高中物理的万有引力定律公式

| 收藏本文 下载本文 作者:寄情夢語

下面就是小编给大家带来的高中物理的万有引力定律公式(共含9篇),希望能帮助到大家!同时,但愿您也能像本文投稿人“寄情夢語”一样,积极向本站投稿分享好文章。

高中物理的万有引力定律公式

篇1:高中物理的万有引力定律公式

万有引力定律公式

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

万有引力定律知识点

(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小跟它们的质量的乘积成正比,跟它们的距离的平方成反比。

(2)适用条件:

①严格地说,万有引力定律只适用于质点间的相互作用;

②两个质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r是两个球体球心间的距离;

③一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离;

④两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r为两物体质心间的距离。

(3)注意:

公式中F是两物体间的引力,F与两物体质量乘积成正比,与两物体间的距离的平方成反比,不要理解成F与两物体质量成正比,与距离成反比。

(4)对万有引力定律的理解:

①万有引力的普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物质之间的基本的相互作用之一,任何客观存在的两部分有质量的物质之间都存在着这种相互作用。

②万有引力的相互性:两个物体相互作用的引力是一对作用力和反作用力。它们大小相等,方向相反,分别作用在两个物体上。

③万有引力的客观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的作用才有宏观物理意义。

④万有引力的特殊性:两个物体间的万有引力,只与它们本身的质量有关,与它们之间的距离有关,和所在空间的性质无关,和周围有无其他物体的存在无关。

篇2:万有引力定律公式推导

万有引力的科学意义

万有引力定律的发现,是17世纪自然科学最伟大的成果之一。它把地面上物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的发展具有深远的影响。它第一次解释了(自然界中四种相互作用之一)一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。

万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。利用万有引力公式,开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的'原因和地轴复杂的运动,也成功的做了说明。推翻了古代人类认为的神之引力。

对文化发展有重大意义:使人们建立了有能力理解天地间的各种事物的信心,解放了人们的思想,在科学文化的发展史上起了积极的推动作用。

篇3:高中物理万有引力定律教案

分析 引导学生了解万有引力定律发现的艰难历程,让学生比较强烈的体会科学思维和方法的重要性是本节课的重要教学任务。因此为了达到预期的教学目标,教师应在教学中充分的引导学生,积极调动学生的主观能动性。以神奇宇宙现象及科学史实为基础,激发学生的兴趣,同时采用科学是清净探究法,主要以问题为中心去充分的引导学生的思维,成功的完成本节课的教学任务。

学生学习心里

分析 高中生正处于从初中物理的定性分析到高中物理的定量讨论;从初中的形象思维到高中的抽象思维;从初中简单的逻辑思维到高中复杂的分析推理的转变过程中。从心理学的角度分析他们的一般能力已经具备,具有一定的观察力、记忆力、抽象概括力、想象力。但其创造能力还比较欠缺,对于利用已有知识创造出新的概念、理论的能力很弱,因此教师应尽可能的提供具有创造能力的活动,不断鼓舞学生的信心,让学生能够在兴趣与积极性中学习知识。 教

目标

知识与技能:

了解万有引力定律的发现过程

通过万有引力规律的推广,建立万有引力定律,写出数学表达式。

过程与方法:

采用科学史情景探究法,通过合作学习,锻炼自主、探究、合作学习的能力。

假设和推理

情感态度与价值观:

对人类认识万有引力定律过程做出自己的评价,体验物理学的研究思想和方法 教学重点 牛顿发现万有引力的思路,培养学生的创造能力。 教学难点 牛顿以开普勒对行星运动学规律的描述为基础证明万有引力定律的思路 教学方法 科学史情景探究法、讨论法 教学手段 多媒体辅助教学 教 学 过 程 教学环节 教师活动 学生活动 设计意图 情景回放

播放视频(美丽星空)。 导入 师:在上课之前,我先带领大家进入一个神奇的、梦幻般的地方。(视频)

1.看着这样美丽的地方,同学们感觉如何?是不是产生了无限的遐想,有一种身临其境想亲自去探索期中奥秘的冲动?

2.正是有了这千千万万个不同的行星运动,才构成了这神奇的宇宙,才出现了这种.种神奇的现象。那么大家想一想,这么多的行星,他们在偌大的宇宙间运动,是各行其是、杂乱无章嘛?

