下面是小编精心整理的高层建筑结构类型特点的探讨论文(共含14篇),希望能够帮助到大家。同时,但愿您也能像本文投稿人“询人启事”一样,积极向本站投稿分享好文章。
高层建筑在进行结构设计的时候,一般采用的结构抗侧力体系有:框架体系、框架一剪力墙、剪力墙体系及筒体体系等。
1.1 框架结构
框架结构是比较常见的一种高层建筑的结构,框架结构是由梁、柱构件通过节点连接而成,可以形成较大空间的建筑物,采用这种结构设计的房屋整体性强,延性较好,施工方便,承受竖向荷载能力较强,框架结构以剪切型变形为主,在水平荷载作用下,框架的侧移曲线为剪切型。缺点是:抗震能力比较弱。
1.2 剪力墙结构
剪力墙主体结构的高层建筑可以承受建筑物竖向和水平荷载,这种结构抗侧移刚度大,空间整体性好,在受到水平方向的力的时候侧向的变形比较小,层间位移下小上大,对于中上部的楼层,出现的位移角比较大。这种结构的建筑遇到地震的时候,非结构构件的损坏不大。剪力墙以弯曲型变形为主在水平荷载作用下,剪力墙结构的侧移曲线为弯曲型。这种缺点是:平面布置不够灵活,对高层建筑的大空间要求不能很好地满足。
1.3 框架一剪力墙结构
框架一剪力墙结构指的是:框架结构与剪力墙结构共同组成的一种建筑结构形式,框架结构体系具有空间大、平面布置灵活等优点,但侧向刚度差,剪力墙结构体系则相反,抗侧力强度和刚度均很大,但平面的布置不够灵活,将这两种结构进行融合,可以实现良好的互补,共同承受竖向和水平荷载,使得建筑物的结构的承载力更强,更加稳固。但是框架与剪力墙在水平荷载作用下的受力和变形性能是不相同的.,因此必须要通过各层楼板或连梁使它们变形协调一致,才能使得框架与剪力墙共同发挥出相应的作用。
1.4 筒体结构
这种结构在很多高层建筑中也比较常见,利用电梯井、楼梯间和管道井等四周的墙体围成筒状所形成的结构形式,就是筒体结构,实腹筒体结构的承受力更强,具有很好的抗弯、抗剪和抗扭刚度,可以对整个单元的水平荷载产生一定的抵抗。除了实腹筒体结构之外,还有一种框架筒体,框架筒体通常是利用建筑物的周边布置密排柱和刚度很大的窗裙梁形成的密柱深梁框架围成的筒体。如果建筑物的高度很高,而且对建筑物的刚度以及敞开空间的要求比较大,则可以采用筒中筒结构,一般是实腹筒和框架筒体组合而成的。
2 高层建筑结构结构设计的要求
2.1 抗震性要足够高
抗震是高层建筑面临的一大难题,地震时建筑物的破坏程度,主要取决于主体结构变形的大小,因此在高层建筑的结构设计过程中,结构的变形计算与控制要充分地考虑到抗震的要求。在进行高层建筑设计时应根据我国的实际情况而定,在多地震的时候,采用保证建筑的正常使用功能的弹性变形验算;在罕遇地震作用下则可以采用防止结构倒塌的弹塑性变形验算。
2.2 要具备足够高的灵活性
建筑结构的灵活性是建筑产品的一个重要内容,对于高层建筑而言,其灵活性较高――指的是在一定条件下能够对建筑结构进行改变,从而使得结构更加多变。当前高层建筑的结构设计一般都是一种柔性设计,因此使得建筑物在使用的时候可以根据用户的要求进行相应地改进,提高建筑物的使用范围。
2.3 高层建筑结构布置应该要规则、均匀
规则和均匀是高层建筑结构设计的两个重要要求,规则指的是建筑的体型要保持一定的规则性,即使在设计的时候要变化,也应该是有规则的渐变。均匀指的是高层建筑结构的上下体型、刚度、承载力及质量分布均匀,即使出现变化,这些变化也应该是均匀的。结构宜设计成刚度下大上小,自下而上逐渐减小的形式。体型尺寸的变化也应该下大上小逐渐变化,不能出现太剧烈的突变,以防高层建筑在地震力作用下出现受力不均而坍塌。
3 高层建筑结构设计的优化
高层建筑结构设计过程中,从理论上来讲,高层建筑结构设计的优化主要体现在两个方面,一个是房间布置的结构优化,另一个是房屋工程结构总体的优化。对整个工程的结构进行总体优化是一种全局性的优化,对整个高层建筑的协调性、安全性等性能都有影响,包括多方面内容,及合理的结构选型、受力构件合理的布置、对高层建筑进行整体受力分析、造价分析等。在高层建筑结构设计优化的过程中,应该要按照从实际出发的原则,对高层建筑结构的基本情况进行了解,针对具体的项目进行各种优化方法。在现代高层建筑设计理念下,高层建筑设计师应该要有大胆创新的理念,在满足高层建筑基本性能的基础上,对各种新的结构形式进行挑战。
4 高层建筑结构设计应该注意的问题
在进行高层建筑结构设计的时候,应该注重一些基本的问题,主要有以下几个方面:第一,要注意对高层建筑的防震缝伸缩缝以及沉降缝的设计,使其保持足够的宽度。第二,高层建筑的平面应尽量规则,刚度应该要保持对称,以防建筑物出现显著的扭转。第三,凸出屋面的塔楼受高振型的影响,会产生显著的鞭梢效应,破坏严重,所以在高层建筑结构设计的时候要尽量控制突出部分。第四,高层部分和多层部分之间的连接构造。第五,设计过程中要考虑沿竖向楼层质量与刚度突变的问题。
5 结语
综上所述,高层建筑是当前比较常见的一种建筑形式,高层建筑的结构与一般建筑相比较而言存在一定的差距,在结构设计的过程中,应该要考虑到影响建筑结构的因素,加强建筑结构设计的优化,从而使得高层建筑的结构有更强的稳定性和承载力。
参考文献
[1] 黄曙光.高层建筑结构设计的探析[J].城市建设理论研究,(06).
