验的方法得出结论相比较完全一样,学生为自己做的实验感到成功喜悦,更为自己学到了物理学家做实验喝彩。
三、颠倒时空,发展逆向思维能力。
逆向思维就是倒过来想问题,也就是把思维顺序逆转过来,颠倒时间和空间顺序,把始态与终态、条件与目标、原因与结果沿着相反思路思考问题。物理学中有很多问题,运用逆向思维,从问题的反面思考而得出结果。这也是研究物理过程和结论的科学思维方法。如,如何判断静摩擦力的方向?学生感到无从着手,对物体相对运动趋势难以“捉摸”。若引导学生进行逆向思维:如果接触面是光滑的,物体会向什么方向运动?这个运动方向与相对运动趋势方向关系如何?从而得到这个物体相对运动方向就是物体在光滑接触面上运动的方向。又如,电流能产生磁场,磁场能不能产生电流?若能,应具备什么条件?在这些问题的研究过程中,学生的逆向思维、猜想能力得到培养,有效地提高创造思维能力。
四、超越常规,提高求异思维能力。
在物理学中,概念和规律都是建立在实验基础上的。照常规进行操作后,教师超越常规设疑启思,使学生进行求异思维,培养学生创造思维能力。如,在测定小灯泡功率的实验中,当学生已掌握常规测定方法后,为使学生知识“升华”,发展思维,设问置疑:某同学在测额定电压为3.8伏的小灯泡的额定功率时,所用的电源电压为6伏,他用一只最大量程为3伏的电压表测出了结果。其实验方法和原理如何?在这个问题中设置了超越常规的条件:一是小灯泡上电压达到3.8伏时,才能从电流表读取额定电流求得结论,而电压表又不可能超过量程使用;二是进行求异思维,打破常规,变迁思维,联想到串联电压特点,采用电压表与变阻器并联测量的方法,当灯泡正常发光时,变阻器两端的电压只有2.2伏,可用最大量程是3伏的电压表测量。这样,使学生的思维生“慧眼”,透过重重“迷雾”洞察一切,学生的创造思维能力得到不断提高和拓展。
五、学会“互译”,增强识图思维能力。
在物理教学中,许多物理定律、公式及物理问题可用图形来描述。采用图形来描述物理问题常常可使问题简化,贴近生产和生活实际,一旦找到图形蕴藏的深刻的物理规律之后便能茅塞顿开,使物理问题难度得到降幂处理,并且常常从图形中找到有创意的解题思路。我们称这种寻找图形蕴藏物理规律的思维过程为“识图思维能力”。
对学生“识图思维能力”的培养,也是一个渐进过程。首先要对学生强化“互译”训练,即把用文字描述的物理规律和定律去训练学生用图形表示,反过来将反映物理规律和定律的图形让学生“翻译”成文字描述形式。例如速度图象、位移图象等。如一辆汽车在合肥到南京的高速公路上行驶,汽车做匀速运动前进,速度为每小时90千米。问这辆汽车从距南京120千米的A处行驶到距南京40千米的B处,需要多少时间?这道题可画成图是一个速度表(指针在90千米/时),在同一直线上A处画一汽车和距南京120千米路标,在B处画一距南京40千米的路标,这就是沪科版初中物理第一册图7--16。反过来先出示图7--16后,叫学生编一文字题也行。现行的初中物理课文图文并茂,沪科版初中物理课本第一、二册共有图694幅,如此之多的图表述的物理情境十分丰富,培养学生识图思维能力绝不可等闲视之。
六、强化观察,激活创新思维能力。
当今,物理知识的应用比比皆是,教师经常要求学生运用所学知识对观察到的现象,尽力生疑、“挑刺”和深思,并为学生创造条件让他们有效地把新思想变新创造,其中必定要有创新思维,创新思维能力极为重要。如,中学物理中几何光学的作图隐含了一个条件:物高既不等于零,又不能大于透镜半径。否则,需要用副轴、焦平面知识作图,超出中学物理范围。而不少资料题目都超出了这个条件,怎么办?教学中首先强化观察,在观察过程中找出凸透镜成像规律:一个方向、二个分界点、三个特殊点。凹透镜成像规律:永远是成缩小的正立的虚像,像距小于物距。在此基础上提出问题:如果把物体高度拉高到大于透镜半径,像如何变化?如果把物体高度压缩成一点,在主轴上,像又如何变化?(像的高度变化,成像位置、倒正和虚实不变)如果把物体沿垂直主轴的直线自上而下运动,纵向成像的变化规律如何?运用透镜成像的横向和纵向成像规律进行作图时,我们可以将物高等于零的点拨高成小于透镜半径、物高大于透镜半径的物高压缩成小于透镜半径的物高,按课本上作图方法进行作图。教学结果,不应用副轴、焦平面,将特殊光线作图方法发展到非特殊光线作图方法,激活了学生的创新思维能力。
守恒思维方法
自然界里各种运动形成虽然复杂多变,但变化中存在不变,即某些量总是守恒。守恒的观点是分析物理问题的一种重要观点,它启发我们可以从更广阔的角度认识到系统中某些量的转化和转移并不影响总量守恒。
(1)能量的转化和守恒能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或从一个物体转移到另一个物体。做功的过程就是能的转化过程。如合外力对物体做的总功一定等于物体动能的变化。其中动力做功是把其它形式的能转化为动能,阻力做功是把机械能转化为其它形式的能。从能量守恒的观点看,动能定理是一条应用广泛的重要定理。在机械运动的范围内,当系统状态变化时,如果除重力、弹力外没有其它力做功,系统的机械能守恒。它是普遍的能的转化和守恒定律的一个特例。功、热和内能之间的变化关系满足热力学第一定律。物体间由于温度差发生热传递。是内能的转移。
如:长为L,质量为M的均匀软绳,放在光滑桌面上,现让其从桌边缘无初速滑落,求绳子末端离开桌边缘时的速度。本题是属于变力做功问题,直接求解较难,最简便的方法是从功能关系出发求解。解略。
(2)动量守恒如果没有其它力,或外力与物体之间的相互作用力比较可以忽略时,在系统内各物体相互作用过程中总动量守恒,即各物体任意时刻总动量的矢量和不变。就系统内单个物体,其动量的变化等于合外力的冲量,但相互作用的两物体受到的冲量大小相等,方向相反,则在动量传递过程中系统的总动量不变。
如在光滑的两水平导体杆上,与杆垂直放上两质量均为m,电阻均为R的金属杆a、b,水平导体杆的电阻不计,长度足够长并处于范围足够大的匀强磁场中,起初两杆均静止,现给a以初速度v0,使它向b运动,试求b杆的最大速度。
分析:此题为一道力电综合题,显然系统只有相互作用的磁场力可以认为是内力,所以系统受合外力为零,动量守恒。
