以下是小编整理了高速切削的工业应用(共含6篇),希望你喜欢,也可以帮助到您,欢迎分享!同时,但愿您也能像本文投稿人“阿尔斯托特斯”一样,积极向本站投稿分享好文章。
高速切削的工业应用
1 引言近年来高速加工及其装备得到了迅猛的发展,表现在机床高速化的趋势日益突出.
作 者:李长河 丁玉成 侯亚丽 作者单位:李长河(西安交通大学机械制造系统工程国家重点实验室)丁玉成,侯亚丽(青岛理工大学机械工程学院)
刊 名:汽车工艺与材料 英文刊名:AUTOMOBILE TECHNOLOGY & MATERIAL 年,卷(期): “”(4) 分类号:U4 关键词:高速切削技术,是以比常规高10倍左右对零件进行切削加工的一项先进制造技术,实践证明,当切削速度提高10 倍,进给速度提高20倍,远远超越传统的切削“禁区”后,切削机理发生了根本的变化。其结果是:单位功率的金属切除率提高了30%-40%,切削力降低了 30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,切削振动几乎消失;切削加工发生了本质性的飞跃。在常规切削加工中备受困惑的一系列问题亦得到了解决,真可谓是集高效、优质、低耗于一身的先进制造技术,是切削加工新的里程碑。
1 高速切削将成为切削加工的新工艺
以高速切削为代表的硬切削、干切削等新型切削工艺已经显示出很多的优点和强大的生命力,这是制造技术为提高加工效率和质量、降低成本、缩短开发周期对切削加工提出的要求。因此,发展高速切削等新型切削工艺,促进制造技术的发展是现代切削技术发展最显著的特点。当代的高速切削不只是切削速度的提高,而是需要在制造技术全面进步和进一步创新上(包括数控机床、刀具材料、涂层、刀具结构等技术的重大进步),达到切削速度和进给速度的成倍提高,并带动传统切削工艺的变革和创新,使制造业整体切削加工效率有显著的提高。硬切削是高速切削技术的一个应用领域,即用单刃或多刃刀具加工淬硬零件,它与传统的磨削加工相比,具有效率高、柔性好、工艺简单、投资少等优点,已在一些应用领域产生较好的效果。在汽车行业,用高速切削技术加工20CrMo5淬硬齿轮 (60RHC)内孔,代替磨削,已成为国内外汽车行业推广的新工艺。在模具行业用高速切削技术高速精铣淬硬钢模具,采取小的走刀步距,中间不接刀,完成型面的精加工,大大减少了抛光的工作量,显著缩短了模具的开发周期,已成为模具制造业的一项新工艺。在机床行业用CBN旋风铣精加工滚珠丝杠代替螺纹磨削, 用硬质合金滚刀加工淬硬齿轮等都显现出很强的生命力。
高速切削派生的另一项新工艺是干切削。切削加工中的切削液对环境的污染、对操作者健康的伤害,成为当前治理的重点,但是对切削液所造成危害的治理增加了制造的成本,导致干切削新技术的开发,并出现了微量润滑切削、冷风切削等准干切削新工艺。当前倡导的干切削并不是简单地把原有工艺中的切削液去掉,降低切削效率,而是进行传统切削工艺的重大变革,为新世纪提供一种清洁、安全、高效的新工艺,这是对切削技术包括刀具材料、涂层、结构的全面挑战。而节省刀具材料的贵重金属资源消耗,开发刀具重磨、回收等新技术也成为切削加工对人类文明和社会进步应尽的责任。
2 加快关键技术的开发应用
2.1 涂层成为提高刀具性能的关键技术
刀具的涂层技术在现代切削加工和刀具的发展中起着十分重要的作用,自从问世以来发展非常迅速,尤其是近几年取得了重大的进展。化学涂层(CVD)仍然是可转位刀片的主要涂层工艺,开发了中温CVD、厚膜三氧化二铝、过渡层等新工艺,在基体材料改善的基础上,使CVD涂层的耐磨性和韧性都得到提高;CVD金刚石涂层也取得了进展,提高了涂层表面光洁度,进入了实用的阶段。目前,国外硬质合金可转位刀片的涂层比例已达70%以上。在此期间,物理涂层(PVD)的进展尤为引人注目,在炉子结构、工艺过程、自动控制等方面都取得了重大进展,不仅开发了适应高速切削、干切削、硬切削的耐热性更好的涂层, 如超级TiAlN,及综合性能更好的TiAlCN 通用涂层和DLC、W/C减摩涂层,而且通过对涂层结构的创新,开发了纳米、多层结构,大幅度提高了涂层硬度和韧性。
