下面是小编为大家整理的大数据=工业?云计算和互联网是通用技术(共含7篇),以供大家参考借鉴!同时,但愿您也能像本文投稿人“Me”一样,积极向本站投稿分享好文章。
大数据=工业?云计算和互联网是通用技术
社交?不,大数据现在涉及的方面太广了,社交网络,让我们越来越多地从数据中观察到人类社会的复杂行为模式。社交网络,为大数据提供了信息汇集、分析的第一手资料。从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。 现在的工业生产的网络化和智能化特征越来越明显,“互联网+”与工业融合发展已经成为不可逆的趋势。虽然说“互联网+“赋能工业的基础能力是大数据和云计算,但是具体会以什么样的形式融合却给我们留下更大想象空间。为什么大数据或者互联网会和工业扯上关系呢?其实工业分三个产业,除了第一产业和第二产业以外的像社会上提供各种服务型的.行业,其实主要就是服务业,其中的第三产业可以分为两个部分,流通还有服务!第一层次,流通部门,包括运输部,物流仓储等等,第二层次,未生产和生活提供服务的部门,包括商业饮食等等!但是这些产业大多数都是汇聚了最海量的数据以及大批次的科研中坚力量,而且现在大数据在农业以、工业、交通上都有广泛的应用,大数据的未来到底是怎么样的呢?了解了大数据的典型应用,理解了大数据的定义。这时相信在每个人的心中,关于大数据的价值都有了自己的答案,随着计算机的处理能力的日益强大,你能获得的数据量越大,你能挖掘到的价值就越多,希望这样的时代能为我们的生活带来更多的优质资源!基于云计算的数据挖掘技术探讨论文
1、前言
毫无疑问,21世纪代,已经是不折不扣的信息时代,或者也可以称之为数据时代。随着计算机的发展,网络的快速普及,尤其是移动互联网在近年来的蓬勃发展,数据量、信息量无时无刻不在海量增长着。目前,面对海量的信息,找出自己真正感兴趣的内容已经成为用户最为头疼的事情,数据挖掘已经成为当前最为热门的技术领域。近年来,云计算成为广受关注的技术领域,也使得数据挖掘平台有了新的发展方向,构建新一代的数据挖掘平台来应对数据的日趋复杂庞大成为可能。云计算实为传统计算机技术与网络技术融合的产物。云计算并非简单的计算,它是新型计算方式、数据存储方式、备份方式、网络资源分配方式的综合体,是基于互联网的相关服务的增加、使用和交付模式。传统的数据挖掘技术是建立在数据库之上的,是通过对已收集数据信息的计算,找出隐藏在不同数据中的相关信息。传统的数据挖掘技术需要在海量数据的基础上进行大量的数据访问与统计计算,在对数据进行挖掘的过程中需要消耗及占用大量的计算以及存储资源,面对规模不断增长的海量数据,需要消耗及占用大量计算及存储资源的传统数据挖掘技术显得越来越力不从心,难以胜任。而云计算独特的计算模式,为海量数据的挖掘提供了一种新的解决方案。
2、云计算与数据挖掘
2.1云计算。云计算是基于互联网的一种商业计算模式,对于云计算的定义,目前并没有一个统一的说法,现阶段广为人接受的是美国国家标准与技术研究院对云计算所做出的定义,即:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。从云计算的定义我们可以知道,云计算拥有可配置的、大型的计算资源共享池,这种资源共享池包括了网络、服务器、存储器、应用软件以及服务。那也就是说,云计算就是对计算资源共享池的一种资源分配技术或服务,它的特点是可以快速提供这些计算资源,可以减少客户的管理工作。云计算将计算任务分布在了由大量计算机或服务器构成的共享资源池上,大大提高了资源的有效利用,使计算处理能力以及存储能力等得到了提高,并且具有更好的扩展性。云计算具有虚拟化的特点,用户不再受到地理位置以及终端设备的限制,只要接入互联网,即可获取所请求的应用服务,也就是说,用户只需要拥有一台可以接入互联网的终端设备,即可获利所需要的各种应用服务;云计算拥有通用性的特点,云平台可以构造出千万种应用,用户没有应用限制,在同一个云平台即可运行不同的应用;云计算具有超大规模以及高扩展性的特点,对于云计算来说,云的规模扩展不会影响用户应用服务的质量,而目前,云计算的规模已经发展出了超大型,如谷歌的云计算已经拥有了上百万台的服务器;云计算拥有高可靠性以及经济性好的特点,多副本容错、多计算节点同构可互换等技术确保了服务的高可靠性,而云计算采用廉价的节点构成云,自动化集中式管理相较于企业传统的数据中心管理成本来说,经济性能十分优越。