(3)质量守恒一定的物质形式对应一定的运动和一定的能量状态,运动是永恒的,物质是不灭的。参与变化的物体质量的总和与变化后物质质量的总和相等,这就是质量守恒的观点。
(4)电荷守恒中性的原子由带正电的原子核和核外电子组成,决定了自然界中电荷是守恒。不带电的物体通过接触,摩擦或感应的方式可以带电,带电的物体若发生中和或电荷转移现象,电荷发生消失或减少,但正负电荷总和是一定的。如:在原子物理中,写核反应方程,质量和核电荷数守恒。
系统思维方法
按照系统的观点,我们面对着的整个自然界是由无数相互联系、相互制约、相互作用、相互转化的事物和过程所形成的统一整体。根据上述观点,在分析和处理物理问题时,抓住研究对象的整体性和物理过程的整体性进行分析,这就是系统思维的方法。
在物理解题时,掌握系统思维方法,应当学会从整体上把握研究对象,如对系统进行受力分析的整体法,它与隔离法是相辅相成的,都应熟练掌握。有些物理过程是很复杂的,不公要学会把复杂的过程分解为若干简单的过程,也要学会把复杂的物理过程看着一个统一整体来处理。在很多情况下,根据系统思维的方法,抓住研究对象的整体性和物理过程的整体性,解决问题往往能化繁为简,迅速解决问题。
如:放在水平地面的静止的斜面体M上,放着一个质量为m的物块相对斜面静止,求斜面体受到地面的摩擦力。
分析:该题如果从m平衡求出对M的作用力再分析M的受力求解很麻烦。若把两物体看成一整体,因水平方向没有外力作用,所以无运动趋势,摩擦力为零。
类比思维方法
“类比”是逻辑学的一种推理形式,就是借助于事物之间的相似性,通过比较将一种已经掌握的特殊对象的知识,推到另一种新的特殊对象的思维方法。中学物理中存在大量可以类比的问题,如电磁振荡与机械振动相类比、电压与水压相类比等。运用类比推理方法处理物理问题,常见的有模拟类比、过程类比、方法类比等形式。解题时在其它方向上不能奏效,若善于联想,巧妙地用类比推理,往往可以使繁难或似乎无法解答的问题变得十分简单。
等效思维方法
等效思维方法是指在处理问题时,采用相同性质事物间等效替代的解题方法。两个不同的物理过程,如果在某方面、某点上或某种意义上产生的效果相同,就具有等效性。如平抛运动可以等效为自由落体运动和水平方向的匀速运动的合运动,二力的作用效果等效于它的合力的作用效果;较复杂的电路可以简化为简单的串并联电路组成;交流电的有效值与热效应相同的直流电大小相等;气体状态变化的复杂过程可等效为等温、等容、等压过程等等。当我们处理物理问题时,若甲问题难于处理,就处理与其有等效性的乙问题,从而得到相同的结果。常见的形式有:等效力系替代、等效过程替代、等效运动替代、等效参考系替代、等效电路替代……等等。值得注意的是,采取等效替代,并不改变原问题的物理性质与原过程的物理实质,仅仅使求解获得最简便的途径。
对称思维方法
对称性是物质世界的一致性与和谐性的反映。应用物质世界的对称性来分析处理问题的思维方法叫做对称思维的方法。
在物理学中,对称性比比皆是。许多物体的运动具有空间和时间的对称性,例如作简谐振动的物体在平衡位置两侧的运动对平衡位置是对称的,竖直上抛运动的上升阶段和下降阶段对最高点是对称的,许多物体在空间分布上具有对象性,例如:某些电路结构的对称性;平面镜成像的对称性等。在某些物理问题中,抓住对称性这一特征进行分析常能出奇制胜。
极端思维方法
许多物理现象和物理过程存在临界状态,其表现形式是某些物理量达到极限值时,物体在此前后运动情况发生突变。解答这类问题一般可依据物理量变化的方向逐步推向极端,通过分析临界状态和极值求得问题的解决。有时很难在一般发表情况下得出结论,也可以考虑把一般推向极端,做出极端条件下的判断,再回到一般,往往会很快得出结论。我们把这类思维称为极端思维方式。它能考查学生思维的深度、广度和思维的敏捷性,提高运用物理规律分析解决实际问题的能力。
如一个量增大,可以设想它一直增加到无穷大;同样一个若减小,可以设想一直减小到零。
例如:粗糙木板上放着一个物体,现将一端缓慢抬起,分析物体受到的摩擦力的变化。
分析:初始时刻,平板倾角为零,物体无运动趋势,摩擦力为零。当木板有一定倾角且较小时,设想木板表面光滑,则物体必然下滑,所以判断出物体受有摩擦力,而这时物体还没有运动,受到的是静摩擦力,且摩擦力随重力沿斜面方向的分量的增加而增大。而当倾角增大到一定程度,物体必然下滑,受到滑到摩擦力的f=μN,N=Gcosθ,摩擦力减小。
逆向思维方法
在通常情况下,人们往往习惯于从条件或原因分析其结论或结果,这是正向思维的模式。
逆向思维是把人们通常思考问题的思路反过来加以思考。即从结论或结果出发倒着分析问题,分析这一结论或结果产生的条件或原因。这种思维方法叫逆向思维方法。逆向思维是一种创造性的思维,也是思维广阔性和灵活性的表现。
将逆向思维应用于物理解题。要求能灵活地转变思维方向,克服思维定势的消极影响。特别是在某些情况下,按照正向思维的方式分析非常麻烦,甚至陷入困境,这时就应立即转换思维方式,从相反的方向重新思考,往往能收到意想不到的效果。
例:还是做匀减速直线运动最后速度减为零的情况,均可看成初速度为零的匀加速直线运动组成。
总之,中学物理是一门较难学的一门学科,但只要多方面地培养兴趣,注意学习方法,多思考,勤学好问,多作实验,注意总结规律,是完全可以学好的。
所谓数学思想,就是对数学知识的本质的认识。是从某些具体的数学内容和对数学的认识过程中提练上升数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想,如建模思想、统计思想、最优化思想、化归思想、分类思想、整体思想、数形结合思想、转化思想、方程思想、函数思想。所谓数学方法指在数学中提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。初中学生应掌握的数学方法有配方法、换元法、待定系数法、参数法、构造法、特殊值法等。数学思想和数学方法是紧密联系的,强调指导思想时,称数学思想,强调操作过程时,称数学方法。