PVD涂层技术的新进展,向我们展示了涂层技术对提高刀具性能的巨大潜力和独特的优势:可以通过对涂层工艺参数控制和靶材、反应气体的调整不断开发出新的涂层,以满足加工多样性的需要,是提高和改善刀具性能一项又快又好的技术,有着十分广阔的应用前景。
2.2 刀具结构的创新改变了传统标准刀具千篇 一律的面貌和单一的功能
随着制造业的高速发展,汽车工业、航空航天工业以及模具行业等重点产业部门对切削加工不断提出更高的要求,推动着可转位刀具持续的发展。为汽车工业流水线开发的专用的成套的刀具,突破了传统按需供刀、“闭门造刀”的做法,而成为革新加工工艺、提高加工效率、节省投资的重要工艺因素,发挥新的作用。
为满足航空航天工业高效加工大型铝合金构件的需要,开发了结构新颖的铝合金高速加工面铣刀等刀具。
模具工业的特点是高效、单件、小批生产、模具材料的硬度高加工难度大、形状复杂、金属切除量大、交货周期短,成为推动可转位刀具结构创新的强大动力, 如多功能面铣刀、各种球头铣刀、模块式立铣刀系统、插铣刀、大进给铣刀等等。回顾上世纪90年代以来切削加工的发展,模具工业还是今天高速切削、硬切削、干切削新工艺的发源地。
与此同时,也出现了各种可转位刀片的新结构,如形状复杂的带前角的铣刀刀片、球头立铣刀刀片、防甩飞的高速铣刀刀片等等,
2.3 快速发展的配套技术
切削加工的配套技术是随着切削加工技术的进步而逐渐发展起来的,是现代切削技术不可缺少的组成部分,并与切削技术和刀具保持着快速同步的发展,包括刀柄与机床主轴之间的连接方式、刀具在刀柄里的夹紧方式、刀具系统平衡及刀具管理。
双面接触的空心短锥刀柄(HSK)机床-刀具接口,由于可实现法兰端面和锥柄的同时接触,具有连接刚性好、定位精度高、且装卸时间短等优点,随着高速切削技术的推广,得到了越来越广泛的应用。这种刀柄的结构形式现已成为正式的国际标准,并且也已被众多的机床工具厂商所接受,纷纷推出带HSK主轴接口的高速加工中心和带HSK刀柄的工具系统或整体刀具,显示出这种新型刀柄的强大生命力和很好的使用前景。与此同时,一些公司还开发了与HSK类似的刀柄结构,如Sandvik公司的Capto刀柄,Kennametal公司的KM刀柄。近年来,还出现了双面接触甚至三处接触的7:24接口,以适应现有机床用于高速切削加工的需要。
在高速切削时,刀具的转速在10000~0r/min以上甚至更高,此时,刀体、刀片、及刀片的夹紧零件受到很大离心力的作用,当转速达到某一临界值时,足以使刀片甩出,或者夹紧螺钉断裂、甚至整个刀体破裂。一旦出现这些情况会造成设备或人身伤害事故,因此是应用高速切削技术必须加以防范的事情。为此,德国制定了高速旋转刀具的安全规范,对刀具的设计、检测、使用、平衡质量都作了严格的规定,这项规范已先后成为欧洲标准和国际标准。
3 机床技术
3.1 驱动和传动技术
高速切削机床的直线进给有:电机伺服系统和直线电机驱动系统两种。电机伺服直线进给系统通常由变频调速电机、机械传动环节、滚动导轨滑台和位置调节测量装置组成。它的几何定位精度可以达到5―1 0μm,运动的均匀性误差小于1μm,进给速度Vfj≥40―50m/min,(j=x、y、z),加速能力αj≥5―10m/s2,其他性能指标还有动态轨迹精度,机械传动件的动力学特性和热特性。
直线电机驱动的系统由原始级部件、滑台和位置测量装置构成,也是零传动。它的Vfj≥120 m/min,αj≥25m/s2,动态轨迹精度也高得多。
