以下是小编整理的部编版初三数学知识点(共含6篇),欢迎阅读分享,希望对大家有帮助。同时,但愿您也能像本文投稿人“西夏野”一样,积极向本站投稿分享好文章。
配方法的应用
对所有一元二次方程都适用,但特别对于二次项系数为1,一次项系数为偶数的一元二次方程用配方法会更为简单。
【配方法】
一般步骤:
第一步:使方程左边为二次项和一次项,右边为常数项;
第二步:方程两边同时除以二次项系数;
第三步:方程两边都加上一次项系数一半的平方,把原方程化为的形式;
第四步:用直接开平方解变形后的方程.
古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:以和b为两直角边作Rt△ABC,再在斜边上截取BD=,则AD的长就是所求方程的解.
注意:
1.一元二次方程得一般形式特点为方程右边是0,方程左边是关于x的二次整式。
2.“a≠0”是一元二次方程的一个重要组成部分,也是它的一个判断标准之一,但b、c可以为0。若没有出现bx,则b=0;没有出现c,则c=0。
3.可以通过“去分母,去括号,移项,合并同类项”等步骤得到一元二次方程得一般形式。
【因式分解法】
一般步骤:
第一步:将已知方程化为一般形式,使方程右端为0;
第二步:将左端的二次三项式分解为两个一次因式的积;
第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解。
九年级数学学习方法技巧
重视常用公式技巧——做到思维敏捷准确
对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。
重视中考动向要求——勤练解题规范速度
要把握好目前的中考动向,特别是近年来上海的中考越来越注重解题过程的规范和解答过程的完整。在此特别指出的是,有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多,不要会做而不得分。
重视掌握应试规律——提高考[微博]试成绩效率
有关专家曾对高考(微博)落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果发现,他们的区别不是智力,而是应试中的心理状态。也有人曾对影响考试成功的因素进行过调查,结果发现,排在第一位的是应试中的心态,第二位的是考前状况,第三位的是学习方法,我们最重视的记忆力却排在第17位。事实上,侧重对考生素质和能力的考核已经是各类考试改革的大趋势,应试中的心态对应试的成功将日趋重要。具有良好心理状态的考生,可以较好地预防考试焦虑,较好地运筹时间,减少应试中的心理损伤。
空间与图形
图形的认识:
1、点,线,面
点,线,面:
①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧,扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径。
2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
3.圆上任意两点间的部分叫作圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。能够重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫做等弧。
4.圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
5.垂直于弦的直径平分弦,并且平分弦所对的两条弧。
6.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
7.我们把顶点在圆心的角叫做圆心角。
8.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
9.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
10.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
11.顶点在圆上,并且两边都与圆相交的角叫做圆周角。
12.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
14.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
15.在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等。
16.圆内接四边形的对角互补。
17.点P在圆外——d>r点P在圆上——d=r点P在圆内——d
18.不在同一直线上的三个点确定一个圆。
19.经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心。
20.直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。
21.直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
22.直线和圆没有公共点,这时我们说这条直线和圆相离。
23.直线L和○O—d
直线L和○O相离——d>r
24.经过半径的外端并且垂直于这条半径的直线是圆的切线。
25.圆的切线垂直于过切点的半径。
26.经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
27.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
28.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
29.如果两个圆没有公共点,那么就说这两个圆相离,(分外离和内含)如果两个圆只有一个公共点,那么就说这两个圆相切,(分外切和内切)。如果这两个圆有两个公共点,那么就说这两个圆相交。
30.两圆圆心的距离叫做圆心距。
31.我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。
32.在半径是R的圆中,因为360°圆心角所对的弧长就是圆周长C=2πR,所以n°的圆心角所对的弧长为
nπR
L=——
180
33.由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形
34.在半径是R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR2nπR2
S扇形=——
360
35.我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。
知识点一、平面直角坐标系
1,平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
2、坐标轴上的点的特征
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
【二次函数的图像与性质】
二次函数的概念:一般地,形如ax^2+bx+c=0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
直线与圆的位置关系
①直线和圆无公共点,称相离。AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
旋转变换
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
初三下册数学复习资料
合并同类项就是逆用乘法分配律
把多项式中同类项合成一项,叫做合并同类项(combiningliketerms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如2ab与-3ab,m2n与m2n都是同类项。特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?
其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
1、文艺复兴
时间:14世纪前后
地点:意大利
原因:最早出现资产阶级生产关系
思想:人文主义思想
实质:资产阶级文化运动
人物、成就:但丁[意大利]诗人(《神曲》)
达芬奇[意大利]艺术大师(《最后的晚餐》、《蒙娜利莎》)
莎士比亚[英国]文学巨匠(《哈姆雷特》、《罗密欧与朱利叶》)
意义:文艺复兴推动了欧洲文化思想领域的繁荣,为欧洲资本主义社会的产生奠定了思想文化基础。
2、新航路开辟
根本原因:商品经济的发展,资本经济的出现
过程:
(1)1487年,葡萄牙的迪亚士从葡萄牙往东航行,到达好望角。
(2)1492年,哥伦布(意大利人)受西班牙王室的资助,到达美洲。
(3)1497—1498年,葡萄牙人达?伽马(葡萄牙支持)到达印度等地
(4)1519—1522年,麦哲伦奉西班牙国王之命,完成了环球航行。
影响:
(1)新航路开辟以后,从欧洲到亚洲、美洲和非洲等地的交通往来日益密切,世界开始连成一个整体。(对世界影响)……
(2)欧洲大西洋沿岸工商业经济繁荣起来,促进了资本主义的产生和发展。(对资本主义发展影响)
(3)资本主义市场开始形成
(4)证明了地圆学说(同学补充,非重点)
3、英国资产阶级革命
背景:英国资本主义的发展,产生了新兴的阶级——资产阶级和新贵族
根本原因:封建专制统治阻碍了英国资本主义的发展
时间:1640—1688
导火线:苏格兰人民起义
开始标志:1640年议会的召开
:资产阶级和新贵族
文献:《权利法案》(革命后颁布)
结果:建立了君主立宪制资本主义国家
意义:英国资产阶级通过革命.了封建君主专制,确立了自己的统治地位,为发展资产阶级扫清了障碍,推动了世界的历史进程。
革命特点:时间长、过程曲折、妥协(不彻底)
★ 初三数学知识点