生:(观看视频,用心去感受)。

行星虽然多,但他们的运动都是有一定规律的,均有自己的运动轨道。

创设情境,激发兴趣

“兴趣是最好的老师”,学生有了兴趣就有了主动探究的重要基础,所以激发探究的兴趣是教学成功的关键。

新课引入

师:对,通过上节课的学习,我们知道不是的。

1.上一节课我们跨越了千年时空对宇宙进行了一个三级跳,让我们通过时间的轴线共同回忆一下天体究竟做怎样的运动的研究之路:

地心说(托勒密)与日心说(哥白尼)

行星运动的规律(开普勒)

开普勒第一定律(椭圆轨道定律)

开普勒第二定律(面积定律)

开普勒第三定律(周期定律)

2.开普勒的行星运动定律揭示了行星的运动规律,对行星如何绕太阳运动进行了一个确切的描述。所以我们说宇宙虽大,行星虽多,但他们始终是沿着一定的轨道绕太阳做有规律的运动(展示行星运动图片)

3.那么老师又要问了,行星为什么会如此运动?是什么原因促使他们这样运动呢?

开普勒虽然知道行星的椭圆轨道,但由于行星速度的大小、方向不断变化,他当时还是无法解决这种变化的曲线运动问题,即当时无法逾越的困难之一——数学工具的缺乏。

今天就让我们来研究这一问题的解决之路,进入新课教学——万有引力定律是怎样发现

回顾上一节课所学知识,概括总结前人探究自然,追求科学真理的过程。

认真思考教师所提出的问题,用一种探究真理的思想继续学习。

生:发散思维,积极主动充分表达自己的观点

了解科学家当时遇到的困难,知道科学的发现之路的艰辛

复习回顾,温故知新

我从上一问题对旧知识进行了一个具体的回顾,对讲解本节课做一铺垫,让学生脑海里有一个系统的知识体系。

通过疑问的方式调动学生的积极性,让他们带着问题上路,走进新课。

讲授新课

1.发散思维,积极讨论

师:1.面对行星运动这张图片,同学们有什么看法或是想法呢?

2.同学们说的都很好,那么,大家再想想这个力是什么性质的力,这个力跟哪些因素有关呢?

其实这个问题在当时也引起了不同时代不同科学家的不同猜想,同学们想不想知道他们当时是怎么想的?

2.科学猜想

那就让我们继续在时间的轴线上前行,将我们大家的想法与他们做一比较:

类比——分析——猜想:

吉尔伯特---行星是依靠太阳发出的磁力维持着绕日运动的。

笛卡尔---漩涡带动行星的运动

分析——直觉——猜想:

布里奥---行星受太阳发出的力支配,力的大小跟行星与太阳距离的平方成反比

胡克--- 行星运动是太阳吸引力的缘故,并且力的大小遇到太阳距离的平方成反比

3.虽然他们当时的猜想各异而且一步步有一定的进展,但最终还是没有将此问题解释清楚。那是为什么呢?主要是当时还存在其他的一些困难.

天体是一个庞然大物,如果认为天体间有引力,那么如何计算由天体各部分对行星产生的力的总效果呢?

当时存在一定的理论依据的缺乏——困难之二

如果天体间是互相吸引的,那么在众多天体共存的太阳系中,如何解决他们之间相互干扰这一复杂问题呢?——困难之三

那么,给出问题答案的又会是谁呢?

3.创设情境,继续设置问题

师:同学们,首先我让大家欣赏这样两幅图片(讲述苹果落的传奇故事),看看你们有什么想法:

如果你是牛顿,你会想到什么呢?

同学们说的都非常好,我把大家的想法总结了一下,那接下来让我们对这些问题共同做一探讨:

1.苹果为什么会落地呢?

老师为大家准备了两样东西,大家以四人小组玩一玩,看看能发现什么。

大家一起再来看一看,这就是引力——能把东西拉过来的一种力。想一想苹果落到地面上是不是和回形针吸到磁铁身上差不多啊,这就说明是由于地球本身的一种力(演示地心引力课件)

2.那如果苹果树长到月球那么高,苹果还会落到地球上吗?

3.苹果既然由于地球的吸引而落到地面上,那月球为什么就不会落到地面上呢?

4.月球为什么绕地球做圆周运动?

同学们真的非常聪明,简直各个都是牛顿了,你们将牛顿当时的发现全说出来了。现在我们知道月球绕地球运动是由于地球引力为它提供了向心力,再去回想刚开始提出的问题是什么原因促使行星绕太阳运动?

篇4:高中物理万有引力定律教案

教材分析

万有引力定律的核心地位:万有引力定律是本章的核心,是17世纪自然科学最伟大的成果之一,它为研究天体运动提供了理论依据,彻底使人们对宇宙的探索从被动描述走向主动发现。

万有引力定律承上启下的作用:上承圆周运动,下启卫星的运动。掌握好本节课,对前面知识的加深理解,后面问题的顺利解决,将会起到重要的作用。

[教学目标]

