以下文章小编为您整理的初中数学三年的知识点(共含6篇),供大家阅读。同时,但愿您也能像本文投稿人“ddlcesnini”一样,积极向本站投稿分享好文章。
一点、线、角
点的定理:过两点有且只有一条直线
点的定理:两点之间线段最短
角的定理:同角或等角的补角相等
角的定理:同角或等角的余角相等
直线定理:过一点有且只有一条直线和已知直线垂直
直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短
二几何平行
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行
两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补
三三角形内角定理
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和定理:三角形三个内角的和等于180°
四全等三角形判定
定理:全等三角形的对应边、对应角相等
边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等
角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
边边边定理(SSS):有三边对应相等的两个三角形全等
斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
五角的平分线
定理1:在角的平分线上的点到这个角的两边的距离相等
定理2:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
六等腰三角形性质
等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
七对称定理
定理:线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1:关于某条直线对称的两个图形是全等形
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
八直角三角形定理
定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
判定定理:直角三角形斜边上的中线等于斜边上的一半
勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
九多边形内角和定理
定理:四边形的内角和等于360°;四边形的外角和等于360°
多边形内角和定理:n边形的内角和等于(n-2)×180°
推论:任意多边的外角和等于360°
十平行四边形定理
平行四边形性质定理:
1.平行四边形的对角相等
2.平行四边形的对边相等
3.平行四边形的对角线互相平分
推论:夹在两条平行线间的平行线段相等
平行四边形判定定理:
1.两组对角分别相等的四边形是平行四边形
2.两组对边分别相等的四边形是平行四边形
3.对角线互相平分的四边形是平行四边形
4.一组对边平行相等的四边形是平行四边形
11矩形的定理
矩形性质定理1:矩形的四个角都是直角
矩形性质定理2:矩形的对角线相等
矩形判定定理1:有三个角是直角的四边形是矩形
矩形判定定理2:对角线相等的平行四边形是矩形
12菱形定理
菱形性质定理1:菱形的四条边都相等
菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角
菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形判定定理1:四边都相等的四边形是菱形
菱形判定定理2:对角线互相垂直的平行四边形是菱形
13正方形定理
正方形性质定理1:正方形的四个角都是直角,四条边都相等
正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
14中心对称定理
定理1:关于中心对称的两个图形是全等的
定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
15等腰梯形性质定理
等腰梯形性质定理:
1.等腰梯形在同一底上的两个角相等
2.等腰梯形的两条对角线相等
等腰梯形判定定理:
1.在同一底上的两个角相等的梯形是等腰梯形
2.对角线相等的梯形是等腰梯形
平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边
16中位线定理
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
17相似三角形定理
相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
相似三角形判定定理:
1.两角对应相等,两三角形相似(ASA)
2.两边对应成比例且夹角相等,两三角形相似(SAS)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理3:三边对应成比例,两三角形相似(SSS)
相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
性质定理:
1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
2.相似三角形周长的比等于相似比
3.相似三角形面积的比等于相似比的平方
18三角函数定理
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
19圆的定理
定理:过不共线的三个点,可以作且只可以作一个圆
定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧
推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧
推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧
推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧
定理:
1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等
2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线
3.圆的切线垂直经过切点的半径