2.2数据挖掘。数据挖掘是数据库知识发现中的一个步骤,数据挖掘又被称为数据采矿,顾名思义,数据挖掘就是在已有的海量数据中通过特定的算法来挖掘、发现有用信息或知识的过程。数据挖掘是为了解决需求的问题,也是为了解决数据管理的问题。数据挖掘对于信息产业界来说,是产生价值的关键环节,只有将数据转冯波换成具有应用价值的.信息或是知识,才能具有实在商业价值。传统的数据挖掘技术是建立在数据库的基础之上的,需要数据库系统提供有效的存储、索引和查询处理支持,而高性能的计算技术是对海量数据进行处理的关键支撑,在处理效率方面具有重要影响。随着互联网规模的不断扩大以及移动互联网的兴趣,数据规模呈现更快的增长速度,而对于数据挖掘的需求也日益增多,这使得传统的数据挖掘技术暴露出一些问题,首先是数据挖掘效率的问题,传统的基于数据库的数据挖掘技术在面对如今海量数据的增长规模已经很难高效的完成计算分析任务;其次,面对海量数据规模的增长,传统的数据挖掘技术需要更高的软硬件成本的支持,这种成本的支撑面对数据量的大规模增长是长期性的;第三,传统的基于数据系统的数据挖掘技术平台架构,已经无法为挖掘算法能力的提升提供更多支持,算法受限于系统架构影响了数据挖掘技术的发展。
3、基于云计算的数据挖掘关键技术
云计算的出现为数据挖掘技术的发展提供了新的方向,数据挖掘技术基于云计算可以发展出新的模式,就具体的实现来说,其中几个关键技术的发展至关重要。
3.1云计算技术。分布式计算是云计算平台的关键技术,是目前应对海量数据挖掘任务,提高数据挖掘效率的有效手段之一。分布式计算包含分布式存储和并行计算两方面内容,分布式存储有效解决了海量数据的存储问题,实现了数据存储高容错、高安全、高性能等关键功能。目前,谷歌提出的分布式文件系统理论是业界流行的分布式文件系统的基础,谷歌文件系统(GFS)就是为了解决其海量数据的存储、搜索与分析等问题而研发的,其它如Hadoop分布式文件系统(HDFS)、Kosmos文件系统(KFs)是基于Goolgle分布式文件系统理论进行研发的开源系统。分布式并行计算框架是高效完成数据挖掘计算任务的关键。目前流行的一些分布式并行计算框架都对分布式计算的一些技术细节进行了封装,这样用户只需要考虑任务间的逻辑关系,而不用再过多的关注这些技术细节,不仅大大提高了研发的效率,而且还可以有效的降低系统维护的成本。典型的分布式并行计算框架如谷歌提出的MapReduce并行计算框架、Pregel迭代处理计算框架等。目前业界开源的云计算平台Hadoop平台,包含HDFS和MapReduce,为海量数据挖掘平台提供完备的云计算平台支撑平台。
3.2数据汇集调度技术。数据汇集调度技术需要实现的是对接入云计算平台的不同类型数据的汇集与调度。数据汇集与调度需要支持不同格式的源数据,还要提供多种数据同步方式。解决不同数据的规约问题是数据汇集调度技术的任务,技术解决方案需要考虑对网络上不同系统生成的数据格式的支持,如联机事务处理系统(0LTP)数据、联机分析处理系统(0LAP)数据、各种日志数据、爬虫数据等,如此才能实现数据的挖掘与分析。
3.3服务调度和服务管理技术。为了能够让不同的业务系统使用本计算平台,平台必须要提供服务调度和服务管理功能。服务调度根据服务的优先级以及服务和资源的匹配情况等进行调度,解决服务的并行互斥、隔离等,保证数据挖掘平台的云服务是安全、可靠的,并根据服务管控进行调度控制。服务管理实现统一的服务注册、服务暴露等功能,不仅支持本地服务能力的暴露,也支持第三方数据挖掘能力的接入,很好地扩展数据挖掘平台的服务能力。
3.4挖掘算法并行化技术。挖掘算法并行化是有效利用云计算平台提供的基础能力的关键技术之一,涉及到算法是否可以并行、以及并行策略的选择等技术。数据挖掘算法主要有决策树算法、关联规则算法以及K-平均值算法等,算法的并行化,是利用云计算平台进行数据挖掘的关键技术。
工业互联网怎么让大数据产生价值?