从数学大纲要求看,九年制义务教育大纲已明确地把数学思想方法纳入了基础知识的范畴,数学基础知识是指:数学中的概念、性质、法则、公式、公理以及由其内容反映出来的数学思想方法。中学生数学内容包括数学知识与数学思想方法。数学思想方法产生数学知识,数学知识又蕴藏着思想方法,这样有利于揭示知识的精神实质,有利于提高学生的整体素质与数学素养。
从教育的角度来看,数学思想方法比数学知识更为重要,这是因为:数学知识是定型的,静态的,而思想方法则是发展的,动态的,知识的记忆是暂时的,思想方法的掌握是永久的,知识只能使学生受益于一时,思想方法将使学生受益于终生。增强数学思想方法的培养比知识的传授更为重要,数学思想方法的掌握对任何实际问题的解决都是有利的。因此,数学教学必须重视数学思想方法的教学。
实践证明,培养初中生的数学思想方法,有效地激发了学生的学习兴趣,充分调动了学生学习积极性和主动性,能使学生的认知结构不断地完善和发展,使学生将已有的思想方法运用在学习新知识的过程中,能够把复杂问题转化为简单问题来解决,提高学习效益,提高学生分析问题和解决问题的能力。目前,数形结合思想、分类讨论思想、方程与函数思想是各地试卷考查的重点,因此,也应注重初中生数学思想方法的培养,考查学生的数学思想方法是考查学生能力的必由之路。
二、初中主要的数学思想方法
初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。
1.对应的思想和方法
在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,又助于培养学生的函数观念。
2.数形结合的思想和方法
数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。
3.整体的思想和方法
整体思想就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思想方法。整体思想在处理数学问题时,有广泛的应用。
4.分类的思想和方法
教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使学生明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深刻、更具体,并且还能使学生掌握分数的要点方法:(1)分类是按一定的标准进行的,分类的标准不同,分类的结果也不相同;
(2)要注意分类的结果既无遗漏,也不能交叉重复;
(3)分类要逐级逐次地进行,不能越级化分。
5.类比联想的思想和方法
数学教学设计在考虑某些问题时常根据事物间的相似点提出假设和猜想,从而把已知事物的属性类比推广到类似的新事物中去,促进发现新结论。教学中由于提供了思维发生的背景材料,既活跃了课堂气氛,又有利于在和谐、轻松的氛围中完成新知识的学习。
6.逆向思维的方法
所谓逆向思维就是把问题倒过来或从问题的反面思考或逆用某些数学公式、法则解决问题。加强逆向思维的训练,可以培养学生思维的灵活性和发散性,使学生掌握的数学知识得到有效的迁移。
7.化归与转化的思想和方法
化归意识是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的基本解题模式,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。其核心就是将有等解决的问题转化为已有明确解决程序的问题,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题。
(1)方法迁移。
初学物理,你会读到《摆的故事的启示》,同时,你第一次接触了利用控制变量法“研究影响摆的周期的因素”。渐渐地,你从“研究声音的音调跟哪些因素有关”、“比较物体运动快慢”等实验中,领会了控制变量法的真谛,而这个方法是贯穿于初中物理学习的始终,可以这样说,你掌握了这种方法,你的初中物理学习就成功了一半。
学习光的传播规律,老师教你画光线表示光的传播路径和方向,可真的有“光线”吗?当然没有,只有“光”,没有“线”,物理学中为了研究的方便而假想的。你明白了这一点,就知道“磁感线”、高中的“质点”、“电场线”也是“建立物理模型”了。
曹冲称象的故事流传至今,曹冲很聪明的运用了“等效替代”这个物理思想,船上所放石头的重力就等于大象的重力,“化整为零”,解决了没有大称的难题。“合力”、“总电阻”等概念也都运用了这个方法。
初中物理中“路程-时间”图像是学习高中运动力学图像和其他图像的基础。初中物理是为高中物理、大学物理打基础的,所以你还要学会下列研究方法:累积法、类比法、比较法、归纳法、图像法、列表法等。
(2)知识迁移。
物理课程系统分为五个部分:力学、热学、光学、声学、电学。除了光学相对独立,其他内容都是密不可分的整体,物质、运动、能量把它们牢牢地捆在一起。要从整体上把握物理教材,明确知识在本单元、本册教材、知识系统中的地位,注意前后联系。
.重视知识应用
物理从生活中来,必然要回归生活,要学会运用物理知识解决学习、生活、生产中的实际问题。
(1)回归生活。
家里突然停电了,你还会像小时候那么害怕吗?八成是保险丝烧掉了,快去看看。百米赛跑时,为何要求计时员看到枪冒烟开始计时,而不是听到枪声计时?你学了光速比声速大很多,计算一下,就明白了。为什么汽车刹车后还要行驶一段距离?在雨雪天气路滑时,如何减小交通事故的发生?这与惯性、摩擦有关。如何判断戒指是否纯金?测量质量与体积,计算密度,查密度表对比吧!随着物理学习的深入,你会豁然明朗,生活到处是物理谜语,等待你去解开。
(2)课外研究。
物理世界是真实的,也是丰富的。猜想一下,没有声音的世界将会是一个怎样的世界呢?《无声的世界》幻想文章即刻出炉。城市现代化,玻璃墙面的楼房越来越高,黑夜越来越亮,刺眼的光给居民生活带来很多不便,那就去想一想《如何减少光污染》。《如果没有摩擦》、《自行车上的物理》……调查报告,课外制作、课外探究都能把物理从课内延伸到课外,为你带去研究的欢乐与惊喜。
(3)学科交叉。
“刻舟求剑”、“掩耳盗铃”的典故中包含着深刻的物理原理:参照物、运动与静止的相对性、声音的产生与传播。中国古代诗词、成语谚语中描述了大量的物理现象,你可以从语文中学习相关的物理知识,也可以从历史中体味物理学家的优秀品质。