[2] 赵晓洁.高层建筑剪力墙结构优化设计分析探讨[J].城市建设理论研究,(10).
[3] 杜学春,何磊,王德贵.高层建筑结构布置探析[J].商品与质量,(12).
[4] 徐苏怡.高层建筑框架结构设计中应注意的几个问题[J].科技与生活,(09).
[5] 邱海峰,王龙.浅谈高层建筑结构设计原则及注意问题[J].中国新技术新产品,(10).
近年来,随着房地产事业的不断发展,房屋建筑越来越多。建筑设计是一个复杂的领域,建筑立面效果的要求、建筑内部的设计是否合理等都是房屋建筑设计需要考虑的内容。建筑是一种凝固的艺术,建筑设计对于整个建筑物的质量有很大影响,建筑设计包括多方面内容,及外观设计、内部结构设计、室内设计等,房屋结构设计是整个建筑物的根本,建筑结构设计过程中要考虑到安全性、经济性、美观性等多个要素,从而使得建筑结构能够具有更好的使用效果。近年来由于土地逐渐减少,而人们对房屋的需求越来越大,建筑中的高层设计越来越多,科学合理的建筑结构设计是当前高层建筑设计过程中关注的重要内容,通过科学合理的设计,可以提高高层建筑对空间和资源的利用率,使得建筑结构更加经济、安全、合理。
高层建筑结构特点论文参考
[论文摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。
[论文关键词]高层建筑;结构特点;结构体系
我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。
一、高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:
(一)水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标
与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(△=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:
1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
4.使主体结构构件出现大裂缝,甚至损坏。
(三)抗震设计要求更高
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要
高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。
地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
(五)轴向变形不容忽视
采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
(六)概念设计与理论计算同样重要
抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。
二、高层建筑的结构体系
(一)高层建筑结构设计原则
1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。
2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。
(二)高层建筑结构体系及适用范围
目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。
1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。
剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。
剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。
3.框架—剪力墙结构体系。在框架结构中布置一定数量的`剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。
4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:
(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。
(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。
(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。
(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。
除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。
[参考文献]
[1]GB50011-建筑抗震设计规范.
[2]GB50010-混凝土结构设计规范.
[3]吴景祥.高层建筑设计[M].北京:中国建筑工业出版社,1987.
[4]包世华,方鄂华.高层建筑结构设计[M].北京:清华大学出版社,1990.