目前,高速切削机床的主轴多以高频变频调速电机直接驱动,即所谓“零传动”,并且朝着高转速、大功率、大扭矩的方向发展。例如:一种高频电主轴的最高转速n=24000r/min,最大功率p=23KW,最大扭矩M≥79nm。其关键零、部件是控制系统和传感器、电机、轴承。需要解决的技术关键问题有转子转速显示,通过监控电机温度和耗用电流来保护主轴、变频器、冷却剂的流动控制和循环冷却、刀具夹紧系统的动作控制、轴承震动的测量与监控、用阀调节润滑剂压力来调节预紧轴承、主轴密封等等。
3.2 控制和数控技术
高速切削机床部件运动速度高,在单位时间内CNC系统需要处理计算的数据大大增加,要求相应提高处理计算的速度和容量。通过采用功能强大的硬件配置, 如:奔腾芯片、64MB内存(或更高)、1―10G硬盘等,并应用数字化驱动调节和数字化总线技术,高速CNC执行程序块的速度以降低到0.5ms。通过配备空间螺旋线、抛物线、和样条插补功能,速度预控制功能,数字化自动平滑运动轨迹功能,加速和制动时的急动速度监控功能,使它的插补计算精度和容量也获得大幅度提高。此外,CNC通常具备刀具补偿、误差补偿、安全性监控等功能,并安装有高效的CNC专用模拟软件。
4 我国高速切削技术的发展现状和采取措施
我国高速切削技术目前处于起步阶段。就多数企业单位而言,由于缺乏全面认识了解和经验,或者因为资金有限,引进的高技术装备不配套,主要是没有适用的高速刀具和设备,其次缺少CAD/CAM软硬件系统。而且由于缺少优化的工艺技术数据作为参考,进口设备多数没有发挥潜力,经济效益不佳。
当前我国有科研机构和单位应该对与高速切削相关的技术进行研究,对高速切削的机理进行科学的分析和实验,夯实理论基础,做好基础理论的预研工作。国外工具公司面对我国制造业快速发展的大好形势和广阔前景,加快了在中国实现本地化生产或服务的步伐,以降低制造成本、提高服务能力、缩短交货周期,应该说, 外国刀具公司进军中国市场为我们应用先进刀具改造传统制造业提供了十分有利的条件。我们要抓住这个有利时机,积极采用先进刀具,为提高企业的加工技术和竞争实力服务,迎接经济全球化的挑战。先进的切削技术和刀具是我国发展汽车工业、航空航天工业、能源工业和配套的模具工业必备的前提条件。在这样的大好机遇面前,我们要充分利用先进的切削技术和刀具,为发展我国的制造业服务。
【摘 要】数控高速切削加工以高效率和高精度为基本特征,它在切削机理上是对传统切削的重大突破,是近20多年来迅速崛起的先进制造技术之一。
文章介绍了“数控高速切削加工”的内涵、优势、应用现状和发展趋向,提出了在实现高速切削加工中应关注的主要问题。
【关键词】高速;加工机理;优势;推广价值
1.前言
高速切削加工是集高效、优质、低耗于一身的先进制造技术,在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用能够得到解决。
“高速切削”的概念是由德国物理学家Carl.J.Salomon提出,于1931年4月提出了著名的切削速度与切削温度理论。
该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。
随后,高速切削技术的发展经历了4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削推广阶段(20世纪90年代至今)。
对高速切削加工的界定有以下几种划分思路:一是以主轴转速作为界定高速切削加工的尺度,认为主轴转速在10000-20000r/min以上即为高速切削加工;二是以主轴直径D和主轴转速n的乘积Dn来界定,当Dn值达到(5~2000)×105mm.r/min,则认为是高速切削加工,新近开发的加工中心主轴DN值大都已超过100万;三是以切削速度高低来区分,认为切削速度跨越常规切削速度5至10倍即为高速切削加工。
2.数控高速切削加工的优势
随着切削速度的提高,单位时间毛坯材料的去除率增加,加工效率提高,从而缩短了产品的制造周期,提高了产品的市场竞争力。