你尝到了运用物理知识解决实际问题的乐趣,就会愉快地、主动地投身于物理知识的学习中。
重视情感倾注
(1)合作。
人不是独立的个体,不能离开群体而存在。有些物理问题,单独思考会回答不全面,此时需要集体的智慧。有些实验一个人无法操作,就需要两个人,甚至四个人一起分工协作完成。有时答案五花八门,则需要集体讨论,找到真理。
(2)坚持。
学习物理要能吃苦,爱因斯坦说,“成功是一分天才加九十九分汗水”。学习物理要有想法,阿基米德说,“给我一个支点和足够长的杠杆,我能撬动地球”。学习物理更要谦虚,牛顿说,“如果说我比别人看得更远些,那是因为我站在了巨人的肩上”。
“业精于勤,荒于嬉,行成于思,毁于随”。学习物理必须脚踏实地,夯实基础,系统把握,循序渐进,不搞突击。
很多初中学生还没有把握做题的技巧,没有系统掌握初中物理解题思维方法,现在说说初中物理解题思维。
一、守恒思维方法
自然界里各种运动形成虽然复杂多变,但变化中存在不变,即某些量总是守恒。守恒的观点是分析物理问题的一种重要观点,它启发我们可以从更广阔的角度认识到系统中某些量的转化和转移并不影响总量守恒。
(1)能量的转化和守恒能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或从一个物体转移到另一个物体。做功的过程就是能的转化过程。如合外力对物体做的总功一定等于物体动能的变化。其中动力做功是把其它形式的能转化为动能,阻力做功是把机械能转化为其它形式的能。从能量守恒的观点看,动能定理是一条应用广泛的重要定理。在机械运动的范围内,当系统状态变化时,如果除重力、弹力外没有其它力做功,系统的机械能守恒。它是普遍的能的转化和守恒定律的一个特例。功、热和内能之间的变化关系满足热力学第一定律。物体间由于温度差发生热传递。是内能的转移。
如:长为L,质量为M的均匀软绳,放在光滑桌面上,现让其从桌边缘无初速滑落,求绳子末端离开桌边缘时的速度。本题是属于变力做功问题,直接求解较难,最简便的方法是从功能关系出发求解。解略。
(2)动量守恒如果没有其它力,或外力与物体之间的相互作用力比较可以忽略时,在系统内各物体相互作用过程中总动量守恒,即各物体任意时刻总动量的矢量和不变。就系统内单个物体,其动量的变化等于合外力的冲量,但相互作用的两物体受到的冲量大小相等,方向相反,则在动量传递过程中系统的总动量不变。
如在光滑的两水平导体杆上,与杆垂直放上两质量均为m,电阻均为R的金属杆a、b,水平导体杆的电阻不计,长度足够长并处于范围足够大的匀强磁场中,起初两杆均静止,现给a以初速度v0,使它向b运动,试求b杆的最大速度。
分析:此题为一道力电综合题,显然系统只有相互作用的磁场力可以认为是内力,所以系统受合外力为零,动量守恒。
(3)质量守恒一定的物质形式对应一定的运动和一定的能量状态,运动是永恒的,物质是不灭的。参与变化的物体质量的总和与变化后物质质量的总和相等,这就是质量守恒的观点。
(4)电荷守恒中性的原子由带正电的原子核和核外电子组成,决定了自然界中电荷是守恒。不带电的物体通过接触,摩擦或感应的方式可以带电,带电的物体若发生中和或电荷转移现象,电荷发生消失或减少,但正负电荷总和是一定的。如:在原子物理中,写核反应方程,质量和核电荷数守恒。
二、系统思维方法
按照系统的观点,我们面对着的整个自然界是由无数相互联系、相互制约、相互作用、相互转化的事物和过程所形成的统一整体。根据上述观点,在分析和处理物理问题时,抓住研究对象的整体性和物理过程的整体性进行分析,这就是系统思维的方法。
在物理解题时,掌握系统思维方法,应当学会从整体上把握研究对象,如对系统进行受力分析的整体法,它与隔离法是相辅相成的,都应熟练掌握。有些物理过程是很复杂的,不公要学会把复杂的过程分解为若干简单的过程,也要学会把复杂的物理过程看着一个统一整体来处理。在很多情况下,根据系统思维的方法,抓住研究对象的整体性和物理过程的整体性,解决问题往往能化繁为简,迅速解决问题。
如:放在水平地面的静止的斜面体M上,放着一个质量为m的物块相对斜面静止,求斜面体受到地面的摩擦力。
分析:该题如果从m平衡求出对M的作用力再分析M的受力求解很麻烦。若把两物体看成一整体,因水平方向没有外力作用,所以无运动趋势,摩擦力为零。
类比思维方法
“类比”是逻辑学的一种推理形式,就是借助于事物之间的相似性,通过比较将一种已经掌握的特殊对象的知识,推到另一种新的特殊对象的思维方法。中学物理中存在大量可以类比的问题,如电磁振荡与机械振动相类比、电压与水压相类比等。运用类比推理方法处理物理问题,常见的有模拟类比、过程类比、方法类比等形式。解题时在其它方向上不能奏效,若善于联想,巧妙地用类比推理,往往可以使繁难或似乎无法解答的问题变得十分简单。
三、等效思维方法
等效思维方法是指在处理问题时,采用相同性质事物间等效替代的解题方法。两个不同的物理过程,如果在某方面、某点上或某种意义上产生的效果相同,就具有等效性。如平抛运动可以等效为自由落体运动和水平方向的匀速运动的合运动,二力的作用效果等效于它的合力的作用效果;较复杂的电路可以简化为简单的串并联电路组成;交流电的有效值与热效应相同的直流电大小相等;气体状态变化的复杂过程可等效为等温、等容、等压过程等等。当我们处理物理问题时,若甲问题难于处理,就处理与其有等效性的乙问题,从而得到相同的结果。常见的形式有:等效力系替代、等效过程替代、等效运动替代、等效参考系替代、等效电路替代……等等。值得注意的是,采取等效替代,并不改变原问题的物理性质与原过程的物理实质,仅仅使求解获得最简便的途径。
对称思维方法
对称性是物质世界的一致性与和谐性的反映。应用物质世界的对称性来分析处理问题的思维方法叫做对称思维的方法。
在物理学中,对称性比比皆是。许多物体的运动具有空间和时间的对称性,例如作简谐振动的物体在平衡位置两侧的运动对平衡位置是对称的,竖直上抛运动的上升阶段和下降阶段对最高点是对称的,许多物体在空间分布上具有对象性,例如:某些电路结构的对称性;平面镜成像的对称性等。在某些物理问题中,抓住对称性这一特征进行分析常能出奇制胜。
