以下是小编帮大家整理的函数的达标练习题(共含5篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“ValarLucifer”一样,积极向本站投稿分享好文章。
函数的达标练习题
1.下列说法中正确的为
A.y=f(x)与y=f(t)表示同一个函数
B.y=f(x)与y=f(x+1)不可能是同一函数
C.f(x)=1与f(x)=x0表示同一函数
D.定义域和值域都相同的两个函数是同一个函数
解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.
2.下列函数完全相同的是()
A.f(x)=|x|,g(x)=(x)2
B.f(x)=|x|,g(x)=x2
C.f(x)=|x|,g(x)=x2x
D.f(x)=x2-9x-3,g(x)=x+3
解析:选B.A、C、D的定义域均不同.
3.函数y=1-x+x的定义域是()
A.{x|x≤1}B.{x|x≥0}
C.{x|x≥1或x≤0}D.{x|0≤x≤1}
解析:选D.由1-x≥0x≥0,得0≤x≤1.
4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.
解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).
答案:(2)(3)
5.函数y=1x的定义域是()
A.RB.{0}
C.{x|x∈R,且x≠0}D.{x|x≠1}
解析:选C.要使1x有意义,必有x≠0,即y=1x的定义域为{x|x∈R,且x≠0}.
6.下列式子中不能表示函数y=f(x)的是()
A.x=y2+1B.y=2x2+1
C.x-2y=6D.x=y
解析:选A.一个x对应的y值不唯一.
7.下列说法正确的'是()
A.函数值域中每一个数在定义域中一定只有一个数与之对应
B.函数的定义域和值域可以是空集
C.函数的定义域和值域一定是数集
D.函数的定义域和值域确定后,函数的对应关系也就确定了
解析:选C.根据从集合A到集合B函数的定义可知,强调A中元素的任意性和B中对应元素的唯一性,所以A中的多个元素可以对应B中的同一个元素,从而选项A错误;同样由函数定义可知,A、B集合都是非空数集,故选项B错误;选项C正确;对于选项D,可以举例说明,如定义域、值域均为A={0,1}的函数,对应关系可以是x→x,x∈A,可以是x→x,x∈A,还可以是x→x2,x∈A.
8.下列集合A到集合B的对应f是函数的是()
A.A={-1,0,1},B={0,1},f:A中的数平方
B.A={0,1},B={-1,0,1},f:A中的数开方
C.A=Z,B=Q,f:A中的数取倒数
D.A=R,B={正实数},f:A中的数取绝对值
解析:选A.按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.
9.下列各组函数表示相等函数的是()
A.y=x2-3x-3与y=x+3(x≠3)
B.y=x2-1与y=x-1
C.y=x0(x≠0)与y=1(x≠0)
D.y=2x+1,x∈Z与y=2x-1,x∈Z
解析:选C.A、B与D对应法则都不同.
10.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()
A.B.或{1}
C.{1}D.或{2}
解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=或{1}.
11.若[a,3a-1]为一确定区间,则a的取值范围是________.
解析:由题意3a-1>a,则a>12.
答案:(12,+∞)
13.函数y=x+103-2x的定义域是________.
解析:要使函数有意义,需满足x+1≠03-2x>0,即x<32且x≠-1.
答案:(-∞,-1)∪(-1,32)
14.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.
解析:当x取-1,0,1,2时, y=-1,-2,-1,2, 故函数值域为{-1,-2,2}.
答案:{-1,-2,2}
15.求下列函数的定义域:
(1)y=-x2x2-3x-2;(2)y=34x+83x-2.
解:(1)要使y=-x2x2-3x-2有意义,则必须
-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,
故所求函数的定义域为{x|x≤0,且x≠-12}.
(2)要使y=34x+83x-2有意义,则必须3x-2>0,即x>23,故所求函数的定义域为{x|x>23}.
16.已知f(x)=11+x(x∈R且x≠-1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2))的值.
解:(1)∵f(x)=11+x,
∴f(2)=11+2=13,
又∵g(x)=x2+2,
∴g(2)=22+2=6.
(2)由(1)知g(2)=6,
∴f(g(2))=f(6)=11+6=17.
17.已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.
解:函数y=ax+1(a<0且a为常数).
∵ax+1≥0,a<0,∴x≤-1a,
即函数的定义域为(-∞,-1a].
∵函数在区间(-∞,1]上有意义,
∴(-∞,1](-∞,-1a],
∴-1a≥1,而a<0,∴-1≤a<0.
即a的取值范围是[-1,0).