(一)知识目标

1.介绍牛顿发现万有引力定律的思考过程,体会研究物理问题的方法,渗透科学的发现方法。

2.掌握万有引力定律的内容,认识万有引力定律的普遍性。

3.介绍万有引力恒量的测定方法,增加学生对万有引力定律的感性认识。

(二)能力目标:会应用万有引力定律解决一般的相关问题。

(三)情感目标

1、本节课重在逻辑思维和渗透物理学的研究方法,因此本节课的教学中应该在学习品质方面对学生

进行教育。让学生感受到万有引力定律的发现是经历了几代科学家不断努力的结果。

3、通过中国飞天第一人杨利伟、神舟六号的资料,激发学生的爱国热情,增强学生建设祖国的神圣

使命感。

[重点难点]

1.万有引力定律的发现过程、应用,是本节课的重点。

2.由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。

[重点难点突破]

通过具体事例、例题、习题、多媒体手段加强了重点教学;通过及时复习,突破了难点教学;而且通过探究性活动,使学生对重难点知识的同化过程..在时间和空间上得以延续。

[教学过程]

引入新课:

课前4分钟开始播放课件中杨利伟的图片、神州六号发射的全过程。创设一个物理情景、进入状态、激发学生的学习欲望。

(二)教学过程

(提问学生,共同回答)。刚才看到的一些图片上的人物是谁呢?(中国飞天第一人杨利伟)。那么第二段视频记录下的又是什么事件呢?(神州六号发射全过程)。近几年来,我国的航天事业取得了非常大的成就,全国人民欢欣鼓舞,这与我们这一章万有引力定律联系是很密切的,也是近几年来各种大小考试的考试热点和重点。

(展示前辈科学家的人物图片)万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造而又严谨的科学思维。那么就让我们以现有的知识基础处身于历史的背景下,踏着牛顿的足迹,经历一次发现万有引力定律的过程吧!

一.复习:

人类认识事物总是有一个过程和规律的,第一节中主要介绍了前辈科学家们通过观测得到的行星绕太阳运动的规律――开普勒行星运动定律。分别是几何定律、面积定律、周期定律。进而人们开始进一步的了解其本质原因,牛顿利用他数学方面的才能推理演绎得到了太阳与行星间的引力公式满足: EMBED Equation.DSMT4 。这样就可以很好的解释行星绕太阳运动的原因了。

二.牛顿的思考:

介绍牛顿苹果树下的思考,吸引学生进入当时的历史情景。引导从苹果落地联想到月球绕地球运动,思考太阳与行星间、地球与月球间、地球与苹果间是不是同一种力?并且如何验证这个猜想?进入月地检验,留给学生自己计算。

然后引导总结,通过月地检验,牛顿的猜想是正确的。然后进一步推广到宇宙中任何物体之间都存在这样的一种引力,即万有引力定律。

三.更进一步推广――万有引力定律:

(1)定律表述:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比.方向在它们连线上。

(2)公式表示:

(介绍表达式中的各个物理量及其单位)

(3)引力常量G适用于任何两个物体;它在数值上等于两个质量都是1kg的物体相距1m时的相互作用力.

这么一个猜想推广而来的结论是正确的吗?

海王星 冥王星

介绍有力证据:海王星和冥王星的发现,有力的证明了万有引力的正确性。牛顿在44岁时,也就是1687年把他在二十多岁时形成的这一理论发表在了传世之作《自然哲学的数学原理》之中,也希望同学们在二十多岁时也有牛顿这样的发现。

回顾牛顿万有引力定律得到的历程,从观察获得规律→猜想原因→数学演绎得到规律→进一步的猜想→猜想得到验证→更大胆的猜想→得到万有引力定律。

进行情感价值观教育:物理学中许多重大理论的发现,不是简单实验结果的总结,它需要直觉和想象力、大胆的猜想和假设,再引人合理的模型,深刻的洞察力、严谨的数学处理和逻辑思维,是一个充满艰辛和曲折的过程。

知道前辈科学家得到万有引力定律的艰辛,我们更应该去认真的学习掌握好万有引力定律,来看这样一个问题:

练习一:

要使两物体间的万有引力减小到原来的1/4,下列方法不可采用的是:(D)

A.使两物体的质量各减小一半,距离不变

B.使其中一个物体的质量减小到原来的1/4,距离不变

C.使两物体间的距离增为原来的2倍,质量不变

D.使两物体间的距离和质量都减为原来的1/4

(本练习重在万有引力定律的定性应用。)

那么如果我们想知道万有引力的具体数值,可以计算出来吗?不行,G未知,怎么测G?公式变形得G的表达式,只要知道两个物体的质量、距离、万有引力即可。但万有引力多大?能测出来吗?举个例子,两位50kg同学相距一米时万有引力多大?测一测。能感觉到吗?可见这个G应该是一个很小大的数值。牛顿当年也曾经设计了好多种方案,很遗憾,最终都失败了。直到一百多年以后,英国的物理学家卡文迪许利用了一个十分巧妙的扭秤装置才比较准确的测得G的数值