四、极端思维方法
许多物理现象和物理过程存在临界状态,其表现形式是某些物理量达到极限值时,物体在此前后运动情况发生突变。解答这类问题一般可依据物理量变化的方向逐步推向极端,通过分析临界状态和极值求得问题的解决。有时很难在一般发表情况下得出结论,也可以考虑把一般推向极端,做出极端条件下的判断,再回到一般,往往会很快得出结论。我们把这类思维称为极端思维方式。它能考查学生思维的深度、广度和思维的敏捷性,提高运用物理规律分析解决实际问题的能力。
如一个量增大,可以设想它一直增加到无穷大;同样一个若减小,可以设想一直减小到零。
例如:粗糙木板上放着一个物体,现将一端缓慢抬起,分析物体受到的摩擦力的变化。
分析:初始时刻,平板倾角为零,物体无运动趋势,摩擦力为零。当木板有一定倾角且较小时,设想木板表面光滑,则物体必然下滑,所以判断出物体受有摩擦力,而这时物体还没有运动,受到的是静摩擦力,且摩擦力随重力沿斜面方向的分量的增加而增大。而当倾角增大到一定程度,物体必然下滑,受到滑到摩擦力的f=μN,N=Gcosθ,摩擦力减小。
五、逆向思维方法
在通常情况下,人们往往习惯于从条件或原因分析其结论或结果,这是正向思维的模式。
逆向思维是把人们通常思考问题的思路反过来加以思考。即从结论或结果出发倒着分析问题,分析这一结论或结果产生的条件或原因。这种思维方法叫逆向思维方法。逆向思维是一种创造性的思维,也是思维广阔性和灵活性的表现。
将逆向思维应用于物理解题。要求能灵活地转变思维方向,克服思维定势的消极影响。特别是在某些情况下,按照正向思维的方式分析非常麻烦,甚至陷入困境,这时就应立即转换思维方式,从相反的方向重新思考,往往能收到意想不到的效果。
例:还是做匀减速直线运动最后速度减为零的情况,均可看成初速度为零的匀加速直线运动组成。
总之,中学物理是一门较难学的一门学科,但只要多方面地培养兴趣,注意学习方法,多思考,勤学好问,多作实验,注意总结规律,是完全可以学好的。
[初中物理]物理学习中思维错误及原因探讨
在初中物理学习调查中,发现约占40%的学生普遍存在物理成绩上不去的现象,即一是同其他学科相比成绩偏低甚至偏低幅度较大,呈现学科间的显著不平衡;二是本物理学科的多次检测或是成绩欠佳,或是有一定下降。对这部分学生的进一步调查,发现他们的学习动机、学习态度、学习表现都比较好。为什么会出现效果与动机的明显反差呢?这就促使我们不得不从学习方法尤其是思维方式、方法上寻找原因。下面是调查整理后的初中物理学习中的几种主要思维错误。
一、形象思维中的形象淡漠
形象思维在初中学生的物理学习中起着极为重要的作用。如果学生对特定条件下的物理现象和过程,在头脑中没有建立起正确的物理形象,不会利用物理形象进行思维,就难以把文字叙述、数学表达式和现实过程联系起来,也就难以正确地进行分析、推理、判断等逻辑思维活动。例如:学生头脑中因为没有物质原子结构的初级模型的正确形象和电子运动的动态过程的正确图景,则对于摩擦起电的理解、对于电的中和的理解、对于带正电与带负电的理解都产生了困难;又因为学生头脑中没有建立起光线的鲜明正确形象,没有建立起光的直线传播的物理图景,就难以理解和分析影子形成、小孔成像等许多具体的物理问题。
二、因果思维条件的制约
事物的因果联系总是受着条件制约的。对条件的认识是一种较复杂的思维过程,一些思维能力不强的学生难于进行这类思维;对教材不理解或理解不透的学生也无法对一些条件进行分析和选用,从而使得在有条件关系的习题面前一些学生显得无能为力。如关于功的定义及计算方法,绝大多数学生都能流畅地表达出来,但解答具体问题时,很多学生又往往不自觉地把“在力的方向上”这一限制条件抛在脑后,从而出现错误。
三、逆向思维不知反其道而行之
逆向思维是从对立的角度去考虑问题。逆向思维解题的显著特点就是以未知为起点,运用有关概念、定律、定理找出有关物理量方面的联系,层层推理,确定解题路线的分析途径。由于受平时大量的从已知到未知解题方法的思维定势的影响,加之有的教师没有注意进行逆向思维的训练和能力的培养,很多学生不善于甚至不知道运用逆向推理、逆向论证、逆向分析。如一半以上的'学生总认为抛出去的物体受到重力和抛力共两个力的作用,其原因除受“抛”字的干扰外,更主要的是不善于进行逆向分析或逆向论证,假如抛力存在,这个抛力的施力物体是谁呢?反过来想一想问题就迎刃而解了。
四、比较思维中的操作不当
比较思维是初中物理学习中最常见的一种思维方式,按理说初中学生应能较好的掌握比较思维的方法进行比较推理、比较分析、比较论证。但实际情况并非如此,调查表明近一半的学生在比较思维中不善于通过比较来认识事物的本质,有的完全不理解两种事物的可比性,有的不理解比较的一般作用在解题中的特殊作用,不善比较两种事物的共性和个性,不善于舍同求异或舍异求同。如回答直流发电机与交流发电机在主要结构上有何不同时,很多学生先直接回答直流发电机的特点以后,再回答交流发电机的特点,而不去比较两者在结构上的差异。同样,有相当多的学生在实际应用中不能区分相邻、相近的物理概念、物理量等。
如压力和压强,有用功、额外功和总功,功和功率,功率和机构效率,左手定则和右手定则等。
五、思维定势导致思维嵌塞
思维定势在习惯上也被称作思维上的“惯性”。在物理学习中,思维定势还有着相当程度的影响作用。有这样一道调查测试题:一人站立在乎面镜前,然后慢慢后退,则:人他在平面镜中的像越来越小,像离平面镜越来越远;B.他的像越来越大,像离平面镜越来越近;C.像的大小不变,但像离人却越来越远;D.像的大小不变,像与人的距离也不变。错选A的比例竟占40%。进一步的分析发现,这么多的学生之所以错选,是因为在解该题时凭借视觉的通常经验,而没有根据问题的需要进行必要的思维活动,忽略了“像的大斜与中看到你的大斜是两回事。由此可见,思维定势在人们接受新思想、新知识时,在对问题进行分析和判断时的影响是消极的,也是学生学习
[1] [2]
物理教学中发散思维的应用
发散思维是依据研究对象所提供的`多种信息,使思维打破常规,寻求变异,广开思路,充分想象,探索多种解决方案和途径的思维方式.它的主要特征是求异性和多样性.