导读:在整个工业互联网的实施过程中,挑战是毋庸置疑的,其中有四个需要重点关注的挑战点…来源/海宝软件原文标题/工业互联网:让大数据产生价值涉及核心能力板块/企业新能力建设之智能制造区块在经历了长达30年的经济快速发展之后,现在,中国需要一个全新的增长模式。快速的城镇化和工业化让数亿人摆脱了贫困,中国人的人均寿命提升了十年,中国一举成为世界上最大的制造产品出口国和世界第二大经济体。这样的成就令世人瞩目,不过对中国来说,这并不是件难事。中国迄今为止所取得的经济增长都是来源于大量廉价劳动力推动的以出口为导向的制造业快速发展。然而,强劲的消费需要更快速的工资增长来拉动――因而需要更快速地提高生产力。因此,中国需要加速从低成本生产向高附加值、高科技制造转型。这是一个非常严峻的挑战。大部分新兴市场国家在转型中失败,陷入“中等收入陷阱”无法自拔:在这种境况中,人均收入没有能够向发达国家的高水平靠拢,而是停滞不前。1/4数字化创新提升竞争力中国可以通过拥抱“工业互联网”,拥抱这一轮正在改变全球经济的数字创新来应对这个挑战。工业互联网是数字技术和物理技术、大数据与大机器的融合。通过部署电子传感器和云分析,工业互联网将传统工业机器转变为互联资产,开创功能与效率的全新局面。由数据分析得出的洞察可以实现预测性维护:提前处理潜在故障,避免意外停机。传感器和数据分析构建了一个数字化的网络――工厂车间的所有元素连接在一起,并与供应链和分销渠道相连,提高制造过程的速度和灵活性――GE称之为智慧工厂(Brilliant Factory)。现在3D打印等数字技术使一些新的制造流程成为可能,在提高生产速度的同时,降低了生产成本。这些数字化的创新能够大幅提升各行各业的效率和生产力,从而提升竞争力,使中国的某些行业在全球范围内确立领导地位。工业互联网创新还能提升不同层面工人的能力。具有虚拟现实/增强现实能力的便携式和可穿戴设备可以使工人即时访问信息、提供即时培训、更有效地合作以及学习和借鉴其他同事积累的实践经验。人们常常担心新技术的出现因为提高了自动化水平而减少工作岗位。工业互联网创新的发展方向不同于以往,工业互联网使人与机器之间形成更强大的新型伙伴关系,并提升各个层面工人的能力和生产力。而近年来,中国在提升工人平均技能水平方面也取得了巨大的进展:1982年,年龄在25-29之间的中国人中只有不足1%的人口接受过高中及更高水平的教育;到,这一比例已经超过20%,其中大部分集中在科学和工程学。教育水平的提高使中国的劳动力从这些创新中获得巨大的收益;这也将为中国科学家和工程师的持续创新创造环境,为新型数字化工业技术的增长和传播作出贡献。这一战略也与中国的人口转型相吻合。目前,中国的人口增速降低,老龄化加速。最近出台二胎政策暂时还不会影响到中国的人口发展趋势。与此同时,较低的人口增长速度也意味着劳动力不再像过去几十年那样快速增长。现在,中国的工业面临更加有限的人力资源。因此,为支持快速的经济增长,必须更快速地提高生产力以弥补较慢的劳动力增长。2/4制造服务业与中国工业的转型回归制造业在全球范围内已经成为很多国家的战略重点,不管是欧洲、美国还是中国。中国制造2025战略通过“互联网+”和工业结合,推进两化深度融合。这也是业界、政府、企业共同面临的一个挑战,也是要深刻研讨的一个话题。在这样的背景下,数字化和智能工业作为一个重大趋势,已不可逆转。很多工业公司已经将数字化视为生存和发展的必要前提。尽管互联网已经改变了消费领域,但这一价值在工业领域还有待释放,在1990到年期间,工业生产力的年均增速为4%,但是,在过去的五年里却下降到了1%。如何将数字化转化为价值,这是所有工业公司所需要解答的问题。中国经济正在经历前所未有的结构化转型,可以预见,服务业态将在整个GDP当中起到非常重要拉动作用。制造业在过往的中国GDP中占很大比例,但在随着结构化转型,未来的制造业将成为制造和服务并举的行业,其中服务所创造的价值贡献甚至会超过制造,从而打造出是高质量、高利润、可持续增长的全新服务业态。BCG的数据表明,中国经济当今的转型之当中,服务的价值在医疗、航空、能源以及有一些机械制造等行业领域都有体现,在未来,他们都将走上以服务成长拉动增长的路径。所以制造业的转型对于整个GDP的贡献也由此成为重要的话题。GE本身也是一个制造型企业,但这个百年老店也需要思考如何在新的国际竞争当中寻找突破创新之路。GE的工业互联网在来到中国,而这个战略最早在五年前被提出,因为制造业本身面在寻求新的增长点方面走进了一个困境。在GE超过1000多亿的营收和160亿美元的纯利润当中,75%来自制造。