同时,高速切削加工的“量小速快”使切削力减少,切屑的高速排除,减少了工件的切削力和热应力变形,十分有利于刚性差和薄壁零件的加工。
高速切削加工中,主轴转速的提高使切削系统的工作频率远离了机床的低阶固有频率,提高了切削系统的刚性,进而使产品表面质量获得提高。
数控高速切削加工和常规切削相比的主要优势可归纳为:第一,生产效率可提高3~10倍。
第二,切削力可降低30%以上。
第三,切削热95%被切屑及时带走,特别适合加工容易热变形的零件。
第四,机床的激振频率远离工艺系统的固有频率,工作平稳,适合加工精密零件。
第五,经济效益明显。
3.数控高速切削加工的应用
数控高速切削工艺的应用,能使制造成本降低20%左右,产生新的经济增长点。
以某锻造厂加工曲轴和连杆锻模为例,传统的加工工序为:外形粗加工→仿形铣粗加工型槽→热处理→外形精加工→数控电火花粗、精加工型槽→钳工打磨抛光型槽→表面强化处理。
而采用高速切削加工后的工序为:外形粗加工→热处理→外形精加工→高速铣加工型槽→表面强化处理。
通过高速铣削加工直接完成淬硬钢模具,使生产成本从传统工艺的27000多元降到22000元。
高速切削加工具备过程平稳、振动小的特点,与常规切削相比,可提高加工精度1~2级,并能取消后续的光整加工。
同时,采用数控高速切削加工工艺,可以在一台机床上实现对复杂整体结构件的粗、精加工,减少了转工序中多次装夹带来的定位误差,也有利于提高工件的加工精度。
如某企业加工的铝质模具,模具型腔长达1500mm,要求尺寸精度误差±0.05mm,表面粗糙度Ra0.8μm。
原先的制造工艺为:粗刨→半精刨→精刨→铲刮→抛光,制造周期为60小时。
采用高速切削加工工艺后,改为半精加工和精加工,加工周期仅需6小时,加工效率提高近10倍。
可见,高速切削加工在制造业中有着广阔的应用前景。
4.数控高速切削加工的关键环节
高速切削加工不仅包含着切削过程的高速,还包含了工艺过程的集成和优化,可谓是加工工艺的统一。
高速切削加工是在数控装置、机床结构及材料、机床设计、制造工艺、高速主轴系统、快速进给系统、高性能CNC系统、高性能刀夹系统、高性能刀具材料及刀具设计制造工艺、高效高精度测量测试工艺、高速切削工艺等诸多技术均获得充分成熟之后综合而形成,可谓是一个复杂的系统工程。
高速切削加工应用中还存在着一些有待解决的问题,如对高硬度材料的切削机理、刀具在载荷变化过程中的破损内因的研究,高速切削数据库的建立,适用于高速切削加工状态的监控技术和绿色制造技术的开发等。
数控高速切削加工所用的CNC机床、刀具和CAD/CAM软件等,价格昂贵,初期投资较大,在一定程度上也制约着高速切削技术的推广应用。
实现数控高速切削加工的关键环节如下:
4.1高速切削机理的研究
高速切削加工过程是导致工件表面层产生高应变速率的高速切削变形和刀具与工件之间的高速切削摩擦行为形成的为热、力耦合不均匀强应力场的制造工艺。
与传统的`切削加工相比,加工中工件材料的力学性能、切屑形成、切削力学、切削温度和已加工表面形成等都有其不同的特征和规律。
各类材料在高速加工前提下,切屑的形成机理,切削力、切削热的转变规律,刀具磨损规律及对加工概况质量的影响规律,都有了极大的变化。
通过对以上理论的研究,有利于促进高速切削工艺规范的确定和切削用量的选择,为具体零件和材料的加工工艺拟定能够提供理论依据。
4.2高速切削机床的配备
高速切削机床是实现高速切削加工的必备条件,高速主轴系统、快速进给系统和高速CNC控制系统是关键。
它要求具备高性能的主轴单元和冷却系统、高刚性的机床结构、安全装置和监控系统以及优良的静动力特性,具有技术含量高、机床制造难度大等特点。
通常,选用高速数控车床、加工中心,也有釆用专用的高速铣、钻床,它们都具有高速主轴系统和高速进给系统。