作 者:蒋太国 作者单位:四川蓬溪蓬南镇初级中学校 刊 名:科海故事博览・科教论坛 英文刊名:KEHAI GUSHI BOLAN(BAIKE LUNTAN) 年,卷(期): “”(3) 分类号:G63 关键词:初中物理正确的学习方法包括听课习惯、牢记物理概念、重视画图和识图、建立错题本等内容,至于预习、复习、作业等大家请参考方法君整理的初中物理学习的其他文章。
正确的听课习惯
除非老师是完全知识性的讲解,否则特别是老师讲解题目时,一定要拿支笔在手上,可以把老师讲过的重要的地方划下来,可以把不太懂的题目再推算一次,也可以在老师讲解之前先自己在草稿纸上计算一下。
牢记物理概念
初中物理将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,在初三复习时应力求做到“五会”:
会表述:能熟记并正确地叙述概念、规律的内容。
会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。
会理解:能掌握公式的应用范围和使用条件。
会变形:会对公式进行正确变形,并理解变形后的含义。
会应用:会用概念和公式进行简单的判断、推理和计算。
重视画图和识图
学习初中物理离不开图形,从运用力学知识的机械设计到运用电磁学知识的复杂电路设计,都是主要依靠“图形语言”来表述的。
知识的条理化,分析解决问题的思路等问题,用通常意义上的语言或文字表达都是有局限性和低效率的。所以,按照科学的方法动手画图是学习物理的重要方法,而且对今后进一步学习现代科学技术有着重要意义。
建立错题本
在建立初中物理错题本时,不要两天打鱼三天晒网,要持之以恒,不能半途而废。尤其注意建立错题本的方法和技巧,要有自己的创新、智慧以及汗水凝结在里面,力求做到赏心悦目,让人看了赞不绝口,自己看了会赞美自己的杰作。
并且要常翻常看,每看一次就缩小一次错题的范围,最后错题越来越少,直至所有的“错题”变成“熟题”!以后再遇到类似问题,就会触类旁通,永不忘却。
中学生,特别是刚刚开始学习物理的初中学生,认知水平虽已达到形式运算阶段,具备一定的逻辑思维能力,但由于他们还未进行过系统的物理思维的训练,其物理知识、经验还有很大的局限性,因而其逻辑思维能力和思维品质还很差。具体地说:
1、思维的组织性、条理性差
中学生不善于有目的、有计划、有条理的进行思维,遇到问题时,往往靠直觉经验进行判断,“想当然”的推理。例如,学生认为“摩擦力就是阻碍物体运动的力”;“物体浸入液体越深,所受浮力越大”;“功率越大的灯泡,其电阻越大,灯丝越细”等。
2、思维的广阔性、深刻性差
中学生常常是以我为中心看待事物,因而他们往往只考虑那些能直接从日常生活经验中所建构的事物的意义,而不能从多方面分析问题,抓住事物的本质和解决问题的关键。往往被个别事物的表面现象所迷惑,形成一些片面的、肤浅的概念。例如,“力是使物体运动的原因”;“重的物体下落快”、“钢笔吸墨水”等概念的形成就是这种思维特点的反映。
3、思维的灵活性、敏捷性差
中学生往往具有思维惰性,习惯于生搬硬套公式,而不是努力弄懂意义,根据具体问题灵活选择方法。这在运用物理概念解决问题时,尤其突出。
4、思维的逻辑性差
中学生往往对某些特定事物的解释感兴趣,而不关心对各种现象的解释是否一致,这与其认知结构中概念模糊、关系含混、内在一致性差的特点有关。例如,学过力学后,他们可以正确回答力与运动的关系,但同时对一个空中飞行的足球进行受力分析时,又可能画上一个沿运动方向的力。
怎样提高物理学习动力?
1、强化学习的动机。
学习需要动机。由于学生的个人需要而产生的学习内驱力很重要。有人有旺盛的求知欲,对学习有浓厚的兴趣,正是如此,如升学、就业、兴趣、爱好、荣誉、地位、求知欲、事业、前途等都是。我们要努力强化学习的动机,如树立远大理想;参加各种竞赛,挑战强者,激起学习欲望;看到自己学习成果而受鼓励,从而增强自信,经受挫折,要有不甘失败和屈辱的精神。
2、产生学习兴趣。
浓厚的学习兴趣与效率有密切关系,可以从好奇心和求知欲中激发学习兴趣。如物理的实验,化学的变化等,容易引起人的好奇和求知;培养对各门功课的兴趣。往往是刻苦学习后,才发现知识的奥秘和用途,才提高学习成绩,所以一定要钻进“书海”去;把知识应用于实践,激发兴趣,用自己所学的知识分析解决出问题时,那种成功感易激发学习兴趣。
3、培养学习情感、端正学习态度。
将积极的情感同学习联系起来,防止消极情绪的滋生,可以促进学习。善于控制自己,是学习意志力培养的关键。控制和约束自己的行动,控制不需要的想法和情绪,可以使思想集中到学习上来,这点是尤为重要的。
初中物理大题答题思维
初中物理大题答题技巧,物理的答题是有技巧的,下面我们就来看看初中物理大题答题技巧吧!