但由于客户市场和全球环境的变化,GE需要找重新思考如何服务于全球各行业的客户。所以GE就提出了工业互联网的概念,从根本上讲,就是要把人与机器,机器与机器之间通过数据无缝连接,通过海量数据找到运营当中的瓶颈,降低成本,提升效率,从而进行整个核心竞争力的转型。工业互联网同中国工业的智能化在中国的结合恰逢其时,这主要源于三个条件:经过的信息化建设,中国积累了很好的.基础设施;同时中国目前的制造业的转型上升为国家战略之一,迫切需要一些好的信息化手段、管理理念、创新来推动实现这一目标;最后,人才储备也已经达到一定水平。3/4资产优化与运营优化在制造业领域,工业互联网在实现工业智能化主要着力于资产优化和运营优化。资产优化是基于一个事实,亦即制造企业的重资产特性。目前重资产企业最重要的关切就是产能过剩的挑战,如何优化资产效率,提升资产的利用率,同时为客户带来一些关键的增值服务,通常也被衍生为装备服务业。其次,是运营优化,中国企业所在的是相比德国提出工业4.0,我们还处在2.0甚至更粗放的阶段。管理粗放,机能低下,信息化基础薄弱等等,都是现在制约制造业发展的重要问题。所以如何使运营优化让我们在岗的工人、管理人员,能够和管理规章制度结合提升我们的效率,这是工业互联网的着眼点,也是中国工业企业转型迫切需要解决的,资产的优化、运营的优化。目前中国有很多离散型的工厂,例如家电,电子类产品制造商,资产优化、对这些企业而言运营优化有重要的意义。而整个智能化有三个不同的层次:第一,经由传感器驱动的自动化。第二,实现全工厂级别的自动化。第三,包括供应链,供应链上下游的优化。从实施角度,要实现这三方面的优化要经过四个阶段,第一阶段,在没有数据的情况下我们往往有盲人摸象的感受,就像你坐在军中但缺乏前线汇报,这种作战毫无智慧策略可言。所以数据化是非常重要的前提,大部分企业的决策和管理是基于经验,哪怕有一些数据,也是局部不及时的,甚至是错误数据,这都会直接影响到最终结果,所以全局数据的采集是非常关键的。有了数据之后我们下一步希望可视化,所以在GE的智能工厂当中我们推出了数字链和数字双胞胎的概念,通过信息可视化手段通观工厂制造全流程,让我们对生产力、生产资源、生产效率有了解。随之而来的是控制,比对管理目标实施自动化、智能化控制,在流程控制、资源控制、物料控制等等,同时与制造工艺无缝相结合。最后一个环节是我们最期待的环节,也是价值释放的部分,就是实现优化,基于全局数据基础上我们可以实现预测,能够对资源,对于市场,对于客户的需求的预测性的指导下我们进行优化。这四个阶段就是刚才我们说互联网在智能工厂的一个体现,说起来简单,但是做起来确实是很困难的。纵观中国的产业发展,工业和基础设施还处在由硬件转向软硬件结合的过渡当中,据统计,我国数字化研发设计工具普及率已达54%,关键工序数控化率达到30%。不过较发达国家,中国离互联互通,软硬件结合的工业体系距离还很远。目前,我国高端传感器、智能仪器仪表、高档数控系统、工业应用软件等市场份额不到5%。目前GE所提供的工业互联网方案,最直接的价值就是帮助客户实现零意外停机时间,目前GE每天监测和分析来自1000万个传感器的5000万项元数据,这些数据涉及资产价值达到万亿美元。基于Predix的APM帮助客户将海量数据转化为准确决策,及时、主动地确保资产安全、帮助设备更好地运行、消耗更少的燃料、更高效地部署服务,并最大限度地减少意外停机时间。 更多APM解决方案和服务将有利于资产所有者和运营商降低维护成本和运营风险,同时提高可靠性。获得“可完全预测的资产”对任何机构的都是终极目标。对于尚不成熟的机构来说,这似乎是一个无法实现的目标。但随着资产运营者逐步接受这一观念,它所带来的诸多益处证明这一投资是值得的,APM将是实现资产预测性的根本基石。在智慧工厂层面,其价值在于利用大数据、软件、传感器、控制器和机器人提高生产力,从而实现资产和业务优化。智慧工厂的产品拥有四个要素:虚拟制造、传感器启用自动化、工厂优化和供应链优化。GE目前在全球范围内拥有400家工厂。为了改变这些工厂的管理方式并提高生产效率,我们在整个企业共有16个智慧工厂试点。,我们计划把试点数量增加到75个左右。4/4挑战与关注在整个工业互联网的实施过程中,挑战是毋庸置疑的,总结而言,我们在有四个需要非常关注的:安全性。制造企业进行转型不管走的是什么路径,目标是一致的,但是安全是非常重要的。传统的信息化的安全不足以覆盖到制造领域的安全,GE工业互联网上倡导的安全,除了IT的安全还有OT的安全,就是工业技术的安全。基础设施:基础设施从数据中心到网络,到大数据分析,到云计算等等基础设施的部署。