[论文关键词]高层建筑;结构特点;结构体系
[论文摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。
我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。
一、高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:
(一)水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标
与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(△=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:
1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
4.使主体结构构件出现大裂缝,甚至损坏。
(三)抗震设计要求更高
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要
高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。
地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
(五)轴向变形不容忽视
采用框架体系和框架——剪力墙体系的.高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
(六)概念设计与理论计算同样重要
抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。
二、高层建筑的结构体系
(一)高层建筑结构设计原则
1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。
2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。
(二)高层建筑结构体系及适用范围
目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。
1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。
剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。
3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。
4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:
(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。
(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。
(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。
(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。
除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。
由于混凝土结构建筑往往会出现裂缝的现象,这对建筑结构的安全性能会带来严重影响。因此,如果我们能在施工以及改造的过程中,必须采取与建筑物功能相适应的加固模式,大大提高建筑工程的质量,从而保证人们的日常生活的安全与稳定。
建筑结构加固的原因
建筑结构需要加固的原因有许多,其主要表现在以下几个方面:
1由于建筑设计的不当,其包括抗震设计以及非抗震设计的不当。
2设计人员在进行设计时是按照建筑的极限状态设计法进行设计的,而建筑的钢筋混凝土结构以及砌体结构,由于种种原因,例如设计规范要求提高以及施工缺陷而造成的结构承载力与刚度不足等,不能满足建筑结构强度、刚度以及耐久性的要求,因而需要对建筑结构进行鉴定和加固。
3由于建筑的使用不当或者年久失修而造成建筑结构的损伤以及破坏,或是因灾害性事件的发生而造成建筑结构的破坏,使现有的建筑结构不能满足目前使用要求,或是建筑的安全度不高,这时需对建筑要进行鉴定和加固。
4由于原来的设计早已无法满足住户现在的需求,因而住户要求会对建筑的平面布置和使用功能进行改变,但是一旦建筑物改变用途,就会导致其建筑结构发生变化,从而出现了与原先设计初衷的不一致,进而造成原结构的强度以及刚度不能满足现在要求,因而要对结构进行鉴定以及加固。
建筑结构加固的原则
1在对建筑结构加固前,必须对其进行结构可靠性鉴定以及抗震鉴定,并且必须依据鉴定结论,确定加固设计方案。
2进行加固计算时,应当根据建筑结构的实际受力状况,确定计算。此外,加固截面面积必须采取实际有效截面积,并且结合加固的应力滞后特点,切实做好加固部分与原结构协同工作。
3选择加固方案时,应当采用技术可靠、经济合理、便于施工的加固设计方案,并尽可能的减少施工对人们生产以及生活的影响。
目前,建筑行业主要存在以下几种建筑加固技术:
1预应力加固法预应力加固法是指,在建筑原有结构的基础上,增加一定的预应力器件,从而分担一部分原有建筑结构所承载的负荷,以达到增加原有结构的承载能力的目的的加固方法。目前,建筑结构中最为常见的是体外预应力加固法,即在混凝土外的预应力钢筋等处,设置施加在原有混凝土上的预应力,该方法施工方便,并且加固效果好、经济可靠并防腐,可以较大程度地提高建筑结构的整体承载力。但是采用该方法加固之后,会对原有建筑结构的外观以及形象造成一定影响。因此,这种加固技术适用于重型结构以及大跨度建筑的加固。
2外包钢加固法外包钢加固法是指,用型钢外包于建筑构件的四角,从而实现加强建筑结构受力性能的加固方法。该方法具有施工简便、现场工作量较小以及受力较为可靠的特点,主要适用于不允许增大原构件截面尺寸而又要求大幅度地提高截面承载能力的建筑结构。
3增大截面加固法增大截面加固法是指,在原有的建筑构件的上部或下部另外浇筑一层新的混凝土和钢筋,从而增加原建筑构件的承载能力的加固方法。该种方法是一种最传统的建筑结构加固法,主要适用于钢筋混凝土受弯以及受压构件。该方法具有成本较低的优点,适用于混凝土结构的梁口拄构件以及一般构筑物的加固。
4粘钢加固法粘钢加固法是指,通过粘贴剂将钢板与建筑的构件进行联合,从而达到增加建筑结构的各种耐受力以及提高建筑结构的整体安全度的'效果的加固方法。该方法常常用于加固处于正常湿度环境并且长期受静力作用的建筑构件。该方法具有方便快捷、效果显著,同时对加固建筑外观以及自重没有明显的改变。
5增设支点加固法增设支点加固法是指,通过增设支承点,进而减小建筑结构的计算跨度以及结构内力,从而提高其承载能力的加固方法。该方法具有简单可靠的优点,但是该方法会损害建筑物的原貌,并且会减小建筑的使用空间。因此,适用于具体条件许可的混凝土结构加固。
6纤维复合材料加固法纤维复合材料加固法是一种比较新的加固方法,它选用的是高性能的复合材料,通常是碳纤维片,其强度刚度更高,并且具有很高的可加工性和耐腐蚀性,耐热性和耐蠕变性也比较高。
结束语
综上所述,在建筑工程中,建筑结构加固技术是延长建筑物使用年限的有效方法,已经引起了学者的高度重视。因此,在实际的建筑工程中,相关工作者一定要加深相互之间的学习和交流沟通,不断学习国外先进的加固技术,逐渐增强建筑结构的加固能力,根据具体的工程情况和特点,科学合理的选择不同的加固技术,有针对性地进行建筑结构加固,选择经济的施工材料,保证结构安全,开发和研制高效的加固材料,加大截面积技术,进而保证居民的正常生活,维护人民的财产和生命安全,为建筑企业增加一定的经济效益。
高层建筑结构有哪些设计特点?