守恒思维方法
自然界里各种运动形成虽然复杂多变,但变化中存在不变,即某些量总是守恒。
守恒的观点是分析物理问题的一种重要观点,它启发我们可以从更广阔的角度认识到系统中某些量的转化和转移并不影响总量守恒。
(1)能量的转化和守恒能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或从一个物体转移到另一个物体。
做功的过程就是能的转化过程。
如合外力对物体做的总功一定等于物体动能的变化。
其中动力做功是把其它形式的能转化为动能,阻力做功是把机械能转化为其它形式的能。
从能量守恒的观点看,动能定理是一条应用广泛的重要定理。
在机械运动的范围内,当系统状态变化时,如果除重力、弹力外没有其它力做功,系统的机械能守恒。
它是普遍的能的转化和守恒定律的一个特例。
功、热和内能之间的变化关系满足热力学第一定律。
物体间由于温度差发生热传递。
是内能的转移。
如:长为L,质量为M的均匀软绳,放在光滑桌面上,现让其从桌边缘无初速滑落,求绳子末端离开桌边缘时的速度。
本题是属于变力做功问题,直接求解较难,最简便的方法是从功能关系出发求解。
解略。
(2)动量守恒如果没有其它力,或外力与物体之间的相互作用力比较可以忽略时,在系统内各物体相互作用过程中总动量守恒,即各物体任意时刻总动量的矢量和不变。
就系统内单个物体,其动量的变化等于合外力的冲量,但相互作用的两物体受到的.冲量大小相等,方向相反,则在动量传递过程中系统的总动量不变。
如在光滑的两水平导体杆上,与杆垂直放上两质量均为m,电阻均为R的金属杆a、b,水平导体杆的电阻不计,长度足够长并处于范围足够大的匀强磁场中,起初两杆均静止,现给a以初速度v0,使它向b运动,试求b杆的最大速度。
分析:此题为一道力电综合题,显然系统只有相互作用的磁场力可以认为是内力,所以系统受合外力为零,动量守恒。
(3)质量守恒一定的物质形式对应一定的运动和一定的能量状态,运动是永恒的,物质是不灭的。
参与变化的物体质量的总和与变化后物质质量的总和相等,这就是质量守恒的观点。
(4)电荷守恒中性的原子由带正电的原子核和核外电子组成,决定了自然界中电荷是守恒。
不带电的物体通过接触,摩擦或感应的方式可以带电,带电的物体若发生中和或电荷转移现象,电荷发生消失或减少,但正负电荷总和是一定的。
如:在原子物理中,写核反应方程,质量和核电荷数守恒。
系统思维方法
按照系统的观点,我们面对着的整个自然界是由无数相互联系、相互制约、相互作用、相互转化的事物和过程所形成的统一整体。
根据上述观点,在分析和处理物理问题时,抓住研究对象的整体性和物理过程的整体性进行分析,这就是系统思维的方法。
在物理解题时,掌握系统思维方法,应当学会从整体上把握研究对象,如对系统进行受力分析的整体法,它与隔离法是相辅相成的,都应熟练掌握。
有些物理过程是很复杂的,不公要学会把复杂的过程分解为若干简单的过程,也要学会把复杂的物理过程看着一个统一整体来处理。
在很多情况下,根据系统思维的方法,抓住研究对象的整体性和物理过程的整体性,解决问题往往能化繁为简,迅速解决问题。
如:放在水平地面的静止的斜面体M上,放着一个质量为m的物块相对斜面静止,求斜面体受到地面的摩擦力。
分析:该题如果从m平衡求出对M的作用力再分析M的受力求解很麻烦。
若把两物体看成一整体,因水平方向没有外力作用,所以无运动趋势,摩擦力为零。
类比思维方法
“类比”是逻辑学的一种推理形式,就是借助于事物之间的相似性,通过比较将一种已经掌握的特殊对象的知识,推到另一种新的特殊对象的思维方法。
中学物理中存在大量可以类比的问题,如电磁振荡与机械振动相类比、电压与水压相类比等。
运用类比推理方法处理物理问题,常见的有模拟类比、过程类比、方法类比等形式。
解题时在其它方向上不能奏效,若善于联想,巧妙地用类比推理,往往可以使繁难或似乎无法解答的问题变得十分简单。
等效思维方法
等效思维方法是指在处理问题时,采用相同性质事物间等效替代的解题方法。
两个不同的物理过程,如果在某方面、某点上或某种意义上产生的效果相同,就具有等效性。
如平抛运动可以等效为自由落体运动和水平方向的匀速运动的合运动,二力的作用效果等效于它的合力的作用效果;较复杂的电路可以简化为简单的串并联电路组成;交流电的有效值与热效应相同的直流电大小相等;气体状态变化的复杂过程可等效为等温、等容、等压过程等等。
当我们处理物理问题时,若甲问题难于处理,就处理与其有等效性的乙问题,从而得到相同的结果。
常见的形式有:等效力系替代、等效过程替代、等效运动替代、等效参考系替代、等效电路替代……等等。
值得注意的是,采取等效替代,并不改变原问题的物理性质与原过程的物理实质,仅仅使求解获得最简便的途径。
对称思维方法
对称性是物质世界的一致性与和谐性的反映。
应用物质世界的对称性来分析处理问题的思维方法叫做对称思维的方法。
在物理学中,对称性比比皆是。
许多物体的运动具有空间和时间的对称性,例如作简谐振动的物体在平衡位置两侧的运动对平衡位置是对称的,竖直上抛运动的上升阶段和下降阶段对最高点是对称的,许多物体在空间分布上具有对象性,例如:某些电路结构的对称性;平面镜成像的对称性等。
在某些物理问题中,抓住对称性这一特征进行分析常能出奇制胜。
极端思维方法
许多物理现象和物理过程存在临界状态,其表现形式是某些物理量达到极限值时,物体在此前后运动情况发生突变。
解答这类问题一般可依据物理量变化的方向逐步推向极端,通过分析临界状态和极值求得问题的解决。
有时很难在一般发表情况下得出结论,也可以考虑把一般推向极端,做出极端条件下的判断,再回到一般,往往会很快得出结论。
我们把这类思维称为极端思维方式。
它能考查学生思维的深度、广度和思维的敏捷性,提高运用物理规律分析解决实际问题的能力。
如一个量增大,可以设想它一直增加到无穷大;同样一个若减小,可以设想一直减小到零。
例如:粗糙木板上放着一个物体,现将一端缓慢抬起,分析物体受到的摩擦力的变化。
分析:初始时刻,平板倾角为零,物体无运动趋势,摩擦力为零。
当木板有一定倾角且较小时,设想木板表面光滑,则物体必然下滑,所以判断出物体受有摩擦力,而这时物体还没有运动,受到的是静摩擦力,且摩擦力随重力沿斜面方向的分量的增加而增大。
而当倾角增大到一定程度,物体必然下滑,受到滑到摩擦力的f=μN,N=Gcosθ,摩擦力减小。
逆向思维方法
在通常情况下,人们往往习惯于从条件或原因分析其结论或结果,这是正向思维的模式。
逆向思维是把人们通常思考问题的思路反过来加以思考。
即从结论或结果出发倒着分析问题,分析这一结论或结果产生的条件或原因。
这种思维方法叫逆向思维方法。
逆向思维是一种创造性的思维,也是思维广阔性和灵活性的表现。
将逆向思维应用于物理解题。
要求能灵活地转变思维方向,克服思维定势的消极影响。
特别是在某些情况下,按照正向思维的方式分析非常麻烦,甚至陷入困境,这时就应立即转换思维方式,从相反的方向重新思考,往往能收到意想不到的效果。
例:还是做匀减速直线运动最后速度减为零的情况,均可看成初速度为零的匀加速直线运动组成。
发散性思维是根据所给问题的条件,从多个方面分析、探索,以求得大量新颖思维结果的一种思维方式。发散性思维具有流畅性、变通性和独特性等特点,在教学过程中我们要充分利用这些特点,以加强对学生发散思维能力的培养。
1 培养思维的流畅性
思维的流畅性是对思维速度的评价,指单位时间内发散项目的数量。即在解决问题时,能从一个方向上流畅地产生多种同类型的方案。流畅性以广博的知识和良好的记忆力为基础,是思维量的线性延伸。
① 准确掌握概念实质,确保思维的流畅性
在思维流畅性的培养过程中,仅靠学生去件件感受、事事实践、逐步总结知识是远远不够的,大量的知识要靠循序渐进的教学,尤其是一些知识的关键点,若不能透彻理解,将直接影响其思维的速度和发散的数量。如,图1、2 电键闭合后如何判断用电器是串联还是并联?