一般主轴转速在10000r/min以上,有的甚至高达60000-100000r/min,且要保证动态和热态机能。
也可釆用高速丝杆或直线电机,提高机床进给系统的快速响应。
目前,直线电机最高加速度可达2-10G(G为重力加速度),最大进给速度可达60-200m/min或更高。
4.3高速切削工艺的刀具
随着切削速度的大幅度提高,刀具材料和刀具制造工艺都要能适应新的环境。
刀具系统必需具有较高的几何精度和装夹再定位精度,以及较高的装夹刚度。
高速切削刀具除了满足静平衡外还必需满足动平衡要求,尽可能减轻刀体质量,以减轻高速扭转时所受到的离心力。
高速切削中常用的刀具材料有单涂层或多涂层硬质合金、陶瓷、立方氮化硼(CBN)、聚晶金刚石等,高速切削刀具刀刃的外形正向着高刚性、复合化、多刃化和超精加工方向发展。
4.4数控编程系统要求
高速切削有着比传统切削更特殊的工艺要求,除了要具备高速切削机床和高速切削刀具外,还要有合适的CAM编程软件。
高速加工的CAM编程系统应具有很高的计算速度、较强的插补功能、全程自动过切检查及处理能力、自动刀柄与夹具干涉检查、进给率优化处理功能、待加工轨迹监控功能、刀具轨迹编辑优化功能和加工残余分析功能等特点。
高速切削应用程序首先要注意加工的安全性和有效性;其次,要保证刀具轨迹光滑平稳,这会直接影响加工质量和机床主轴等零件的寿命;第三,要尽量使刀具载荷均匀,这会直接影响刀具的寿命。
通常,使用的CNC软件中的编程功能都不能满足在整个切削过程中保证切削载荷不变的要求,需要由人工加以填补和优化,这在一定程序上降低了高速切削的价值。
因此,必需研究一种全新的编程方式,使切削数据适合高速主轴的功率特征,充分发挥数控高速切削加工的优势。
目前,引进的CAM软件,如Cimatron、Mastercam、UG、Pro/E等,都在逐步增添适合于高速切削的编程模块,为高速切削加工的应用提供了良好的条件。
5.结束语
由于数控高速切削加工在提高生产效益、降低制造成本中潜力巨大,美国、日本等国早在上世纪60年代初,就起动了超高速切削机理的研究。
对于高速切削的讨论在一定程度上仍是混乱的,如何定义高速切削(HSM),目前有许多观点和许多方法。
让我们看一下这些定义中的几个:
? 高切削速度切削
? 高主轴速度切削
? 高进给切削
? 高速和高进给切削
? 高生产率切削
我们对高速切削的定义描述如下:
? HSM不是简单意义上的高切削速度,
它应当被认为是用特定方法和生产设备进行加工的工艺。
? 高速切削无需高转速主轴切削。许多高速切削应用是以中等转速主轴并采用大尺寸刀具进行的。
? 如果在高切削速度和高进给条件下对淬硬钢进行精加工,切削参数可为常规的4到6倍。
? 在小尺寸零件的粗加工到半精加工、精加工及任何尺寸零件的超精加工中,HSM意味着高生产率切削。
? 零件形状变得越来越复杂,高速切削也就显得越来越重要。
? 现在,高速切削主要应用于锥度40的机床上。
各种材料的高速切削技术
高速切削不同材料时,其所用的切削工具、工艺方法以及切削参数均有很大不同,而且和在普通切削速度加工时的情况也有很大不同,掌握正确的高速切削工艺方法,是高速切削应用技术中的一个重要环节,
高速切削铝合金技术
铝材料零件的高速加工,在20世纪80年代就已经在工业中广泛应用,经过适当冷处理的铝合金材料,强度可高达540Mpa,它的相对密度很轻,是飞机和各种航天器零部件的主要材料,也是机器和仪表零部件的常用金属。近年来铝合金在汽车和其它动力机械中的应用也逐渐增多。加工轻合金的优势主要在:切削力和切削功率小,大约比切削钢件小70%;切削短、不卷曲,因而在高速加工中易于实现大量切屑的排屑自动化,刀具磨损小,用硬质合金、多晶金刚石等刀具在很高的转速下切削铝合金材料,可以达到很高的刀具寿命;加工表面质量高,仅采用少量的切削液、在近乎干切的情况下不用再经过任何加工或手工研磨,零件即可得到很高的表面质量;可采用很高的切削速度进行加工,切削速度可高达1000-0/min,高速加工95%以上切削热被切屑迅速带走,工件可保持室温状态,热变形小,保证了加工的高精度。如瑞士米克朗的高速铣HSM400在北京国际机床展上加工的一个薄壁铝件,厚度为0。1mm,高度为25mm,进刀速度高达20000/min,而且保证了良好的尺寸精度和几何精度。