1)水平荷载成为决定性因素,建筑物自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑物高度成线性关系;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与建筑物高度的二次方成正比.另外,对某一定高度建筑物而言,竖向荷载大体上是定值,而作
为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
2)轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件
剪力和侧移产生影响,
3)侧移成为控制指标。与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素.随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
4)结构延性是重要设计指标。相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
,
⑵设计时:①水平荷载成为设计的决定因素 。②侧移成为设计的控制指标 。③轴向变形的影响在设计中不容忽视 。 ④延性成为结构设计的重要指标。④结构材料用量显著增加。
近些年来,建筑业有了突飞猛进的发展,城市规划设计中的高层建筑越来越广泛。它以其高度强烈地影响着规划、设计、构造和使用功能。就结构特性而言,高层建筑是必须着重考虑水平荷载和竖向荷载组合影响的建筑物。设计高层建筑时,它的结构除在上述荷载组合下的强度、刚度和稳定性应予以保证外,还必须控制由风荷载(或地震水平作用)所产生的侧向位移,防止由此产生的结构的和非结构性材料的破坏;控制由风荷载造成顶部楼层的加速度反应,以使用户对摆动的感觉和不舒适感降到最低程度。这就需要设计师从一开始就应该以一个立体的概念设计为基础。
一、高层结构概念设计
(一)高层结构概念设计的三维层次
把房屋看成一个三维空间块体分层次来分析,对于复杂的高层,例如多塔机构也可以把它分成几块,分别研究其倾覆、刚度、承载力等问题,然后组合起来。首先,在方案阶段(I),可以把基本设计方案概念化,建立一个符合建筑空间三维形式的结构方案。在该阶段分析总结构体系的荷载和抗力关系;高宽比与抗倾覆;承载力和刚度;并预估基本分体系的相互关系。由于整个结构必然是由一些平面单元组成,因此在初步设计阶段(Ⅱ),要扩展方案,把那些体现初步设计基本要求的、主要是二维的平面体系包括进来,进行基本水平和竖向分体系的总体设计,从而得到主要构件及其相互的关系。而在最后的.第Ⅲ阶段,即施工图设计阶段,处理一维的构件设计,具体设计所有分体系的构件、连接和构造详图,对第Ⅱ阶段做出的粗略决定进行细化。
对于高层建筑结构,可以设想成为一个从地基升起的竖向悬壁构件,承受水平侧向荷载和竖向重力荷载的作用。侧向荷载是由风吹向建筑物引起的水平压力和水平吸力,或者是由地震时地面晃动引起的水平惯性力。重力荷载则是建筑物自身的总重力荷载。这些侧向荷载和重力荷载的组合,趋向于既可能将它推倒(受弯曲),又可能将它切断(受剪切),还可能使它的地基发生过大的变形,使整个建筑物倾斜或滑移。对抗弯曲而言,结构体系要做到不使建筑物发生倾覆,其支撑体系的构件不致被压碎、压屈或拉断,其弯曲侧移不超过弹性可恢复极限;对抗剪切来说,结构体系要做到不使建筑物被剪断,其剪切侧移不超过弹性可恢复极限;对地基和基础来说,结构体系的各支撑点之间不应发生过大的不均匀变形,地基和地下结构应能承受侧向荷载引起的水平剪力,并不引起水平滑移。由于风力和水平地震作用力对于高层建筑是动荷载,使建筑结构抗弯曲和抗剪切时都处于运动状态,就会导致建筑物中的人有震动的感觉,使人有不舒服感。如果建筑物晃动得太厉害,还会使非结构构件(如玻璃窗、隔墙、装饰物等)断裂,甚至危及屋外行人的安全。所以,高层建筑结构要避免过大的震动。