怎样判断用电器的串、并联呢?很多同学会感到困惑,如何帮助学生突破这一“瓶颈”,还得从串、并联的定义来认识。电路元件逐个顺次连接起来是串联,电路元件并列地连接在电路两点之间就是并联。判断时因电流表电阻很小可忽略,电压表电阻很大、可看成断路,导线的电阻可忽略,可把导线的长度任意伸长或缩短。按上述方法把电路整理后,再观察电路元件是逐个顺次地连接在电路中还是并列地连在电路两点之间,从而判断出电路元件的串、并联。这样的判断方法能使学生对电路连接这一类问题,拥有充分的理论依据,从而加快思维速度,促进思维的线性延伸,有效地保障思维的流畅性。
② 一题多解,发展思维的流畅性
研究物理习题的多种解法,能培养学生思维的流畅性。
例:在国防建设中经常要用爆破技术
,在一次爆破中用了一条1.2m 长的导火线来引爆炸药,导火线的燃烧速度是0.8cm / s,点火者点着导火线后立即以4m / s 的速度跑开,问他能不能在爆炸前,跑到离爆炸地点500m远的安全地带?
根据题意先画一个以爆炸点O 为圆心,以500m 为半径的圆,圆外就是安全地带。因导火线燃尽时火药就爆炸,所以导火线燃尽前的时间就是安全时间,根据题意本题可有几种解法:
(1)比较在安全时间内人通过的路程与安全距离500m 的大小;
(2)比较导火线在安全时间内燃烧的长度与导火线原长度的大小;
(3)比较人到达安全区域所用时间与导火线燃尽所用时间的大小;
(4)比较导火线最大燃烧速度与它实际燃烧速度的大小;
(5)比较人能够跑到安全地带应具备的最小速度与人实际速度的大小。
以上是一道简单的运动学问题,却有五种不同的思路与解法!并且这五种思路都是围绕匀速直线运动中的路程、时间和速度三者展开的。因此,以一个问题作为源点,根据教学的需要和学生实际的知识条件逐渐地进行纵向延伸和横向展开,经过一定的训练,引导学生的思维不断向深处发展,向广处联想,由此及彼,举一反三,既教会了学生灵活的思考方法,又得出了需要掌握的一般规律,使学生的知识得以融会贯通,从而提高了学生思维的灵活性。
2 培养思维的变通性
思维的变通性是对思维广度的评价,指思维发散项目的范围和维度,即在解决问题时,从不同方面上产生出不同类型的方案,是思维量的面状扩张,思维的变通性是以灵活性为基础的。
① 提供变式,培养灵活的思维习惯
在学生熟悉的基本题型的基础上进行“一题多变
”,充分挖掘题目的潜在功能,把问题逐步发展或延伸。通过分析,使学生达到“弄懂一题,学会一片”的功效,这有利于拓展学生思维的深度和广度。
例:一块冰浮在烧杯内的水面上,冰熔化后,液面如何变化?
此题可进行如下变式:
(1)冰块内若含有铁屑,冰溶化后液面如何变化?
(2)冰块内若含有木屑,冰溶化后液面如何变化?
(3)将木块、铁块用细线系在一起,放入水中(如图3),若剪断细绳待两物体静止后,液面怎样变化?
(4)在木块上放一体积为1.3× 10-3 m3,重为7.84N 的物体后置于水中(如图4),若将物体从木块上取下来,放入水中,当木块和物体都静止时,容器中水面又将会怎样变化?
② 以点织网,探索灵活的思维方法
学习的思维过程,一般是从一个个知识点出发,学习每个概念、原理,然后把各个概念及原理纵横地“串联”或“并联”起来,有机地编织成纵横交叉的知识网络。引导学生围绕一个个知识点进行归纳和总结,就能使学生逐步探索出发散性思维的基本方法。如有关光的知识可用一网络图把知识编织起来。如图:
通过分析这一知识网络图,可解决较多的复杂问题。如学生填光学元件无从下手的问题,分析知识网络图可得到如下结论:凡是光从一种介质射入另一种界面后又回到原介质中,就从光的反射入手,考虑平面镜、球面镜,而球面镜是选学内容,只考虑平面镜就行了;凡光穿过某介质后继续传播,就从光的折射入手,考虑凸、凹透镜就行了。
3 培养思维的独特性
思维的独特性是对思维深度的评价,指思维发散成果的新颖性和
独特性。独创思维是以思维的流畅性和变通性为基础,它不仅要求思维范围大、速度快,而且要求质量高,特别要求要有一定的独特性。学生中常有一些思维快,好奇心强的学生,他们一般基础较好,接受新知识的能力较强,思维比较敏捷。这些学生往往会有一些出人意料的问题及解题方法。对此,要尽可能地保护他们的好奇心。可以引导他们预习教材,指导他们阅读一些参考书籍,参与他们的探索思考,保护和培养他们创造性思维的萌芽,鼓励他们锲而不舍地追求,以求不断地有所发现,有所创见。如笔者在复习“测定物质的密度”一节时,曾设计了这样一个实验题:现有天平和法码、量筒、烧杯、刻度尺、水等几种器材,供你选用来测量某种液体的密度,想想看,你有哪些方法?
学生立刻驰骋想象,各抒己见,出现了多种测量方法,在同学们热火朝天地讨论时,一位学生说:“我可以不用题中仪器,只给我一个弹簧秤和一块铁块即可”。
方法是:用弹簧秤称出铁块重G,再分别将铁块浸没水中和被测液体中,并分别读出弹簧秤的示数G1和G2,可推导出ρ液=( G - G2 / G -G1)ρ水,此题解法既捷又优,教师可以抓住这种类似契机,因势利导,鼓励学生不断创新,把思维质量推上更高层次。
总之,培养学生的发散思维方法是多种多样的,但掌握了发散思维具有流畅性、变通性和独特性等特点,并在教学实际中逐渐运用后,就会收到事半功倍的效果。
★ 初中物理思维方法
★ 初中物理教学论文
★ 初中物理教学设计
★ 初中物理教学方案
★ 物理初中教学反思