四.万有引力常量G的测定

介绍装置,播放动画,动态演示。

篇5:高中物理万有引力定律教案

【概述】

本节选自人教版高中物理必修二第六章第三节。

本节课所需课时为1课时,45分钟。

万有引力定律是本章的核心,是17世纪自然科学最伟大的成果之一,它为研究天体运动提供了理论依据,彻底使人们对宇宙的探索从被动描述走向主动发现。万有引力定律承上启下的作用:上承圆周运动,下启卫星的运动.掌握好本节课,对前面知识的加深理解,后面问题的顺利解决,将会起到重要的作用。

【教学目标分析】

知识目标:

1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解。

2、使学生了解并掌握万有引力定律。

3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力)。

能力目标:

1、使学生能应用万有引力定律解决实际问题。

2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题。

情感目标:

1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的。让学生在应用万有引力定律的过程中应多观察、多思考。2、通过神舟五号的资料,激发学生的爱国热情,增强学生建设祖国的神圣使命感。

【学生特征分析】

高中的学生已经有一定的天文学与物理学的基础,具备一定的思维能力。对物理知识具有因果关系的认识兴趣;对物理知识具有概括性的认识兴趣。他们喜欢活跃的课堂形式,热忠于讨论、归纳、分析、争辩等思维活动,兴趣广泛,求知欲强,探究和讨论的风气较浓厚。但他们易于用生活观念代替物理概念,学习物理的思维障碍表现为凝固性、片面性和干扰性障碍。为了克服学生的思维障碍,教学中多让学生接触真实、具体的物理情境,提高从真实、具体的物理情境中获得信息的辩识能力,让学生暴露出错误观念并加以纠正。

【教学策略选择与设计】:

1. 重点:万有引力定律的推导,应用难点:万有引力定律的推导。本节的重点是。万有引力定律的推导和应用。因为它既是前面圆周运动知识的发展,又是后面卫星运动知识的基础。本节的难点是:万有引力定律的推导。因为它综合了开普勒第三定律,圆周运动知识,牛顿第三定律,涉及知识点多;而且一般物体间的引力极小,学生对此缺乏感性认识,又无法进行演示实验。我们通过具体事例,例题,习题,多媒体手段加强了重点教学;通过及时复习,突破了难点教学;而且我们通过探究性活动,使学生对重难点知识的同化过程,,在时间和空间上得以延续。

2.教学中渗透科学思想和方法教育,还注重能力的培养。由各种日常的生活现象和一些天文知识引入万有引力定律,体现了学习物理知识的新理念:生活---物理---生活。如:从月球围绕地球旋转的例子中,猜测出影响月球环绕时间,速度的因素,最后又用影响这些因素来解释学生熟悉的生活现象。但要从现象中得出结论,还需通过实验来认识。教学中着重引导学生设计实验,从中观察并分析得出结论,培养了学生自主思维的能力。本节课也体现了学习物理知识的认知过程—由简单到复杂、由形象思维到抽象思维的过程。物理课堂教学除了传授知识,培养能力外,还应注重知识的形成过程,提高学生的科学素养,初步认识科学及其相关技术对于社会发展、自然环境及人类生活的影响。如:利用“神州系列飞船”的图片,在教学中渗透了天文与万有引力息息相关的的观念,使学生有能在个人力所能及的范围内对社会的可持续发展有所贡献的意识。

3.采用“情境—活动”课堂教学模式。 把教学活动的重点放在指导学生主动获取知识上。利用学生生活经验创设的情境,引导学生参与积极思维、主动探索、动手实验等一系列活动来获得新知。同时应用媒体画面展现生活实例来培养学生应用物理知识解释生活现象的能力,从而突破教学难点。这样既增长知识,又培养能力,也激发学生学习物理的浓厚兴趣。在结尾部分采用抢答活动,不仅将课堂气氛推向高潮,还可达到良好的教学效果。

【教学资源和工具】 本节课是在学生人手一机的多媒体网络教室实施的。

教版高中物理必修二。

专门为本课设计、制作的网络资源课件。

网络留言板。

【教学过程环节】:

(一)创设情境,引入万有引力定律:

展示伽俐略在比萨斜塔上,做自由落体实验的图片,激发学生的兴趣,学生看完后依次提出下面6个问题:1,2问,比较简单,为后面的问题作准备,3,4,问由于1,2问作铺垫,学生也能答出。通过设计这四个问题,逐步把学生的思路导向“引力的作用“这一实质.然后安排“行星运动的各种动力学解释“,让学生认识到历史上得出这一结论经历了漫长的过程:球为什么向下运动,不向上运动—重力是竖直向下的。球为什么受重力—地球引力的作用。月球为什么绕地球太阳作圆周运动—地球引力的作用地球为什么绕太阳作圆周运动—太阳引力的作用。

(二)问题提出:

1.地球绕太阳的运动简化为匀速圆周运动遵循什么规律

2.它们的内容是什么

3.向心力公式中不包含周期怎么办

4.怎样才能用开普勒第三定律

5.力的作用是相互的,结合牛顿第三定律,还能进一步得出什么结论

6.怎样改写成等式

7.这个结论能不能推广

这样,我们通过7个问题,环环紧扣,层层推进,步步引发学生思考;同时向学生指出牛顿是在椭圆轨道上证明的,我们进行了简化;由于条件所限,直到1后卡文迪才测出引力恒量的值。通过强调了公式中每个字母的涵义,定律的理解,及它的适用条件,加深了学生对定律的认知程度。

(二)理解万有引力:

(1)普遍性

(2)相互性

(3)宏观性

(三)意义

指出在万有引力定律的指引下,人们先后发现了海王星,冥王星,计算出了各种天体的质量和密度,人们一步步向宇宙迈进,在神州飞船图片的基础上我们提出了第一个问题:

例1 “神舟“五号飞船从发射到回收历时约21h,绕地球飞行14圈,飞船在运行期间,按照地面指挥控制中心的指令成功地实施了数十个动作,包括从椭圆轨道变换到圆轨道等。假若把飞船从发射到着陆的整个过程中的运动都看作圆周运动处理,试粗略估计飞船离地面的平均高度h。(已知地球半径R=6.37×106m,地球表面处的重力加速度g=9.8m/s2)

天体运动是历来高考的重点,安排本题是为了强调解决天体运动问题的思路。学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,那么为什么没有吸引到一起 为了解决这个问题,安排了例题2

例2,两物体质量都是1kg,相距1m,它们间的万有引力是多少

通过本题,让学生认识到一般物体间的引力极小,不用考虑.那么,质量很大的天体为什么没被吸引到一块 从而引出下节课题.

为进一步巩固万有引力定律,按排了下面的练习

八,练习:已知地球质量大约是 ,地球半径为 km,地球表面的重力加速度 .求:地球表面一质量为10kg物体受到的万有引力 和重力

篇6:高中物理万有引力定律教案设计

【教材分析】

本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法.?

这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。作为高中阶段无法证明椭圆轨道的情况而只能近似以圆轨道来处理的一种“近似”的物理思路.这是一种极好的研究物理的方法.?

本节内容包括:发现万有引力的思路及过程、万有引力定律的推导.?

【三维目标】

一、知识与技能

1.了解万有引力定律得出的思路和过程.?

2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵.?

3.知道任何物体间都存在着万有引力,且遵循相同的规律.?

二、过程与方法?

1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法.?

2.培养学生的科学推理能力.?

三、情感态度与价值观?

通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性.?

【教学重点】

1.万有引力定律的推导.?

2.万有引力定律的内容及表达公式.?

【教学难点】

1.对万有引力定律的理解.?

2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来.?

【教学方法】

1.对万有引力定律的推理——采用分析推理、归纳总结的方法.?

2.对疑难问题的处理——采用讲授法、例证法.?

【教学用具】

多媒体课件

【课时安排】

1课时

【教学设计】

[故事导入]

1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一棵树下开始埋头读书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,落在23岁的伊萨克.牛顿的身边,恰巧那天他正苦苦思索一个问题:是什么力量使月球保持在环绕地球运行的轨道上?以及使行星保持在其环绕太阳运行的轨道上?为什么这只苹果会坠落到地上?正是从这一问题开始,他找到了这些问题的答案.

师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用?

【新课教学】?

课件展示:画面1:八大行星围绕太阳运动

画面2:月球围绕地球运动

画面3:人造卫星围绕地球运动

演示4:地面上的人向上抛出物体,物体总落回地面

学生思考、讨论下面问题:

1、行星为何能围绕太阳做近似圆周运动?

2、月球为什么能围绕地球做近似圆周运动?

3、人造卫星什么能围绕地球做圆周运动?

4、地面上的物体受到的力与上述力相同吗?

5、根据以上四个问题的探究,你有何猜想?

师引导分析,猜想:“天上”的力与“人间”的力应属于同种性质的力.

师说明:探究上述问题时我们运用了类比的方法得出猜想,猜想是否正确需要检验,因此不能将其作为结论.

月-地检验

1、目的:验证“天上”的力与“人间”的力是同种性质的力.