4.三角形的三个内角平分线交于一点,这点是三角形的内心
5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
6.圆的外切四边形的两组对边的和相等
7.如果四边形两组对边的和相等,那么它必有内切圆
8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等
20比例性质定理
比例的基本性质
如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
合比性质
如果a/b=c/d,那么(a±b)/b=(c±d)/d
等比性质
如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
一、平时的数学学习:
1、课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完。
2、让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的需要选择适合自己的课外书。其课外题内容大概就是今天上的课。
4、单元测验是为了检测近期的学习情况。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。
二、期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍。如果整张试卷考得都不好,那么可以复印将试卷重做一遍。除试卷外,还可以将作业上的错题、难题、易错题重做一遍。另外,自己还可以做2-3张期末模拟卷。
三、数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空。这些条件都对你的解题有很大帮助。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功。大概留35分钟的时间检查。
(一)制定合理学习计划,及时检查落实。
1.制定符合自己的实际情况的学习计划。
2、要有明确的学习目标。通过一个阶段的学习,要达到什么水平,掌握那些知识等,这些都是在制定学习计划前应该非常明确。
3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。
4、要合理安排计划。计划不能太古板,可根据执行过程中出现的新情况及时做适当调整。
5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学习目标。
(二)做好课前预习,提高听课效率。
通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先理解感知新课的内容(如概念、定义、公式、论证方法等),为顺利听懂新课扫除障碍。
1、预习的最佳时间是晚上的8:00到9:00这一段时间,单科的预习的时间一般控制在15分钟到30分钟左右。
2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的概貌也就是大体内容。二、细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。
(三)听好每一节课,解决疑点,吸纳新知。
耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调的语气,听老师对每节课的学习要求;听知识引人及知识形成过程;听懂重点、难点剖析(尤其是预习中的疑点);听例题解法的思路和数学思想方法的体现;听好每节课的小结。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,接受老师某种动作的提示、以及所要表达的思想。
心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时,在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。
口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知识的记忆。
手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前疑点的答、记小结、记课后思考题的分析。
笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线)、圈点、作标记、使用不同颜色的笔(如红色就比较显眼)、记录的格式不同、书写的字体不同,这些都是记笔记的好方法。
(四)扎实搞好复习,减少遗忘。
当天上完课的课,必须做好当天的复习。不能只停留在一遍遍地看书或笔记,可以采取回忆式的复习:先把书,笔记合起来,回忆上课时老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写)尽量想得完整些。然后打开笔记与书本对照,看一下还有哪些没记清的,及时把它补记起来。同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
通过复习,把自己的想法,思路写成小结、列出图表、或者用提纲摘要的方法,把前后知识贯穿起来,形成一个完整的知识网。复习中遇到问题,要先想后看(问)。
做好单元复习。利用单元知识系统框架,采取回忆式复习。也要做好单元小节。本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案(如:错题本),应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
01构建完整的知识框架
1.构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高。
02初中数学中考知识重难点分析
1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。
如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2.整式、分式、二次根式的化简运算
整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。
3.应用题,中考中占总分的30%左右
包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。