例如:在建造机关事务局12层的办公综合楼,它长48m、宽18m、高36m。建筑物两边各有9根柱,横行柱距为18m,纵向柱距为6m,中央有一个6×12m的电梯和管道井筒。考虑水平荷载的传递有几种不同方式,进行结构方案优选,分析两种结构方案:一种为仅由核心筒承受水平力,外柱仅承受大部分竖向荷载,不抵抗水平力,梁和柱铰接;一种为纵横两个方向柱和梁刚接形成框架,来抵抗纵横两个方向的水平力。在方案一中:筒井所受的风荷载为1。4×6×8=67。2KN/m,竖向荷载近似为15120KN,井简墙自重为6×36×(6+12)×2=7776KN,可得抵抗倾覆弯矩的竖向荷载为22896KN。则可计算出合力偏心矩e=M/G=67。2×36×18/22896=1。9m,超过核心范围(6/6=1m),不满足稳定要求。必须加强、加宽基础或采用下部锚固,才能避免基础向上抬起。在方案二中:由横行跨度的框架承担全部水平力。因此,在一个方向风荷载作用下,总框架一侧柱子受压,另一侧柱子受拉,并可近似求得总压力或拉力为:67。2×36×18/18=2418。2KN,大致由每侧9根柱子平均分担2419。2/9=268,8KN/柱<7×3×9×10=1890KN,即比每根柱所承受的恒载小很多,基础不会向上抬起。因此方案二比方案一好,应采用方案二的结构。
二、高层建筑的结构体系
通过受力因素分析,下一步就考虑采用什么结构体系,有下面几种高层建筑结构体系可供选择,其结构体系有:框架结构、剪力墙结构、框架一剪力墙结构、筒中筒结构等。根据其受力特点,结合高层概念设计的三维层次考虑,选取合适的结构体系或其组合体系。
(一)框架结构体系
由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由梁联系起来,形成空间结构体系。框架结构的优点是建筑平面布置灵活,可以做成有较大空间的会议室、餐厅、车间、营业厅、教室等。需要时,可用隔断分割成小房间,或拆除隔断改成大房间,因而使用灵活。外墙采用非承重构件,可使立面设计灵活多变。但是框架结构本身刚度不大,抗侧力能力差,水平荷载作用下会产生较大的位移,地震荷载作用下较易破坏。不高于15层宜采用框架结构,可以达到比较好的经济平衡点。
(二)剪力墙结构体系
剪力墙结构体系是利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构体系。墙体同时作为维护及房间分隔构件。剪力墙间距一般为3—8m,现浇钢筋混凝土剪力墙结构整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求容易满足,适于建造较高的高层建筑。而且其抗震性能良好,在历次的地震中,都表现了很好的抗震性能,震害较少发生,程度也很轻微。但是剪力墙结构间距不能太大,平面布置不灵活,而且不宜开过大的洞口,自重往往也较大,不是很能满足公共建筑的使用要求,而且其成本也较大。
(三)框架一剪力墙结构体系
框架一剪力墙结构体系由框架和剪力墙组成。剪力墙作为主要的水平荷载承受的构件,框架和剪力墙协同工作的体系。在框架一剪力墙结构中,由于剪力墙刚度大,剪力墙承担大部分水平力(有时可以达到80%~90%),是抗侧力的主体,整个结构的侧向刚度大大提高。框架则承受竖向荷载,提供较大的使用空间,同时承担少部分水平力。由于有了剪力墙,其体系比框架结构体系的刚度和承载力都大大提高了,在地震作用下层间变形减小,因而也就减小了非结构构件(隔墙和外墙)的损坏。这样无论在非地震区还是地震区,都可以用来建造较高的高层建筑。还可以把中间部分的剪力墙形成简体结构,布置在内部,外部柱子的布置就可以十分灵活;内筒采用滑模施工,外围的框架柱断面小、开间大、跨度大,很适合现在的建筑设计要求。
(四)筒中简结构体系