反比例函数练习题
一、选择题(每题3分共30分)
1、下列函数中,反比例函数是( )
A、y=x+1 B、y= C、=1 D、3xy=2
2、函数y1=kx和y2=的图象如图,自变量x的取值范围相同的是( )
3、函数与在同一平面直角坐标系中的图像可能是( )。
4、反比例函数y=(k≠0)的图象的两个分支分别位于( )象限。
A、一、二 B、一、三 C、二、四 D、一、四
5、当三角形的面积一定时,三角形的底和底边上的高成( )关系。
A、正比例函数 B、反比例函数 C、一次函数 D、二次函数
6、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则( )
A、x1>x2>x3 B、x1>x3>x2 C、x3>x2>x1 D、x3>x1>x2
7、如图1:是三个反比例函数y=,y=,y=在x轴上的图像,由此观察得到k1、k2、k3的大小关系为( )
A、k1>k2>k3 B、k1>k3>k2 C、k3>k2>k1 D、k3>k1>k2
8、已知双曲线上有一点P(m,n)且m、n是关于t的一元二次方程t2-3t+k=0的两根,且P点到原点的距离为,则双曲线的表达式为( )
A、B、C、D、
9、如图2,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为( )
A、1 B、C、2 D、
10、如图3,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的`交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为
A、2 B、C、D、
二、填空(每题3分共30分)
1、已知y与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。
2、如果反比例函数的图象经过点(3,1),那么k=_______。
3、设反比例函数的图象经过点(x1,y1)和(x2,y2)且有y1>y2,则k的取值范围是______。
4、若点(2,1)是反比例的图象上一点,当y=6时,则x=_______。
5、函数与y=-2x的图象的交点的坐标是____________。
6、如果点(m,-2m)在双曲线上,那么双曲线在_________象限。
7、已知一次函数y=ax+b图象在一、二、三象限,则反比例函数y=的函数值随x的增大而__________。
8、已知,那么y与x成_________比例,k=________,其图象在第_______象限。
9、菱形面积为12cm2,且对角线长分别为x cm和y cm,则y关于x的函数关系式是_________。
10、反比例函数,当x>0时,y随x的增大而增大,则m的值是 。
三、解答题
1、(10分)数与反比例函数的图象都过A(,1)点.求:
(1)正比例函数的解析式;
(2)正比例函数与反比例函数的另一个交点的坐标.
2、(10分)一次函数的图象与x轴,y轴分别交于A、B两点,与反比例函数的图象交于C、D两点,如果A点坐标为(2,0),点C、D在第一、三象限,且OA=OB=AC=BD,试求一次函数和反比例函数的解析式?
3、(10分)如图,矩形ABCD,AB = 3,AD = 4,以AD为直径作半圆,为BC上一动点,可与B,C重合,交半圆于,设,求出关于自变量的函数关系式,并求出自变量的取值范围.
4、(10分)某蓄水池的排水管每时排水8m3,6小时(h)可将满水池全部排空.
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?
5、(10分)已知反比例函数y=的图象经过点A(4, ),若一次函数y=x+1的图象沿x轴平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标?
6、(10分)已知反比例函数y=和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点。
(1)求反比例函数的解析式?
(2)已知A在第一象限,是两个函数的交点,求A点坐标?
(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?
答案:
一、DCBBBCCCC
二、-2;3;k>-1;;;二、四;减小;反,-6,二、四;;-1
三、
1、;(-3,-1)
2、;
3、,(≤≤)
4、48;减小;;;4小时
5、(1,0)
6、;A(1,1);存在,分别为(1,0)(2,0)
二次函数练习题
一、选择题:
1 下列关系式中,属于二次函数的是(x为自变量)( )
2 函数y=x2-2x+3的图象的顶点坐标是( )
A (1,-4) B(-1,2) C (1,2) D(0,3)
23 抛物线y=2(x-3)的顶点在( )
A 第一象限 B 第二象限 C x轴上 D y轴上
4 抛物线的对称轴是( )
A x=-2 Bx=2 C x=-4 D x=4
5 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )
A ab>0,c>0 B ab>0,c<0
C ab<0,c>0 D ab<0,c<0
6 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )
A 一 B 二 C 三 D 四
7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )
A 4+m B m C 2m-8 D 8-2m
8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )
9 已知抛物线和直线
在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y1
10 把抛物线物线的函数关系式是( ) A
C 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D
二、填空题:
11 二次函数y=x2-2x+1的对称轴方程是______________
12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________
13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________
14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________
15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________
16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m
17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________
18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________
三、解答题:
19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;
20 在直角坐标平面内,点 O 为坐标原点,二次函数 y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;
(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积
21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点
(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB
22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件 请你分析,销售单价多少时,可以获利最大
答案与解析:
一、选择题
1 考点:二次函数概念 选A
2 考点:求二次函数的顶点坐标
解析:法一,直接用二次函数顶点坐标公式求 法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C
3 考点:二次函数的图象特点,顶点坐标
解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C
4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B
5 考点:二次函数的`图象特征
解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方, 答案选C
6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征 解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D
7 考点:二次函数的图象特征
解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C
8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状 解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点 答案选C
9 考点:一次函数、二次函数概念图象及性质
解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 2
10 考点:二次函数图象的变化 抛物线平移2个单位得到,再向上平移3个单位得到的图象向左 答案选C
二、填空题
11 考点:二次函数性质 解析:二次函数y=x2-2x+1,所以对称轴所在直线方程 答案x=1
12 考点:利用配方法变形二次函数解析式
解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+2
13 考点:二次函数与一元二次方程关系
解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为4
14 考点:求二次函数解析式
解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3, 答案为y=x2-2x-3
15 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1
16 考点:二次函数的性质,求最大值
解析:直接代入公式,答案:7
17 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一 解析:如:y=x2-4x+3
18 考点:二次函数的概念性质,求值
三、解答题
19 考点:二次函数的概念、性质、图象,求解析式
解析:(1)A′(3,-4)
(2)由题设知:
∴y=x2-3x-4为所求
(3)
20 考点:二次函数的概念、性质、图象,求解析式
解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根
又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)
21 解: (1)依题意:
(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)
由,得M(2,9)
作ME ⊥y 轴于点E ,
则 可得S △MCB =15
22 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:
总利润=单个商品的利润×销售量
要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大 因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了 单个的商品的利润是(135-x-25)
这时商品的销售量是(500+200x)
总利润可设为y 元
利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润
解:设销售单价为降价x 元
顶点坐标为(425,91125)
即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元
函数奇偶性练习题精选
函数奇偶性练习题精选
11.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为________.