高速铣削钢技术
近年来,高速加工开始用于钢的精加工,特别是加工形状复杂的零件,高速切削可以大大提高生产率,高速铣削钢和铝合金有所不同,主要问题是刀具的磨损,优化切削参数的目的不仅仅为了提高金属切除率,而且更注重于降低切削力,提高工件表面质量、尺寸精度和形状精度以及减少刀具磨损。
钢材的高速铣削技术
高速铣削钢材时,刀具要用更锋利切削刃和较大的后角,这样可以减少切削时的刀具磨损提高刀具的使用寿命,刀具参数也应当随着进给速度的变化而变化。当进给速度增加时,刀具的后角要减小;进给速度对刀具的前角的影响相对比较小。按照常规的切削规律,刀具的正前角能够减小切削力,并减小月牙洼磨损。但在高速下,正前角并不比零度前角更多地降低切削力,负前角虽然能使刀具片有更高的切削稳定性,但是增大了刀具切削力和月牙洼磨损。在高速铣削时,轴向进给量对刀具磨损的影响比较小,而径向进给量的影响则较大。刀具寿命随切削面的增加而降低。轴向进给切削和径向进给切削二者之间是相互关联的。在以径向进给进行时,常常会因为高速产生的高温超过刀具材料的红硬性而造成刀具失效。在径向进给比较慢时,刀具的非接触区时间比接触区时间长,短时间的发热可以由比较长时间地冷却来弥补。因此,从整体上来看,径向进给速度应稍慢一些,建议进给量只值等于刀具直径的5%-10%。
高速切削难加工材料技术
一般来讲,合金材料包括特殊合金钢、钛、镍合金,
这些材料由于强度大、硬度高、耐冲击,大多用于航空、航天制造和动力部门,但加工中这些材料容易硬化,切削温度高,刀具磨损严重,属于难加工材料。
在加工这些材料的过程中,导致刀片失效的典型形式刀具后面磨损,最大的磨损区是刀尖部位,另外是刀具和工件之间的通道处,由于切削条件差,磨损的痕迹会在这些地方产生,因而形成严重的刀口毛刺,刀刃的磨损改变了刀具的几何参数,增大了切削力,尤其是切削高强度合金的情况时,容易使刀片碎裂。实验证明逆铣要比顺铣的效果好,加大刀具前角明显减小切削力,刀具前角γ的变化范围是在8°~28°之间。在上述前角范围内,加工钛合金、特殊合金和镍基高温合金材料时刀具寿命都能提高,当刀具前角为负时,刀具的切削稳定性提高,但刀具寿命降低。切削过程和刀具寿命也受刀具后角α的影响增加刀具后角可提高刀具寿命,但当后角20°时,刀具寿命开始下降。
高速切削硬质材料技术
淬硬钢材料包括普通淬火钢、淬火态模具钢、轴承钢、轧锟钢及高速钢等,是典型的耐磨结构材料,广泛用于制造各种对硬度和耐磨性要求高的零件。淬硬钢材料的特点是经淬火或低温去应力后具有比较高的硬度(55~68HRC),很难用传统的切削方法加工,通常采用磨削进行精加工,但磨削效率低下,成本高。高速硬切削为淬硬钢材料加工提供了更好的解决途径。提高了效率、少了污染、减少设备投资,适应柔性生产。淬硬钢材料的伸长率小、塑性低、易于形成高光洁度表面,有利于以切代磨。但其硬度高,切削性能差。从切削过程可以看出加工淬硬钢材料切削力增大、切削热增加,为了获得必要的加工精度和表面光洁度及刀具寿命,必须精心选择切削刀具和几何参数,优化切削工艺参数。比如选用材料CBN、PCBN、性能好的陶瓷、超细晶粒硬质合金及涂层硬质合金刀具。尽量选择较大圆鼻刀具、刀具的前角为负的较好。(α≤-5°)
高速切削对刀的要求