现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
4.三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。
只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。因此在初中数学学习中也是一个重点。
四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。
5.圆,中考中占总分的10%左右
包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。
其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。
03各年级的常见现象
初一学不好
许多小学数学学科成绩很好的学生到了初中数学成绩会出现下滑,成绩不稳定等现象。初中数学与小学数学相比,知识的深度、广度、能力要求都有不小的提高。
对概念、法则、公式、定理知识一知半解,没有吃透课本内容。课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业、套题型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是更上一层楼!
策略:
1.狠抓基础,循序渐进。立足课本,把课本知识点吃透,辅以基础知识、基本方法的训练,先以基础题为主,培养运算能力,提升自信心。等基础知识熟悉了,再逐渐加深难度,能举一反三,形成自己的思维。能灵活运用知识点。
2.培养良好的学习习惯。及时预习书本知识,然后带着问题去听课,提高课堂效率。
总结相似的题型,收集自己的典型错题和不会做的题目。就不懂得问题,积极讨论、请教老师。自己制定每日学习计划,形成习惯。
3.提高作业质量和效率。每天作业是对当天所学内容的巩固,如果能高质量的完成当天的作业,就能把当天所学的知识点消化吸收,遗留的问题就少,进而学习效率就高。
初二成绩下滑
初中数学是一个整体。初二的难点多,初三的考点多。相对而言,初一数学知识点虽然很多,但都比较基础,中考多以基础题为主,要求不高。
初二是初中数学学习的一个拐点,坡度突然增加,知识点上的增多和难度的增加,在学习方法上学生是很容易适应的。特别是几何内容的增加,它的研究对象从“数”到“形”发生变化,方法也从“运算”到“推理”发生变化,学生的分析能力和表达能力跟不上就很难从图形中找到关系,推理论证困难学科(物理)也相应增加,学业加重,精力分散,有些学生有些力不从心,缺乏毅力的,就会慢慢掉队。
策略:
1.学会给自己明确目标,以增强学习的目的性、主动性。
2.从基础知识入手,用简单、中等的题来训练自己的解题思路,思考“凭什么”从第一步走到第二步,它们之间的关联性、逻辑性是怎样的?从而真正形成自己的做题思维。
3.坚持养成总结题型、错题、典型题的习惯,常坚持3—4周后,就能养成习惯。
4.过好几何入门关——识图、书写、推理。书写是几何入门的难点,有条理的书写时培养逻辑推理能力的保证。应根据题目的要求,步步有据,句句有理,由条件推理得到结论。对书本上的定义、性质定理、判定定理要非常熟悉。
5.进行知识归类,如将判定方法、定理归类整合,使所学知识系统化。
初三力不从心
进入初三以后,学生的学习到了一个新的阶段,为了总复习能有更多的时间,各科上课节奏开始加快,学业任务相应加重,基础不扎实的学生就会跟不上,严重时自信心会严重受挫,感觉力不从心。
平时做试卷审题不严,看题不清,能做对的题目也没拿到分。小错不断,没有养成积累错题的习惯。遇到综合性问题时,缺乏解题思路和方法。遇到难题,就自动放弃了。长时间持续下去,丧失自信心,成绩也会下降。
策略:
1.第一步要增强自己的自信心。从时间、中考试卷难度、现阶段的情况、预期目标、成功提高成绩学生案例等方面分析,增强学习动力。
2.狠抓基础,循序渐进。利用上初三前的暑假把初一、初二年级的知识漏洞通过查、学、练、测的循环模式补起来,形成完整的知识框架,在继续学习新知识时能跟上老师节奏,自然会轻松很多。
3.在学习的过程中,培养预习、带着问题上课、复习、积累、总结的习惯,从“要学”变成“会学”,最后会“自学”。不仅对现在很重要,对以后高中的学习也有很大帮助。
4.基础扎实之后,可以逐渐增加难度,做一些中等难度的题目,也不能盲目的只顾做题,要注重思维、思考问题的能力,解题的方法、技巧的训练。
5.突出重点,突破难点。认真分析按照中考考纲及近几年中考数学试卷命题的变化规律,对重点考查内容进行分类训练,对难点进行个个击破。
6.熟悉并运用常用的数学思想,如方程思想、整体思想、化归思想、函数思想、数形结合思想、分类讨论思想等。
7.中考基础题真题演练。要求达到自己理想的正确率,也可以全面考察知识漏洞情况,可以再做复习。
8.中考压轴题突破。纵观数学中考命题规律,压轴题主要出现在函数和三角形或四边形或圆部分的动态问题或分类讨论的内容。对压轴题进行分类剖析,形成解题思路和技巧。
人教版数学三年上册知识点
第一单元
时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒
半时=30分60分=1时
60秒=1分30分=半时
第二、四单元
万以内的加法和减法(一)(二)
1、的几位数和最小的几位数
的一位数是9,最小的一位数是0.
的二位数是99,最小的二位数是10
的三位数是999,最小的三位数是100
的四位数是9999,最小的四位数是1000
的五位数是99999,最小的五位数是10000
的三位数比最小的四位数小1。
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
特别注意:中间是0的退位减法,例如:309-189;1000-428等
8、
⑴加法公式:加数+另一个加数=和
加法的验算:
①交换两个加数的位置再算一遍。
另一个加数+加数=和
②和-另一个加数=加数
⑵减法公式:被减数-减数=差
减法的验算:
①差+减数=被减数
②减数+差=被减数
③被减数-差=减数
特别注意:验算时“验算”别忘了写!!!
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的长=周长÷2-宽,
正方形的边长=周长÷4
长方形的宽=周长÷2-长
学习数学的方法
数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
数学可以搞题海战术,没毛病,但问题是光做题不总结,这样即使做再多题目又有何用?