2、原理:课本P39师指导学生看书。

3、验证:师生互动,教师指导学生推演:

根据验证原理,若“天上”与“人间”的力是同种性质的力,应满足:F∝ EMBED Equation.DSMT4

理论推导:月球受到的地球引力:F∝ EMBED Equation.DSMT4

又 EMBED Equation.DSMT4

由 EMBED Equation.DSMT4

实际测量:月球绕地球做匀速圆周运动,向心加速度 EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

二、万有引力定律

我们的思想还可以更解放,是否任意两个物体之间都具有“与两个物体的质量成正比,与它们之间的距离的二次方成反比”的吸引力呢?科学家们经过大量的检验,事实确实是这样的。牛顿在前人的基础上,总结了这个规律,我们称为万有引力定律。

篇7:高中物理万有引力定律教案设计

【教材依据】

人教版高中物理必修二第六章第三节

【教材分析】

1、万有引力定律这一节承上启下,承接上章匀速圆周运动,开启之后要学习的卫星的运动规律。

2、万有引力定律这一节是本章的核心,这节内容是对上两节课教学内容的进一步推演,也是下节课教学内容的基础,是本章的教学重点。

3、教材在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础,经历一次“发现”万有引力定律的过程。

【学情分析】

1.高一学生已经学习了牛顿的三个定律、圆周运动的知识、开普勒三定律,已经积累了一定的知识。理论上已经具备了接受万有引力定律的能力。

2. 在上一节中,学生经历了太阳与行星间引力的探究过程,学生对天体运动的研究产生了极大的兴趣和求知欲。

3.另一方面我国在航天事业上成就突出,捷报频传,极大的激发了学生学习有关宇宙、航天、卫星知识的兴趣。

【教学目标】

一、知识与技能

1、了解万有引力定律得出的思路和过程,知道重物下落和天体运动的统一性。

? 2、理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。

? 3、知道万有引力定律公式的适用范围。

? 4、理解万有引力常量的意义及测定方法,了解卡文迪许实验室。

二、过程与方法

? 1、在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。

2、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。

三、情感态度与价值观

1、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。

2、经过万有引力常量测定的学习,让学生体会科学的方法论和物理常量数量级的重要性。

【教学重点】

? 1、月-地检验的推导过程。

? 2、万有引力定律的内容及表达式。

【教学难点】

? 1、对万有引力定律的理解。

? 2、使学生能把地面上的物体所受重力与月地之间存在的引力是同性质的力联系起来。

【教学设计思想】

在本节课教学,将让学生继续进行“发现之旅”---追寻牛顿的足迹,为此整个教学流程如下:由苹果落地引起猜想---月地检验---更大胆的猜想---万有引力定律---卡文迪许测定G。

? 通过这个假想──理论推导──实验检验过程,让学生在物理情景中主动的参与知识的构建过程,体会这种充满着大胆的设想、巧妙的验证和从中体现着的科学探索的精神与方法。

【教学过程】

一 、新课引入

教师活动 学生活动 通过上一节的学习,我们已经知道了太阳与行星间的引力规律,提问:表达式是怎样的?

这一节我们将继续追寻牛顿的足迹“发现”万有引力定律。

(教师板书课题:6.3 万有引力定律)

提问:提到万有引力定律,同学们首先想到什么?

展示课件中的牛顿苹果树的图片,讲述中国也有牛顿苹果树的事实。 学生回答

想到牛顿与苹果的故事 ? 设计说明:讲述学生不知道的事实---中国也有牛顿苹果树,引起学生的兴趣,激发学生的学习热情。

二、教授新课

(一)进一步猜想

教师活动 学生活动 展示课件中牛顿与苹果的故事图片,“回味”牛顿的思考及牛顿的猜想:

思考:(1)地球和月球之间的吸引力会不

与地球吸引苹果的力是同一种力?

思考:(2)即使在最高的建筑物上和最高的山顶上,重力都不会有明显的减弱.那么地球表面的重力能否延伸到很远的地方,会不会作用到月球上?

思考:(3)拉住月球使它绕地球运动的力,与拉着苹果使它下落的力,以及众行星与太阳之间的作用力也许真的是同一种力,遵循相同的规律?

牛顿的猜想:这些力是同一种性质的力,并且都遵从与距离的平方成反比的规律.

观察图片,与牛顿”一起”猜想:

(1)地球和月球之间的吸引力使月球没有做离心运动,地球吸引苹果的力使苹果落地,它们可能是同一种力。

(2)高山上也有苹果树,苹果熟了也会下落。地球表面的重力会延伸至很远,也会作用的月球上。

(3)猜想是同一种力,都遵从相同规律

设计说明:通过苹果自由下落的物理情景,唤醒学生脑中当年由苹果落地而引起遐想进而发现万有引力定律的故事情景,从而启发学生设问,使牛顿的想法能够激发学生的兴趣与想像力。

(二)月-地检验

教师活动 学生活动 (板书:一、月地检验)

课件展示情景:月球绕地球做匀速圆周运动(月球轨道半径r为地球半径R的60倍)

假定上述猜想成立,月球和苹果的地位相当,则地球对月球的力与地球对苹果的力应该同样遵从“平方反比”律,即 。

提问:(1)月球做什么运动?符合什么规律?