复合性人才。过去中国的20年,无论是信息化还是工业化过程中培养了很多人才,但是都过于单一化。工业化和信息化的深度融合之后,我们需要更多的是复合性人才,对工业材料了解,对信息业了解的,当然对我们管理也提出了很高的要求。因为技术是服务于业务的,刚才提到的最终是希望驱动企业,使它具备智能管理和持续创新的能力,从而提高它的核心竞争力。所以对于企业的经营者来讲,也是一个挑战,就是我们的管理技能如何和信息化技术,和先进材料技术多方面融合,给企业制定一个好的战略。业务模式的改变。技术的引入也会促使我们从上游产品设计到生产制造,到供应链,一直到市场服务形成一个全闭环的流程。每一个环节都会对我们传统的运营模式和业务模式带来冲击,互联网给消费领域带来的改变每个人都感受到了,工业领域也是如此。比如说众包在产品设计阶段,现在已经被广泛的使用了,我相信将来在供应链,在市场服务的时候如何更精准,更和消费者互动,这些都会对我们已有的模式带来很大的改变,我们参与的很多项目当中都是着眼于这方面的改变。免责声明:本公众号所载文章为本公众号原创或根据网络搜集编辑整理,文章版权归原作者所有。如涉及作品内容、版权和其他问题,请与我们联系! 文章内容为作者独立观点 ,并不代表兮易强企赞同或支持其观点云计算环境下数据挖掘技术分析论文
摘要:随着经济社会不断发展与进步,科技信息技术为了适应社会发展的需求,也在不断地提高。云计算作为互联网发展中的一项新兴技术,渐渐成为了人们生活中不可或缺的一部分,并被广泛运用于军事领域、医疗领域与金融领域等。随着计算机的不断发展,基于云计算环境下的数据挖掘技术已经成为一项非常高效与实用的技术,它可以有效的解决传统数据挖掘方式不适合解决海量数据的问题。本文通过对云计算环境下的数据挖掘技术的分析与探讨,期望可以加深同行业工作者对数据挖掘技术的了解,为将来电子商务发展效率的提高,打下结实的基础。
关键词:数据挖掘,云计算,技术
随着移动互联网和物联网的迅速发展,如今的社会正处于大数据时代。数据的海量增加,对数据挖掘系统带来了极大的挑战。而云计算的出现便能有效解决这一难题,它可以使分布在不同计算机的数据集中在统一的云端,这样便有利于我们对数据的获取与挖掘。云计算中可弹性变化的计算能力和海量存储能力,更是为解决海量数据挖掘提供了有效的解决途径。
一、数据挖掘的内涵
数据挖掘是我们通过大量数据集进行分类以识别趋势和模式并建立关系的自动化过程。因为当今是一个大数据时代,我们需要从海量数据中提取和挖掘对我们有利的信息,从而来更好地为各种应用系统服务,如物联网、社交媒体等。而数据挖掘,就能从海量数据的挖掘到所需的信息,从而为你提供比没有使用这些工具的竞争对手更大的优势。
二、基于云计算环境下的数据挖掘技术分析
数据挖掘具有数据清理、数据变换、数据挖掘实施过程、模式评估与知识表示等8个步骤。这8个步骤,能帮我们更好地从海量数据中提取我们所需的有价值的信息。而在数据挖掘中,最重要的是数据收集处理与数据存储工作。第一,数据收集处理。我们在进行数据收集与处理时,可以先用决策树来判别是用户访问数据还是Web机器人访问数据。然后再将海量数据进行过滤、转换、清洗、整合,将其变成半结构化的XML文件进行保存。虽然现在流行用Map—Reduce模式来进行数据收集,但其开发工具还不够完善[1]。在今后的数据挖掘技术发展与完善的过程中,我们可以将结合分形维数和其他技术的方法作为新的发展方向。不断地强化数据收集处理功能,使其能更好地为各种应用系统服务。第二,数据的存储工作。云计算系统中的分布式存储策略,是运用最广泛的数据存储方式。它可以将同一个数据存储为多个副本,这在一定程度上保证了数据的可靠性,而且还不是冗余复制。而且系统中,还存在心跳检测、错误隔离等措施。虽然通过数据副本的存储方式能够有效的提高数据存储安全性,但是数据的计算速度和移动速度都比较慢,且实际的工作效率也并不理想。因此,我们在进行数据迁移的时候,可以利用MASTER系统来完成计算数据迁移工作。我们可以通过寻找数据副本进行抵制,既可以进行迁移又可以完成既定工作,这样不但使工作效果更加理想,而且实际工作效率也大幅度的提高。
三、云计算环境下数据挖掘技术的优势
利用云计算进行数据挖掘,具有以下的优点:第一,云计算环境下的数据挖掘可以隐蔽底层,这样使得我们的数据开发工作更加便利。用户不用考虑计算分配、计算调度任务与数据划分等问题,既能有效地提高工作效率,还便于我们操作;第二,云计算提高了大规模数据的处理能力和处理速度;第三,使得数据处理的成本降低,不再需要购买高性能的机器,从而有效提高了收益;第四,基于云计算的数据挖掘技术,可以使我们有效地从海量数据中挖掘出我们需要的信息,创造了良好的开发环境和应用环境,让挖掘任务变得更加简单。