筒中筒结构体系由一个或多个简体为主抵抗水平力。通常简体结构基本形式有三种:实腹筒、框筒及桁架筒。筒体结构最主要的特点就是它的空间受力性能。不论哪一种简体,在水平力作用下都可看成固定于基础上的箱形悬壁构件,它比单片平面结构具有更大的抗侧刚度和承载力,并具有良好的抗扭刚度。简中筒结构是一种抵抗较大水平力的有效结构体系,但是由于它需要密柱深梁,当采用钢筋混凝土结构时,可能延性不好,而且造价昂贵。
除了上述的几种结构体系外,还有其他一些结构体系,如薄壳、膜结构、网架等。随着时代的进步,会涌现出越来越多更好的结构体系。这就需要不断学习,从各方面考虑运用经济合理的手段到达目标。
1高层建筑结构超限设计与普通高层建筑的区别
一是层数和高度的增加,竖向荷载也不断加大,墙、柱结构面积也随之相应的增加。
二是由于高度的增加,超限结构的水平荷载急剧增长,风力随着各层作用点高度的增加而不断加大,重力荷载代表值、各层作用点高度及构件截面刚度也会导致地震作用的加大,结构受力的主要思想因素来自于水平荷载。
三是随着高层建筑层数的增加,所累加的效应也会越来越明显。而且在这其中还会由于压缩变形差而导致节点附加弯矩、倾覆弯矩所产生附加轴力,这也是超限结构设计时不可忽视的重要因素。
四是层数的增加,导致需要调整的系数也加大,构件内力变形、位移值和位移比的控制难度都会有所增加,从而需要对其抗震等级进行提高。
2高层建筑结构超限设计的主体因素
2.1基于性能的抗震设计能否满足抗震性能目标
在高层建筑结构抗震设计中,通常分为小震、中震和大震作用下的抗震设计,计算分析方法也具有一定的区别。通常利用振型分解反应法或是弹性动力时程法来对小震作用进行计算分析;而中震则利用弹性计算和结构构件屈服判断分析法来对其抗震性能进行计算;在大震设计时,则利用静力弹塑性一Pushover推覆分析及动力弹塑性来对进行计算。利用这些计算方法可以有效的对各阶段所要实现的抗震目标进行判断,确保结构的安全性。
2.2考虑可能的风载作用控制并验算风作用下舒适度
通常情况下在对抗震超限审查项目中并不包括风荷载作用。但对于高层超限结构工程来讲,由于其高度与正常高层建筑的高度超出较多,这就会导致风起到较大的控制作用。所以需要在高层超限结构中对风载进行必要的分析。在具体分析过程中,需要通过风洞试验的数据对超高层建筑受相邻超高层建筑物风扰的影响进行分析,根据其横风作用的大小来采取必要的控制措施。在对横风和顺风作用进行超限计算时,需要将两个方向的风压值都要与放大系数1.3相乘,从而计算出相应的位移和强度,从而进一步对可能起控制的横向风作用进行有效控制,确保在风作用下高层超限结构设计的最佳舒适度。
2.3根据高层超限结构构件和刚度需求分析温差效应
目前高层结构采用的都为竖向构件筒体,桩截面和刚度都较大,这就导致就会导致在混凝土浇筑过程中楼盖梁板在水平方向上温差变形会有较大的约束力产生。从而导致相应约束力产生,即水平温差效应。所以在实际设计过程中需要对混凝土终凝时的温度差值所可能对结构带来的附加内力影响进行充分的考虑。
2.4针对超限分析要考虑混凝土徐变收缩对结构的影响
混凝土自身固徐变收缩的特性,但钢结构则不存在这个问题,但当混凝土附着在钢结构上时,随着时间的持续,则会导致徐变变形的发生。同时作为超限高层建筑,由于其竖向构件高度较大,这就会导致其徐变变形累计数量较大,而且同时还会有收缩变形发生,在这两种叠加变形的作用下,会导致超高层建筑竖向构件后期的塑性变形达到较大的一个量级,导致其超出荷载直接发生弹性变形,从而对部分结构构件或是非结构构件带来较大的影响。所以在实际设计过程中,需要对这种徐变收缩进行量化分析,对其可能导致的不利影响进行评估,根据分析的结果来对是否需要采用相应的对策进行判断,确保超限高层建筑的质量。
3高层建筑结构超限设计中主体问题的解决措施
对于超限高层建筑,其对于抗震性能进行设计时,需要采用科学合理的设计方法从而对高层建筑结构在大、中、小三个地震级别的抗震性能进行具体的分析和判断,对于竖向荷载及风载的作用,则需要在设计和计算时确保所选择的.方法的规范性。从而有效的确保结构构件的弹性,确保其在小需作用下结构具有良好的弹性和完好性,不会有损伤发生,使结构在小震中具有较好的抗震性能。