高速切削主轴面向高速,同时高扭矩主轴的发展对刀柄提出高的要求,而普遍采用的普通ISO或BT刀柄已经无法满足使用要求。在这方面,必须考虑以下因素:最小的动不平衡量、最小的径向偏差、高钢性、高精度、传递高扭矩、换刀时的高重复精度、高转速下的安全性。原则上,这些要求必须通过主轴和刀柄之间的连接方式来满足。不过这两个接口都已经有了新的连接方式,最大限度地满足了规定的要求。如瑞士的Schaublin公司生产的HSK-A和HSK-E型刀柄。对于不经常更换刃具通过热冷缩装配刀柄是最佳选择,因为该方式提供出色的刀具同心度(低于0.003mm)并且可以传递非常高的扭矩,装夹的精度和钢性都很高。弹簧夹套在高速铣也有比较严格的要求,弹簧夹套主要有多种,普通弹簧夹套(能够在一个夹头上夹持多种直径的刀具,称ER)和标称尺寸的夹套(称D型)对于高速铣削技术,不建议使用普通弹簧夹套,因为加工受夹套配合精度影响。而选择D型弹簧夹套这种夹套钢性比较好,它是靠锥面和端面同时定位。夹套锥度小,从而可以优化刀具长度。
1、高速切削因其加工质量好、生产效率高等优点得到广泛应用。
2、本文从机床、刀具、工件、工艺等方面讨论了高速切削的技术开发情况。
3、阐述了影响陶瓷刀具高速切削可靠性的因素,为在机械加工行业中推广应用陶瓷刀具作初步的探讨。
4、高速切削技术越来越引起人们的关注。
5、高速切削技术已经成为最有前途的先进制造技术之一,其应用领域正在持续扩展。
6、您可以通过调整主轴高速切削。
7、研究表明高速切削时刀具的磨损形式以氧化磨损和扩散磨损为主。
8、展望高速切削有限元模拟分析的发展方向。
9、应用田口法对高速切削中切削参数最优化进行了分析。
10、论文介绍了高速切削技术,以及高速切削技术要求的高速切削刀具,特别说明的是高速切削铣刀;
11、本文论述了高速切削与普通切削的'区别,探讨了高速切削的机理、应用方向及需要研究的问题。
12、高速切削较之常规切削是一种创新的加工工艺和加工理念。
13、电机表面高速切削,铝合金光亮,无油漆;
14、利用软件的后置处理功能得到了NC代码,并使用高速加工技术完成了模具的高速切削加工。
15、在综合分析高速切削加工技术的基础上,提出了高速切削工艺数据库系统的设计思想;
16、高速切削加工表面的残余应力的存在,对零件的各种机械性能尤其是疲劳寿命有着显著的影响,它也是产生变形和开裂等工艺缺陷的重要原因。
17、提出了一种行之有效的高速切削加工过程材料本构建模方法。
18、高速干切削技术作为一种新型的绿色制造技术,不仅能避免切削液对环境的污染,而且能大幅度降低产品的生产成本。
19、切削加工的绿色化是制造业可持续性发展的重要方向,高速干切削是一种新型的绿色制造方式。
20、应用高速数控切削加工实例,论述了模具高速数控加工中的问题与基本策略。
21、介绍了最近几年国外工业发达国家对高速及超高速切削加工技术的发展与应用。
22、修复高速工具钢,如切削冲孔和刨工具,高温冲压工具和模具,剪切刀板轧钢和切削工具下模的切削刃口。
23、通过利用回归正交设计和单因素试验设计方案,进行了PCD刀具高速铣削钛合金TA15的切削力试验。
24、通过高速铣削钛合金TC4的切削试验,讨论了切削参数、刀具材料等对刀具磨损的影响。
25、在高速铣削试验的基础上,研究切削速度与进给量对加工表面粗糙度的影响。
26、结果船舶螺旋桨损伤是高速旋转螺旋桨的巨大劈力和机械切削所造成的损伤;
27、该模型的建立对进一步分析高速干式滚齿过程中的特征参数、进行切削机理的研究具有重要意义。
28、对高速铣削典型铝合金框架结构工件时的切削力和加工表面质量进行了试验研究。
29、高速铣削时,进给量和进给间隔不仅是影响加工表面粗糙度的重要几何因素,同时也是影响切削效率的重要因素。
30、简要介绍了铝合金加工用油的特性,讨论了铝合金高速切削油和半合成型铝合金切削液的特点及其研制过程。
★ 工业工程其应用
★ 切削钻机租赁合同
★ 高速介绍信
★ 工业承诺书
★ 高速开通心得