四、云计算环境下数据挖掘技术面临的问题与挑战
目前,云计算还处于初级阶段,发展还不够成熟,也存在着一些问题与挑战,主要包括以下几个方面:第一,软件与服务的可信度不高。云计算要重视隐私安全问题,不断提升云计算的隐私安全保护能力,才能让用户放心使用云计算;第二,存在太多的不确定性。如数据挖掘的方法及结果、挖掘结果的评价和数据挖掘任务的描述等;第三,算法的'选择问题。不同的问题要用合适的算法和策略来进行数据的处理,云计算数据挖掘技术在这一方面还有待加强。大数据挖掘技术应用的过程中,验证技术的局限性也非常突出。在技术应用过程中,我们是通过特定分析方法及逻辑形式来发现知识[2]。在这一过程中,如果系统没有能力交互证实已发现的知识,就容易造成发现的知识不具有普遍实用性。而那些事待挖掘的数据自身可能就是错误的,这样便使得数据挖掘在有效性这方面受到一定的冲击。而我们从海量数据中挖掘到的信息,它们所构成的预言模型并不会告诉我们:一个人为什么会做某一件事及采取某个行动。为了保障数据挖掘结构的价值,用户就要对自身的数据进行一定的了解,这样才能提高数据挖掘输出结果的质量,才能更好地将挖掘到的数据为我们服务。综上所述,本文通过对云计算环境下的数据挖掘技术的分析与探讨,期望可以加深同行业工作者对数据挖掘技术的了解,为将来电子商务发展效率的提高,打下结实的基础。随着我国新兴产业战略地位不断提升,云计算成为了国家新兴产业发展的一项重点工程。我们需要不断探索与发展云计算数据挖掘技术,才能更好的满足用户的需求。据相关研究表明,云计算技术下的数据挖掘平台,相比于传统的数据挖掘方式,其数据挖掘效率高于20%。由此可见,基于云计算环境下的数据挖掘技术,不仅能满足用户规模扩大、应用目标多样等环境下的数据挖掘的应用需求,还能满足当前系统的设计需求,有利于提高数据挖掘的效率,具有更加实用价值。
参考文献:
[1]曾志华,李聪。云计算环境下频繁出现异常数据挖掘方法研究[J]。计算机仿真,,56(3):339—342。
[2]黄潮。云计算环境下的海量光纤通信故障数据挖掘算法研究[J]。激光杂志,,38(1):96—100。
云计算是互联网中十分热门的词汇,云计算是由美国googole公司首先提出了,最让人印象深刻的认识是:我们的电脑只要一显示器加根网线即可实现云上网,也就说主机等部分全部由云服务器提供,想象下是不是很有创意,最近不少朋友问编辑云计算是什么意思?下面编辑带大家一起来了解下吧。
什么是云计算?
云计算(cloud computing)是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
精英们如何看待云计算
那么,it精英们如何看待云计算?IBM的创立者托马斯·沃森曾表示,全世界只需要5台电脑就足够了。比尔·盖茨则在一次演讲中称,个人用户的内存只需640K足矣。李开复打了一个很形象的比喻:钱庄。最早人们只是把钱放在枕头底下,后来有了钱庄,很安全,不过兑现起来比较麻烦。现在发展到银行可以到任何一个网点取钱,甚至通过ATM,或者国外的渠道。就像用电不需要家家装备发电机,直接从电力公司购买一样。云计算就是这样一种变革——由谷歌、IBM这样的专业网络公司来搭建计算机存储、运算中心,用户通过一根网线借助浏览器就可以很方便的访问,把“云”做为资料存储以及应用服务的中心。
广义的云计算和狭义的云计算
狭义的云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务(计算机基础知识 www.pc6c.com)。
(一)云计算的原理:
云计算(Cloud Computing)是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。
云计算的基本原理是,通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。这可是一种革命性的举措,打个比方,这就好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。云计算的蓝图已经呼之欲出:在未来,只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。从这个角度而言,最终用户才是云计算的真正拥有者。
云计算的应用包含这样的一种思想,把力量联合起来,给其中的每一个成员使用。
(二)云计算有哪些好处?