在对中震作用下结构的弹性进行计算时,需要利用地震反应谱曲线来对中震弹性进行计算,由于需要在计算中对各项系数进行确定,所以可以将荷载、材料及城市承载力调整等各项系数都取1.0为准,而在计算过程中可以不对地震作用下内力放大调整进行考虑,其标准值可以根据材料的强度来进行选取,以构件地震作用组合效应小于强度标准值计算的抗震承载力为标准,在这种情况下,则可以做到中震作用下,高层超限结构具有良好的不屈服性,具有较好的抗震性能。
竖向构件及与外框柱及内筒剪力墙面内相交的主要框架梁均不出现屈服,梁均不出现受剪屈服,在小震及屈服判别地震作用1时,所有梁不出现受弯屈服;在判别地震作用2及中震时,核心筒连梁仅出现程度较轻的屈服(主要表现为面筋配筋率略>2.5%),可判断为轻微的损伤;另,右侧的边框架梁在中震下也出现轻微屈服,经将梁宽度适当加大后,即可满足该梁中震不屈服。
实际设计时,将按小震和中震两者的较大值对构件进行配筋,这样则能实现中震作用下结构“重要构件不屈服,其他构件部分允许受弯屈服,可修复使用”的第二阶段抗震性能水准。对大震作用,则可以采用相应软件对结构进行静力弹塑性分析(Pushover)及用接口程序BEPTA进行模型的前处理和准备工作后通过分析软件对结构进行动力弹塑性分析。按弹塑性程序计算所反映的塑性发展程度来对构件以至整个结构进行相应的性能评价。高层建筑超限结构设计,为了确保其安全性,在对其抗震进行超限审查时,还需要通过对风载、温差和混凝土徐变收缩可能带来的影响进行深入的分析,确保真正实施高层超限结构时其性能能够得到有效的保障。
4结束语
高层建设超限结构设计,在设计过程中除了利用软件和模拟分析外,还需要对主体结构需要承受的荷载、风载和地震等作用进行综合考虑,对混凝土徐变收缩可能带来的诸多影响因素进行计算,从而更好的确保高层超限结构设计的质量。
在建筑安全与使用保障方面,高层建筑的结构施工具有重要的影响作用,而高层建筑结构施工通常非常复杂,而且工程量十分庞大,需要多领域专业,涉及大量的分项工程,这就导致施工需要面临很大的难度,如下笔者主要结合三个方面研究高层建筑结构施工技术相关要点展开探讨。
1高层建筑在结构施工方面的特点
1.1地基处理技术复杂
高层建筑施工需要把握这样的基础:首先高层建筑必须达到整体稳定性,这一点一定要保证。因此,高层建筑在地基处理方面相关技术特别复杂。通常条件下,埋置高层建筑的地基在深度方面需要达到建筑高度的8.5%,如果选用的方式为桩基方式,埋置深度至少要高过建筑物高度的6.7%。换而言之,即高层建筑在稳定性方面一定要保证,因此地基处理技术非常复杂,如果高层建筑是建设在软土层上的,因为可供选择的施工方案不止一个,要是方案的选择有一定的差异,这容易造成工期与工程造价方面也出现差异。
1.2高技术与高作业
高层建筑势必在高度方面相当高,因此必然涉及大量的垂直运输作业。普通建筑施工与高层建筑施工比较,高空作业量大成为最突出的特点。高空作业必定涉及建筑人员、建筑材料、相关设备等方面的垂直运输工作,这一方面的工作必须妥当安排好,尤其要做好高空坠物事故的安全防护,有效保障好高空作业者的人身安全,高层建筑建设是一项高危工作,一定要在安全方面做好防护与预防,这样才能达到防患于未然的效果。在国内,从低层建筑与高层建筑建设需要的材料比较来说,明显存在很大的差异。低层大部分采用砖混材料,而高层建筑物大部分采用钢筋混凝土,开始呈现出向钢混结构发展的趋势。钢筋混凝土大部分采取现浇的方式,因此建筑施工需要面对的难度很高。
1.3高层建筑施工离不开各个方面的共同协作
高层建筑的突出特点主要体现在结构特别复杂、工程量狠大、技术含量高等方面。同时,国内目前的高层建筑大部分是同步展开准备环节、设计环节、施工环节,所以参与到实际工程建设中有很多单位,因此要想保障工作效率,一定要加强相互质检的合作与协调。1.4高层建筑需要很长的施工时间通常条件下,不管是低层建筑还是高层建筑都需要大约10个月的建设工期。但因为高层建筑工程量庞大,技术含量比较高,会明显受到季节因素的影响,因此从其平均工期来看通常都特别长,基本都要超过两年。目前国内为了实现高层建筑施工工期的缩短,采用的方法主要有建筑架构、缩短装饰的方式。要是采用的模板体系不一样,那么耗费的时间势必会有一定的差异,因此需要结合实际确定恰当的模板体系,这对于有效缩短工期是非常有效的。