学好数学的有效方法就是善于纠错,哪里错了就及时改正,并做相关习题巩固训练。
怎么对待平时的考试
大家都知道,数学是个逻辑性极强的学科,要求有清醒的头脑,数学运算过程中的每个解题步骤都很重要,漏掉了哪个步骤都是不行的。因此,在做数学题的时候,保持一个平静的心态是很重要。这就要求我们平时要学会善于把握自己的情绪,要能及时地调整好自己的心态,戒骄戒躁,千万不能一遇到解不出来的题目就焦躁不安。焦躁是学习数学的大忌。
1.通过猜想,验证,计算得到的定理:
(1)全等三角形的判定定理:
(2)与等腰三角形的相关结论:
①等腰三角形两底角相等(等边对等角)
②等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一)
③有两个角相等的三角形是等腰三角形(等角对等边)
(3)与等边三角形相关的结论:
①有一个角是60°得等腰三角形是等边三角形
②三个角都相等的三角形是等边三角形
③三条边都相等的三角形是等边三角形
(4)与直角三角形相关的结论:
①勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方
②勾股定理逆定理:在一个三角形中两直角边的平方和等于斜边的平方,那么这个三角形一定是直角三角形
③HL定理:斜边和一条直角边对应相等的两个三角形全等
④在三角形中30°角所对的直角边等于斜边的一半
2.两条特殊线
(1)线段的垂直平分线
①线段的垂直平分线上的点到线段两边的距离相等
互为逆定理{
②到一条线段两个端点距离相等的点在这条线段的垂直平分线上
③三角形的三条垂直平分线交于一点,并且这一点到这三个顶点的距离相等
(2)角平分线
①角平分线上的点到这个角的两边距离相等
互为逆定理{
②在一个角的内部,并且到这个角的两边距离相等的的点,在这个角的角平分线上
3.命题的逆命题及真假
①在两个命题中,如果一个命题的条件与结论是另一个命题的结论与条件,我们就说这两个命题互为逆命题,其中一个是另一个的逆命题
②如果一个定理的逆命题是真命题,那么他也是一个定理,我们称这两个定理为互逆定理
③反正法:从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件,定理相矛盾,矛盾的原因是假设不成立,所以肯定了命题的结论,使命题获得了证明
第二章一元二次方程
1.一元二次方程:只含有一个未知数X的整式方程,并且可以化成aX²+bX+C=0(a≠0)形式称它为一元二次方程
aX²+bX+C=0(a≠0)→一般形式
aX²叫二次项bX叫一次项C叫常数项a叫二次项系数b叫一次项系数
2.一元二次方程解法:
(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1
(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0
若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解
若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a²-b²=0→(a+b)(a-b)=0
②运用公式法:{
完全平方公式:a²±2ab+b²=0→(a±b)²=0
③十字相乘法
例题:X²-2X-3=0
1\/111
×}X²的系数为1则可以写成{常数项系数为3则可写成{
1/\-31-3
--------
-3+1=-2交叉相乘在相加求值,值必须等于一次项系数
(X+1)(X-3)=o
1.平行四边形
定义:两组对边分别平行的四边形是平行四边形
性质定理:
(1)两组对边分别相等
(2)平行四边形对角相等
(3)对角线互相平分
判定定理:
(1)两组对边分别相等的四边形是平行四边形
(2)两组对角分别相等的四边形是平行四边形
(3)对角线互相平分的四边形是平行四边形
(4)一组对边平行且相等的四边形是平行四边形
2.等腰梯形
定义:两腰相等的梯形叫等腰梯形
性质定理:
(1)同一底上的两个角相等
(2)等腰梯形的对角线相等
判定定理:
(1)同一底上的两个角相等的梯形是等腰梯形
(2)两条对角线相等的梯形是等腰梯形
定理:夹在两条平行线中间的平行线段相等
3.三角形和梯形的中位线:
(1)三角形的中位线
定义:三角形中任意两边中点的连线,叫三角形的中位线(三角形有三条中位线)
性质定理:三角形的中位线平行且等于第三边的一半
(2)梯形的中位线
定义:梯形两腰中点的连线,叫梯形的中位线,梯形的中位线平行于上底下底
性质定理:梯形的中位线等于上,下底之和的一半
4.矩形→特殊的平行四边形
定理:一个角是直角的平行四边形是矩形
性质定理:
(1)矩形的四个角都是直角
(2)矩形的对角线相等
判定定理:
(1)三个角都是直角的四边形是矩形
(2)对角线相等的平行四边形是矩形
推论:直角三角形的斜边上的中线等于斜边的一半
逆定理:如果一个三角形中,一条边上的中线等于这条边的一半,那么这个三角形是直角三角形
5.菱形→特殊的平行四边形
定义:一组邻边相等的的平行四边形是菱形
性质定理:
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条线平分一组对角
判定定理:
(1)四条边都相等的四边形是菱形
(2)对角线互相垂直的平行四边形是菱形
面积计算:菱形的面积等于其对角线乘积的一半
6正方形→特殊的平行四边形
定义:每一个角都是直角,并且邻边相等
性质定理:
(1)正方形的四条边都相等,四个角都是直角
(2)对角线互相垂直,平分,相等,并且每一条对角线平分一组对角
判定定理:
(1)有一个角是直角的菱形是正方形
(2)一组邻边相等的矩形是正方形
(3)对角线相等的菱形是正方形
(4)对角线互相垂直的矩形是正方形
7.连接四边形各个中点得到
(1)依次连接任意四边形各边中点能得到平行四边形
(2)依次连接平行四边形各边中点能得到平行四边形
(3)依次连接菱形各边中点能得到矩形
(4)依次连接矩形各边中点能得到菱形
(5)依次连接正方形各边中点能得到正方形
第四章视图与投影
1.三视图
主视图左视图
俯视图
(1)主视图与左视图要高平齐
(2)主视图与俯视图要长对正
(3)俯视图与左视图要宽相等
2.投影
①平行投影
②中心投影
视点,视线,盲区
第五章反比例函数
k
1.定义:y=-(k≠0)
x
xy=k(k≠0)
y=kx-1(y≠0)
k
2.性质:y=-(k≠0)
x
①k>0时,图像在一,三象限,并且在每个象限内y随x增大而减小
②k<0时,图像在二,四象限,并且在每个象限内y随x增大而增大
3.会与一次函数相结合
一次函数:y=kx+b(k≠0)
性质①k>0时,y随x的增大而增大
②k<0时,y随x的增大而减小
b:在y轴上的截距
第六章频率与概率
1.理论概率
(1)只涉及一步试验概率
多次试验得到的试验频率就等于理论概率
(2)涉及两步试验
①树状图
②列表法
(3)试验做估
初中数学知识点归纳2
二次根式
1.二次根式:一般地,式子 叫做二次根式.
注意:(1)若 这个条件不成立,则 不是二次根式;
(2) 是一个重要的非负数,即; ≥0.
2.重要公式:(1) ,(2) ;
3.积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4.二次根式的乘法法则: .
5.二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小.
6.商的算术平方根: ,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
7.二次根式的除法法则:
(1) ;(2) ;
(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.
8.最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式.
10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.
12.二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.
第22章 一元二次方程
1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c; 其中a 、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.
2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.
3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:
Δ>0 <=>有两个不等的实根; Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;
4.平均增长率问题--------应用题的类型题之一 (设增长率为x):
(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.
(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和.
第23章旋转
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1) 旋转前后的两个图形是全等形;
(2) 两个对应点到旋转中心的距离相等
(3) 两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
(2)关于中心对称的两个图形是全等图形.
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
6、坐标系中的中心对称
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P′(-x,-y).
第24章 圆
1、(要求深刻理解、熟练运用)
1.垂径定理及推论:
如图:有五个元素,“知二可推三”;需记忆其中四个定理,
即“垂径定理”“中径定理” “弧径定理”“中垂定理”.