答案 0
512.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(=________. 2
1答案 - 2
5551111解析 依题意,得f(=-f=-f(-2)=-f=-2×(1-)=-2222222
13.函数f(x)=x3+sinx+1的图像关于________点对称.
答案 (0,1)
解析 f(x)的图像是由y=x3+sinx的图像向上平移一个单位得到的.
14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________. 答案 -4
15.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-
11),f(4),f(5的大小关系是__________. 2
1答案 f(5) 解析 ∵y=f(x+2)为偶函数, ∴y=f(x)关于x=2对称. 又y=f(x)在(-∞,2)上为增函数, ∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5), 1∴f(5<f(-1)<f(4). 2 16.(·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),求: (1)f(0)与f(2)的值; (2)f(3)的值; (3)f(2 013)+f(-2 014)的值. B.-1 11D.-4 答案 (1)f(0)=0,f(2)=0 (2)f(3)=-1 (3)1 解析 (2)f(3)=f(1+2)=-f(1)=-log2(1+1)=-1. (3)依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数. 因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1. 17.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值8,求F(x)在(-∞,0)上的`最小值. 答案 -4 解析 由题意知,当x>0时,F(x)≤8. ∵f(x),g(x)都是奇函数,且当x<0时,-x>0. ∴F(-x)=af(-x)+bg(-x)+2 =-af(x)-bg(x)+2 =-[af(x)+bg(x)+2]+4≤8. ∴af(x)+bg(x)+2≥-4. ∴F(x)=af(x)+bg(x)+2在(-∞,0)上有最小值- 4. 1.已知f(x)是在R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(3)=________;f(2 019)=________. 答案 0 0 解析 在f(x+6)=f(x)+f(3)中,令x=-3,得f(3)=f(-3)+f(3),即f(-3)=0. 又f(x)是R上的奇函数,故f(3)=0. 即f(x+6)=f(x),知f(x)是周期为6的周期函数,从而f(2 019)=f(6×336+3)=f(3)=0. 12.若f(x)是定义在(-1,1)上的奇函数,且x∈[0,1)时f(x)为增函数,则不等式f(x)+f(x<0的解集2 为________. 11答案 {x|<x<} 24 解析 ∵f(x)为奇函数,且在[0,1)上为增函数, ∴f(x)在(-1,0)上也是增函数. ∴f(x)在(-1,1)上为增函数. 1f(x)+f(x-<0? 2 11f(x)<-f(x)=f(-x)? 22 1-1<2-x<1, 函数单元练习题 1.集合 , ,若 时 的取值范围是 ,则 =___ . 2. 已知 , , , ,则 由大到小的顺序为 3. 已知函数 在区间[0,1]上是减函数,则实数 的取值范围是 4、若全集I=R,f(x)、g(x)均为x的二次函数,P= 则不等式组 的解集可用P、Q的交、并、补符号表示为 . 5给定函数① ,② ,③ ,④ ,期中在区间(0,1)上单调递减的函数序号是 6设 a,b,c的大小关系是 7.若函数f(x)= ,若f(a)f(-a),则实数a的取值范围是 9.设函数f(x)=x(ex+ae-x)(x R)是偶函数,则实数a=______________ 11. 若 ,求函数f(x)= 的值域. 12、已知函数 (1)若 且函数 的值域为 ,求 的表达式; (2)在(1)的条件下, 当 时, 是单调函数, 求实数k的取值范围; (3)设 , 且 为偶函数, 判断 + 能否大于零?请说明理由。 13、定义:若函数 对于其定义域内的某一数 ,有 ,则称 是 的一个不动点. 已知函数 .(1) 当 , 时,求函数 的不动点; (2) 若对任意的实数b,函数 恒有两个不动点,求a的'取值范围;(3) 在(2)的条件下,若 图象上两个点A、B的横坐标是函数 的不动点,且A、B的中点C在函数 的图象上,求b的最小值.(参考公式: 的中点坐标为 ★ 二次函数练习题 ★ 二次函数的练习题 ★ 目标达标计划书 ★ 技能达标体会 ★ 函数课件 ★ 环保达标证明申请篇5:函数单元练习题