1、安全,云计算提供了最可靠、最安全的数据存储中心,用户不用再担心数据丢失、病毒入侵等麻烦。
2、方便,它对用户端的设备要求最低,使用起来很方便。
3、数据共享,它可以轻松实现不同设备间的数据与应用共享。
4、无限可能,它为我们使用网络提供了几乎无限多的可能。
(三)几款主流的云计算应用
1、微软云计算
目前来看微软的云计算发展最为迅速。微软将推出的首批软件即服务产品包括Dynamics CRM Online、Exchange Online、OfficeCommunications Online以及SharePointOnline。每种产品都具有多客户共享版本,其主要服务对象是中小型企业。单客户版本的授权费用在5,000美元以上。针对普通用户,微软的在线服务还包括Windows Live、Office Live和Xbox Live等。
2、IBM云计算
IBM是最早进入中国的云计算服务提供商。中文服务方面做得比较理想,对于中国的用户应是一个不错的选择。,IBM公司发布了蓝云(BlueCloud)计划,这套产品将“通过分布式的全球化资源让企业的数据中心能像互联网一样运行”。以后IBM的云计算将可能包括它所有的业务和产品线。
3、亚马逊云计算
亚马逊作为首批进军云计算新兴市场的厂商之一,为尝试进入该领域的企业开创了良好的开端。亚马逊的云名为亚马逊网络服务(Amazon WebServices,下称AWS),目前主要由4块核心服务组成:简单存储服务(Simple StorageService,S3);弹性计算云(Elastic Compute Cloud,EC2);简单排列服务(Simple QueuingService)以及尚处于测试阶段的SimpleDB。换句话说,亚马逊现在提供的是可以通过网络访问的存储、计算机处理、信息排队和数据库管理系统接入式服务。
4、谷歌云计算
围绕因特网搜索创建了一种超动力商业模式。如今,他们又以应用托管、企业搜索以及其他更多形式向企业开放了他们的“云”。谷歌推出了谷歌应用软件引擎(Google AppEngine,下称GAE),这种服务让开发人员可以编译基于Python的应用程序,并可免费使用谷歌的基础设施来进行托管(最高存储空间达 500MB)。对于超过此上限的存储空间,谷歌按“每CPU内核每小时”10至12美分及1GB空间15至18美分的标准进行收费。谷歌还公布了提供可由企业自定义的托管企业搜索服务计划。
5、红帽云计算服务
红帽是云计算领域的后起之秀。红帽提供的是类似于亚马逊弹性云技术的纯软件云计算平台。它的云计算基础架构平台选用的是自己的操作系统和虚拟化技术,可以搭建在各种硬件工业标准服务器(HP、IBM、DELL等等)和各种存储(EMC、DELL、IBM、NetAPP等)与网络环境之中。表现为与硬件平台完全无关的特性,给客户带来灵活和可变的综合硬件价格优势。红帽的云计算平台可以实现各种功能服务器实例。
(四)云计算最有利于中小企业?
云计算技术将使得中小企业的成本大大降低。如果说“云”给大型企业的IT部门带来了实惠,那么对于中小型企业而言,它可算得上是上天的恩赐了。过去,小公司人力资源不足,IT预算吃紧,那种动辄数百万美元的IT设备所带来的生产力对它们而言真是如梦一般遥远,而如今,“云”为它们送来了大企业级的技术,并且先期成本极低,升级也很方便。这一新兴趋势的重要性毋庸置疑,不过,它还仅仅是一系列变革的起步阶段而已。云计算不但抹平了企业规模所导致的优劣差距,而且极有可能让优劣之势易主。简单地说,当今世上最强大最具革新意义的技术已不再为大型企业所独有。“云”让每个普通人都能以极低的成本接触到顶尖的IT技术。
(五)在云计算时代
目前,PC依然是我们日常工作生活中的核心工具——我们用PC处理文档、存储资料,通过电子邮件或U盘与他人分享信息。如果PC硬盘坏了,我们会因为资料丢失而束手无策。而在云计算时代,“云”会替我们做存储和计算的工作。“云”就是计算机群,每一群包括了几十万台、甚至上百万台计算机。“云”的好处还在于,其中的计算机可以随时更新,保证“云”长生不老。Google就有好几个这样的“云”,其他IT巨头,如微软、雅虎、亚马逊(Amazon)也有或正在建设这样的“云”。届时,我们只需要一台能上网的电脑,不需关心存储或计算发生在哪朵“云”上,但一旦有需要,我们可以在任何地点用任何设备,如电脑、手机等,快速地计算和找到这些资料。我们再也不用担心资料丢失。
(六)云计算的几大形式
1.SAAS(软件即服务)
这种类型的云计算通过浏览器把程序传给成千上万的用户。在用户眼中看来,这样会省去在服务器和软件授权上的开支;从供应商角度来看,这样只需要维持一个程序就够了,这样能够减少成本。Salesforce.com是迄今为止这类服务最为出名的公司。SAAS在人力资源管理程序和ERP中比较常用。 Google Apps和Zoho Office也是类似的服务