几何表达式举例:
∵ CD过圆心
∵CD⊥AB
3.“角、弦、弧、距”定理:(同圆或等圆中)
“等角对等弦”; “等弦对等角”;
“等角对等弧”; “等弧对等角”;
“等弧对等弦”;“等弦对等(优,劣)弧”;
“等弦对等弦心距”;“等弦心距对等弦”.
几何表达式举例:
(1) ∵∠AOB=∠COD
∴ AB = CD
(2) ∵ AB = CD
∴∠AOB=∠COD
(3)……………
4.圆周角定理及推论:
(1)圆周角的度数等于它所对的弧的度数的一半;
(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)
(3)“等弧对等角”“等角对等弧”;
(4)“直径对直角”“直角对直径”;(如图)
(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)
(1) (2)(3) (4)
几何表达式举例:
(1) ∵∠ACB= ∠AOB
∴ ……………
(2) ∵ AB是直径
∴ ∠ACB=90°
(3) ∵ ∠ACB=90°
∴ AB是直径
(4) ∵ CD=AD=BD
∴ ΔABC是RtΔ
5.圆内接四边形性质定理:
圆内接四边形的对角互补,
并且任何一个外角都等于它的内对角.
几何表达式举例:
∵ ABCD是圆内接四边形
∴ ∠CDE =∠ABC
∠C+∠A =180°
6.切线的判定与性质定理:
如图:有三个元素,“知二可推一”;
需记忆其中四个定理.
(1)经过半径的外端并且垂直于这条
半径的直线是圆的切线;
(2)圆的切线垂直于经过切点的半径;
几何表达式举例:
(1) ∵OC是半径
∵OC⊥AB
∴AB是切线
(2) ∵OC是半径
∵AB是切线
∴OC⊥AB
9.相交弦定理及其推论:
(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;
(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.
(1) (2)
几何表达式举例:
(1) ∵PA•PB=PC•PD
∴………
(2) ∵AB是直径
∵PC⊥AB
∴PC2=PA•PB
11.关于两圆的性质定理:
(1)相交两圆的连心线垂直平分两圆的公共弦;
(2)如果两圆相切,那么切点一定在连心线上.
(1) (2)
几何表达式举例:
(1) ∵O1,O2是圆心
∴O1O2垂直平分AB
(2) ∵⊙1 、⊙2相切
∴O1 、A、O2三点一线
12.正多边形的有关计算:
(1)中心角an ,半径RN ,边心距rn ,
边长an ,内角bn ,边数n;
(2)有关计算在RtΔAOC中进行.
公式举例:
(1) an = ;
(2)
二 定理:
1.不在一直线上的三个点确定一个圆.
2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.
三 公式:
1.有关的计算:
(1)圆的周长C=2πR;(2)弧长L= ;(3)圆的面积S=πR2.
(4)扇形面积S扇形 = ;
(5)弓形面积S弓形 =扇形面积SAOB±ΔAOB的面积.(如图)
2.圆柱与圆锥的侧面展开图:
(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)
(2)圆锥的侧面积:S圆锥侧 = =πrR. (L=2πr,R是圆锥母线长;r是底面半径)
四 常识:
1. 圆是轴对称和中心对称图形.
2. 圆心角的度数等于它所对弧的度数.
3. 三角形的外心 Û 两边中垂线的交点 Û 三角形的外接圆的圆心;
三角形的内心 Û 两内角平分线的交点 Û 三角形的内切圆的圆心.
4. 直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)
直线与圆相交 Û dr.
5. 圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)
两圆外离 Û d>R+r; 两圆外切 Û d=R+r; 两圆相交 Û R-r
两圆内切 Û d=R-r; 两圆内含 Û d
6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.
第25章 概率
1、必然事件、不可能事件、随机事件的区别
2、概率
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映.