(2)物体在地面附近受到的地球的吸引力表达式是怎样的?

(3)月球的加速度(月球公转的向心加速度)是重力加速度g的几分之一?

课件展示:

在牛顿时代,重力加速度g,月地的距离r、月球的公转周期T都能精确的测定,已知

月球周期:T = 27.3天≈2.36×106s

月球轨道半径:r ≈ 60R

地球半径: R = 6400×103m

提问:(4)以上数据能计算出月球的向心加速度吗?

可见:用数据说明上述设想的正确性,牛顿的猜想经受了事实的检验,地球对月球的力,地球对地面物体的力真是同一种力。至此,平方反比律已经扩展到太阳与行星之间,地球与月球之间、地球对地面物体之间。 (通过创设情景中数据,让学生进行定量计算)

学生回答:

由牛顿第二定律得:

用上一章知识计算出数据:(借助计算器会更快)

亲身体验推导过程,猜想得到证实,学生的学习热情进一步提升。

设计说明:通过创设情景,引导学生定量计算,用无可辩驳的事实证明猜想的正确性,增强学生的理性认识。

(三)万有引力定律

教师活动 学生活动 猜想的到了证实,那么我们可以展开想象的翅膀,更大胆设想:是否任何两个物体之间都存在这样的力?只是因为我们身边的物体质量比天体的质量小得多,我们不易觉察罢了,于是我们可以把这一规律推广到自然界中任意两个物体间即万有引力定律.

提出问题,阅读教材:

1.什么是万有引力?并举出实例。

2.万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?并注明每个符号的单位和物理意义。?

3.万有引力定律的适用条件是什么?

同时体会万有引力定律的内容,理解万有引力定律普遍性、相互性、宏观性:

A、普遍性:万有引力存在于任何两个物体之间,只不过一般物体的质量与星球相比太小了,他们之间的万有引力也非常小,完全可以忽略不计。

B、相互性:两个物体相互作用的引力是一对作用力与反作用力。

C、宏观性:通常情况下,万有引力非常小,只有在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义.在微观世界中,粒子的质量都非常小,粒子间的万有引力很不显著,万有引力可以忽略不计.

讲解过程中适时板书:

二、万有引力定律

1.内容:

2.表达式:

适用条件:质点

3.理解:①普遍性

②相互性

③宏观性

(提出问题,引导学生根据问题阅读教材,教师引导总结)

1.万有引力是普遍存在于宇宙中任何有质量的物体之间的相互吸引力。日对地、地对月、地对地面上物体的引力都是其实例。

2.万有引力定律的内容是:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比.

式中各物理量的含义及单位:

篇8:高中物理万有引力定律教案设计

【教材分析】

本节内容选自沪科版高中物理必修二第五章第三节,在本节课之前,已经介绍了开普勒定律和万有引力定律的内容,本节主要应用万有引力定律求天体的质量和密度,是一节知识的应用和实践课。

【学习者分析】

在本节课之前已经接触了万有引力提供行星绕太阳运动的向心力,也掌握了向心力的不同表达式,并且在初中阶段学习了球体的体积公式和物质的密度公式,这些知识为学生本节课的学习奠定了良好的基础。另外经过快一年的高中学习,学生在抽象思维能力方面已经有了很大提升,能够在脑海里建构物理模型并进行分析推导,这也是学生学习本节课的必要条件。

同时,虽然本节课用到的知识学生已经基本都有所接触,但是将不同板块的知识进行综合应用的能力还欠佳,因此可以预判学生在分析推导过程中会遇到一定的阻碍,另一方面,学生形成了一定的计算习惯,不注意区分物理字母所代表的具体含义,往往容易将字母搞混,要解决这两点问题,就需要发挥小组讨论的力量,通过小组讨论将组内个别不能完成推导计算的同学掌握逻辑思路和求解过程。所以本节课将主要以学生自学、组内合作讨论、学生展示、教师点评、课堂练习巩固等环节组成。

【教学目标】

1. 知识与技能

? 了解万有引力定律在天文学上的重要应用

? 会用万有引力定律计算天体的质量

2. 过程与方法

? 理解万有引力定律处理天体问题的思路、方法

? 了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理天体问题的思路方法

3. 情感、态度和价值观目标

? 通过测量天体的质量、密度,体会科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用

【教学重点】

运用万有引力定律计算天体的质量

【教学难点】

在具体的天体运动中应用万有引力定律解决问题

【教学方法】

1.教法:讲授法、多媒体演示

(1)对重点难点内容,通过教师精讲使学生掌握

篇9:高中物理公式

振动和波

曲线运动、万有引力

冲量与动量

常见的力、力的合成与分解

功和能

气体的性质

分子动理论、能量守恒定律

电场

恒定电流

磁场

什么是通路短路断路

什么是电阻的并联

知识拓展

高中物理知识点总结

质点的运动------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)