2.实用计算(Utility Computing)
这个主意很早就有了,但是知道最近才在Amazon.com、Sun、IBM和其它提供存储服务和虚拟服务器的公司中新生。这种云计算是为IT行业创造虚拟的数据中心使得其能够把内存、I/O设备、存储和计算能力集中起来成为一个虚拟的资源池来为整个网络提供服务。
3.网络服务
同SAAS关系密切,网络服务提供者们能够提供API让开发者能够开发更多基于互联网的应用,而不是提供单机程序。
4.平台即服务
另一种SAAS,这种形式的云计算把开发环境作为一种服务来提供。你可以使用中间商的设备来开发自己的程序并通过互联网和其服务器传到用户手中。
5.MSP(管理服务提供商)
最古老的云计算运用之一。这种应用更多的是面向IT行业而不是终端用户,常用于邮件病毒扫描、程序监控等等。
6.商业服务平台
SAAS和MSP的混合应用,该类云计算为用户和提供商之间的互动提供了一个平台。比如用户个人开支管理系统,能够根据用户的设置来管理其开支并协调其订购的各种服务。
7.互联网整合
将互联网上提供类似服务的公司整合起来,以便用户能够更方便的比较和选择自己的服务供应商。说了半天相信很多人还没搞清怎么回事,因为单“云计算”这三个字就已经够云里雾里的了。云计算到底有多强大,仍有待时代的检阅!
开放大数据、工业大数据与工业互联网的关系
近年来,大数据、互联网和智能制造是全球创新热点,而热点的交叉领域更是热点中的热点,工业大数据、工业互联网等概念是新一代信息技术与传统产业加速融合的产物,一系列新的生产方式、组织方式和商业模式不断涌现,我们在这里对这些概念及其交叉点做个梳理。 首先,大数据俗称21世纪“钻石矿”。事实上,大数据是新资源、新技术和新理念的混合体。从资源的角度看,互联网企业对“数据废气”(Data Exhaust)的挖掘利用大获成功,引发全世界开始重新审视“数据”的价值,开始把数据当作一种独特的战略资源对待。同时,大数据也代表了新一代数据管理与分析技术,与传统的数据库技术相比,大数据是源于互联网的'、面向多源异构数据、超大规模数据集(PB量级)、以分布式架构为主的新一代数据管理技术,与开源软件潮流叠加,在大幅提高数据处理效率的同时,成百倍的降低了数据应用成本。从理念上看,大数据体现出“数据驱动一切”、“业务链数据闭环”的理念。 其次,互联网以其开放、自治与共享的理念,与社会各个领域的结合都带动生产和社会的巨大发展和进步,而智能制造是基于物联网、大数据、云计算等新一代信息技术,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有信息深度自感知、智慧优化自决策,精准控制自执行等功能的先进制造过程、系统与模式的总称。图1 创新的热点领域 工业大数据是大数据与智能制造的交叉点,工业大数据是指在工业产品全生命周期的信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。 开放大数据是大数据与互联网的交叉点,开放大数据是指公众、公司和机构通过互联网或线下其他传播渠道可以接触到的,能用于确立新投资、寻找新的合作伙伴、发现新趋势,作出基于数据处理的决策,并能解决复杂问题的数据。开放大数据的宗旨是提供免费、公开、透明的数据信息。并能适用于我们所需要的任何领域,比如商业经营,政府运作,以及处理各项事务。数据开放可以创造巨大商业机会,带来良好的社会效益。 工业互联网是互联网与智能制造的交叉点,工业互联网是互联网和新一代信息技术与工业系统全方位深度融合所形成的产业和应用生态,是工业智能化发展的关键综合信息基础设施。其本质是以机器、原材料、控制系统、信息系统、产品以及人之间的网络互联为基础,通过工业数据的全面深度感知、实时传输交换、快速计算处理和高级建模分析,实现智能控制、运营优化和生产组织方式变革。 工业大数据、开放大数据与工业互联网的交叉点是人工智能(AI),它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,人工智能可以彻底改变人们的生活、工作、学习、发现和沟通的方式,人工智慧研究可以增加经济繁荣、改善教育机会和生活质量,以及加强国家和国土安全。图2 热点的交叉领域【摘要】云计算在带给我们方便快捷的同时也带来了网络安全问题。
在云计算环境下,提升用户的安全防范意识、加强智能防火墙建设、合理运用网络安全上的加密技术和做好对网络病毒的防控工作是我们必须思考的重要问题,我们应继续加强网络安全技术建设,不断探索具体的实施途径,解决云计算下的各种网络安全问题。
★ 云计算报告
★ 大数据时代读后感