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
初中数学知识点归纳3
圆需要大家掌握的知识体系概括起来主要包括3块内容:与圆有关的性质,与圆有关的位置关系,与圆有关的计算。上周给大家总结了与圆有关性质的考点,今天将为大家总结与圆有关的位置关系和与圆有关的计算。
一、考点分析考点一、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d
d=r点P在⊙O上;
d>r点P在⊙O外。
考点二、过三点的圆
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
考点三、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交d
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
考点四、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
初中数学知识点整理:
第一章 有理数
一、有理数的分类
(1)按正负分,分为正有理数、零、负有理数;
(2)按整数和分数分,分为整数和分数;
二、有关概念
(1)相反数:代数意义和几何意义相结合,
(2)绝对值:
(3)倒数
(4)数轴
三、有理数大小的比较
主要分为利用数轴比较和利用绝对值比较
四、有理数的运算
(1)运算法则
①加法法则
②减法法则
③乘法法则
④除法法则
⑤乘方法则
(2)运算律
① 交换律:a、加法交换律 a+b=b+a
b、乘法交换律 a×b=b×a
② 结合律:a、加法结合律 a+b+c=(a+b)+c
b、乘法结合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科学记数法的概念
六、近似数的概念
示例:
例1 某食品包装袋上标有“净含量386克 4克”,则这包食品的合格净含量范围是( )克——390克。
根据正数、负数的意义可知,这包食品的合格净含量范围是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a与-2互为相反数,那么a等于( )
A、-2 B、2 C、- D、
根据相反数的特点,即“绝对值相等,符号相反”,可知-2的相反数为2.故正确答案为B。
(2)-5的绝对值是( )
A、5 B、-5 C、D、-
有绝对值的概念可知,表示-5的点到原点的距离为5,故-5的绝对值为5。
(3)- 的倒数是( )
A、B、C、- D、-
根据倒数的定义知- 的倒数为1÷(- )=-
例3 比较大小:- 与-
这是两个负数比较大小,应先比较它们的绝对值的大小。
= = , = = 。
例4 计算:
有理数加减乘除混合运算顺序:先乘除,后加减,有括号应先算括号里的。
例5 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 575 306用科学记数法表示(精确到百万位)约为( )
A、66.6×10 B、0.666×10 C、6.66×10 D、6.66×10
665 575 306=6.655 753 06×10 ≈6.66×10 故选C
C
例6用四舍五入法,按括号里的要求对下列各数取近似值。
(1)0.069 99(精确到千分位)
(2)826 750(精确到千位)
(3)28 736(精确到千位)
精确到个位以下的数,用四舍五入或科学记数法取近似数都可以;精确到个位以上的数,应用科学记数法取近似数,对于较大的数,应该用科学记数法或表示时在后面加一个表示数位的汉字。
(1)0.069 99≈0.070
(2)826 750≈8.27×10 或表示为82.7万
(3)28 736≈2.9×10 或表示为2.9万
第二章 整式的加减
一、整式
1、单项式:有数字或字母的积组成的代数式叫做单项式。单独的一个数或一个字母也是单
项式。如: ab, m , -x
单项式的系数是指单项式中的数字因数;单项式的次数是指单项式中所有字母的指数和。
2、多项式:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。在多项式中,不含字母的项叫做常数项。多项式中次数最高的项的次数,就是这个多项式的次数。多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。
3、整式:单项式和多项式统称为整式。
二、整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。所有的常数项都是同类项。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
3、去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“—”,把括号和它前面的“—”号去掉后,原括号里各项的符号都要改变。
4、添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“—”,括号内各项的符号都要改变。
5、整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项。
※ 正式加减的一般步骤:
(1)如果有括号,那么先去括号;
(2)如果有同类项,那么先去括号;
(3)易错音难点:
a、确定单项式的系数时,应先把单项式写成数字因数与字母因数的积的形式,再确定。 b、多项式的项应包括它前面的符号,多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和。
c、判断两项是否为同类项时,不仅要看两项所含字母是否相同,还要看相同字母的指数是否相同,与所含字母的顺序无关。
d、合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变。 e、去括号时,如果括号前面是“—”,那么括号里各项都应变号;如果括号前有数字因数,那么应把数字因数乘到括号里,再去括号。
f、整式相加减时应加括号,把整式括起来,再加减。
示例
例1 判断下列代数式是不是单项式,如果不是,说明理由;如果是,指出它的系数与次数。
(1)x-4; (2) ; (3)-π ; (4)
此题可根据单项式的概念进行解答。
(1)不是,因为代数式出现了减法运算;
(2)不是,因为代数式是4与x的商;
(3)是,它的系数是—π,次数是2;
(4)是,它的系数是-π,次数是4.