4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs

4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

返回目录>>>

质点的运动----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

返回目录>>>

力(常见的力、力的合成与分解)

1)常见的力

1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

4动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

返回目录>>>

振动和波(机械振动与机械振动的传播)

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5.机械波、横波、纵波〔见第二册P2〕

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

返回目录>>>

冲量与动量(物体的受力与动量的变化)

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

返回目录>>>

功和能(功是能量转化的量度)

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;

(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

返回目录>>>

分子动理论、能量守恒定律

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

返回目录>>>

气体的性质

1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

返回目录>>>

电场

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

返回目录>>>

恒定电流

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成 (2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:

电压表示数:U=UR+UA

电流表外接法:

电流表示数:I=IR+IV

Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

选用电路条件Rx>>RA [或Rx>(RARV)1/2]

选用电路条件Rx<

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小

便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp

注:

(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

返回目录>>>

磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

13电磁感应1.[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H=103mH=106μH;

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

14交变电流(正弦式交变电流)1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损?=(P/U)2R;(P损?:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

返回目录>>>

什么是通路短路断路?

能构成电流的流通,能形成闭合回路的路(也就是电流能从电源正极流出,再从负极流进)称之为通路;其中有一部分电路断开,该条电路上没有了电流就叫断路;如果电流经过的支路中没用电阻(没有用电器)或者将电源两极直接用导线连接起来而形成的闭合回路,称之为短路。

知识拓展1.通路状态通路就是电路中的开关闭合,负载中有电流流过。在这种状态下,电源端电压与负载电流的关系可以用电源外特性确定,根据负载的大小,又分为满载、轻载、过载三种情况。

负载在额定功率下的工作状态叫额定工作状态或满载;低于额定功率的工作状态叫轻载;高于额定功率的工作状态叫过载。由于过载很容晚烧坏电器,所以一般情况都不允许出现过载。2.短路状态如果外电路被阻值近似为零的导体接通,这时电源就处于短路状态,在这种状态下,电路中的电流(短路电流)I≈E/R。我们知道,电源的内阻一般都是很小的,因而短路电流可能达到非常大的数值,这将电源有烧毁的危险,必须严格防止,避免发生。3.断路状态断路就是电源两端开电路某处断开,电路中没有电流通过,电源不向负载输送电能。对于电源来说,这种状态叫空载。断路状态的主要特点是:电路中的电流为零。电源端电压和电动势相等。

返回目录>>>

什么是电阻的并联?

将几个电阻的两端分别连在一起,以使各个电阻均承受同一个电压,这种连接方法叫电阻的并联,另外由单纯的并联电阻或用电器(用电器:如,电视机,空调,电脑等)构成的电路称为并联电路。

知识拓展

1、折叠并联电阻的计算公式

电流计算

I总=I1+L2+......+In

即总电流等于通过各个电阻的电流之和

电压计算

U总=U1=U2=……=Un

并联电路各支路两端的电压相等,且等于总电压

电阻值计算

1/R总=1/R1+1/R2+……+1/Rn

即总电阻的倒数等于各分电阻的倒数之和

对于n个相等的电阻串联和并联,公式就简化为R串=nxR和R并=R/n

2、性质

(1)串联电路的特点

欧姆定律:I=U/R

变形求电压:U=IR

变形求电阻:R=U/I

电压的关系:U=U1+U2

电流的关系:I=I1=I2

电阻的关系:R=R1+R2

(2)并联电路的特点

电压的关系:U=U1=U2

电流的关系:I=I1+I2

电阻的关系:1/R=1/R1+1/R2

电功的计算:W=UIt

电功率的定义式:P=W/t

常用公式:P=UI

焦耳定律:Q放=I2Rt

对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W

照明电路的总功率的计算:P=P1+P1+……

3、电阻的注意事项

电阻在使用前要进行检查,检查其性能好坏就是测量实际阻值与标称值是否相符,误差是否在允许范围之内。方法就是用万用表的电阻档进行测量。

测量时要注意两点:

1、要根据被测电阻值确定量程,使指针指示在刻度线的中间一段,这样便于观察。

2、确定电阻档量程后,要进行调零,方法是两表笔短路(直接相 碰),调节“调零”电器使指针准确的指在Ω刻度线的“0”上,然后再测电阻的阻值。另外,还要注意人手不要碰电阻两端或接触表笔的金属部分。否则会引起测试误差。

返回目录>>>

高中物理公式总结

高中物理公式一览表

高中物理公式高一

高中物理公式之力学

高中物理公式总结表

高中物理说课稿

高中物理论文范文

高中物理复习方法

高中物理学习方法

高中物理学习方法-学习方法

高中物理的万有引力定律公式(集锦9篇)

欢迎下载DOC格式的高中物理的万有引力定律公式,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档