例2 若单项式 与 的和仍是单项式,则m与n的值分别是( )
A、2,4 B、4,2 C、1,1 D、1,3
这两个单项式的和仍是单项式,也就是说这两个单项式是同类项,可得m、n的两个方程,解这两个方程即可求得m与n的值。2n-3=5,2m+4=8,解得n=4,m=2.
例3 计算:
(1)2x-(3x-5y)+(7y-x);
(1)由于括号前面的系数分别是-1和1,可以直接利用去括号法则去掉括号;
(2)去括号通常是按照从里到外,即先去掉小括号,再去掉中括号,最后去掉大括号的顺序进行,但对于此题来说,视小括号为一个“整体”由外向里,先去中括号,这样,小括号前面的“-”号变成“+”号,这样处理较为简便。
初中数学考试技巧
概念题检查要点概念题分填空、选择、判断三种题型。对于概念要知道、理解、应用。在平时经历知识的形成过程的基础上,记住是什么,并应用这些概念去填空、选择、判断。填空、选择时最好在草稿纸上写出思考的过程,需要计算的地方要反复计算。判断题你认为是对的要写出理论的根据是什么,如果你认为它是错的举上一个反例来说明它错就可以了。
如下面的两道判断题:
⑴小数都比0大,比1小( ).
⑵自然数不是奇数就是偶数( )。
可写分析如下:
⑴是错的,举一个反例来说明它错。1.1是小数,它比1大.
⑵题是对的,要说出理论的根据.自然数中除了能被2整除的数,就是不能被2整除的数。能被2整除的数是偶数,不能被2整除的数是奇数。所以,自然数不是奇数就是偶数。
选择题可以用排除法、代入计算法,选择时要把所有选项看完后,再做下一题,注意多选的情况,检查时要把所选的答案可以代入题中计算或者判断是否正确
02 计算题的答题检查技巧计算题,分直接写得数,简算,脱式计算和列式计算四种题型。总体来说计算题要做到四认真,即:认真抄题、认真做题、认真列竖式、认真检验。简算题的基础是运算定律和性质。
如:计算2.6×37+63×2.6时,
可考虑如下:
这个题是两边乘中间加,并且有相同的数字2.6,所以可以采用乘法的分配律,两边乘中间加,相同的数字往外拉,使计算简便.
即:2.6×37+63×2.6= 2.6×(37+63)= 2.6×100 =2.6。
检查时要重新反复计算3到5遍,先查数字和符号是否抄对了没有,再查运算顺序、最后查计算是否正确。
03应用题的答题检查技巧做应用题可以采用分析法分析,用综合法列式解答。考试做题时要采取先易后难的原则,先做自己比较熟悉有把握的题目,再做中等难度的题目,在遇到题目难度较大的题目时,如长时间思考不出,可以转换别的方法去进行思考,实在想不出来可以先放一放,也许在你思考别的题目的时候产生灵感。
检查时要学会将所求问题当成已知条件,通过计算看是否能推算出题中的一个条件。
解答和检查图形题时要特别注意单位名称是否统一,是否需要换算。同样应用题检查也要反复多检查题中数字是否抄写正确?计算是否正确?
04操作题的答题检查技巧操作题可能是让你画一个图形,或者量出图形的部分长度,做一些求面积或周长的计算,也可能让你做一个设计等,这些题目一般都是对我们的教材的原型作一些整合,不会太难,所以对这类题目一定要在认真分析,审清题意的基础上再下手去做。
注意:画图先用铅笔,确定没有问题后再用中性笔描画。(带齐画图工具:圆规、直尺、三角板)
★ 初中数学知识点
★ 初中数学圆知识点