2模板工程施工
2.1关于柱模板方面
在对柱模板进行安装的时候,在楼板上面将边线与轴线弹出,接着和边线第一片安装侧纵板相互对准,同时还要增置临时支撑或者临时固定铁丝和柱主筋,将他们进行绑扎,接着对第二片柱模立即安装,为了有效防止发生漏浆的情况,将两厘米后的海绵条黏贴到接缝位置,然后按照顺序对第三片、第四片侧纵板安装,做好链接,用线锤对垂直度做好校验,以螺栓有效完成它们之间的连接,对柱套箍遵照自下而上的顺序进行安装,让它们能够保持方桶型。对柱模的垂直度偏差、轴线位移进行校验,最后确保其牢靠结实,做好固定。
2.2关于墙模板方面
在安装墙模板过程中,第一步需要对墙中心线与墙的边线弹出,安装顺序需要遵照先横墙,之后再安装纵墙的原则,依据顺序把一个流水段的.内墙正号模板向安装处移动,对模板位置进行调整,以墙中心线与模板的起止线为参照依据,同时对模板的水平度、垂直度、标高进行校正,依靠钢管完成就位以后,需要第一时间扭紧螺栓。对反号模板开始安装,对它的水平度、垂直度、标高完成校对以后,把两个模板用穿墙螺栓使劲锁紧,模板接缝一定要确保非常严密,浇筑砼时要防止发生漏浆的情况。依据一样的方法,对外墙外侧模板与内侧模板依次安装同时做好校正,最后对墙模和侧模之间,墙模之间、施工缝的位置是不是有缝隙存在做好检查,确保相关位置能够严密连接,非常可靠,而且牢固结实。
2.3关于梁模板方面
在没有对梁模支架开始安装前,将垫板铺设到梁模下方地面上。通常采用双排来支撑,间距的范围在0.5米至1.0米比较理想,通常在支撑上方位置与梁底短钢管连接固定,支撑之间大约每隔1.5米的距离,设置一个纵横水平联结杆,此外还要与满堂架子拉结,对大体积深梁一定要进行剪刀撑设置,并对相关连接件重视做好检查,确保其牢固完整。楼层间的上支座与下支座之间需要保持位于相同的直线上。
3钢筋工程施工方面
3.1对钢筋原材料一定要严格把控好质量
在没有开始高层建筑结构施工以前,在钢筋采购方面,需要对其质量以及性价比综合展开对比,选择具有较好信誉、钢筋具有稳定性能、具有较好质量的生产厂家,在供应商选择方面同样要青睐那些具有良好信誉,能够及时供货的。钢筋原材料需要与现行的标准、设计规范、设计要求相符合,每进购进来一批钢筋,都需要对其的质量报告、产品合格证等材料严格检查,在外观质量方面做好检查,钢筋外观必须保证没有损伤、保持平直,同时要在现场进行抽样,展开力学性能方面的检验。
3.2加工钢筋方面
(1)在钢筋工程没有施工之前,具体下料要依据图纸要求的钢筋形状、直径、尺寸、级别根数等,保护层的大小,接头的位置,都不能超出设计要求与规范。在进行钢筋制作以前,需要对其表面的氧化皮与污垢做好清除;(2)对下料单以及下料卡一定要科学编制,对具体规格、编号、形状、尺寸、具体的数量做好标示,各部位的钢筋制作件的加工需要以钢筋下料单为参考依据;同规格钢筋需要结合下料单具体长度做好科学搭配,防止发生以短尺量长料的情况,预防最终带来累积误差进而对工程质量产生不利的影响;(3)钢筋加工尺寸要想确保与设计要求与相关标准稳和,必须要有样板,在预检取得合格之后才能开始进行下一步的批量生产。
3.3安装、绑扎钢筋
(1)在绑扎、安装钢筋的筋时,需要结合相关的规范要求以及设计标准确定钢筋规格、数量、尺寸、实际位置、锚固具体长度、节点构造、连接接头,确保能够非常牢固地绑扎;(2)钢筋绑扎的准备时期一定要对配筋图、施工图全面掌握,对绑扎地点清扫,对规格直径、形状、尺寸大小,实际数量做好核对,对各部位做法做到清楚掌握,将构件的边线、中线以及钢筋位置线弹出;(3)安装、绑扎梁钢筋,受力钢筋纵向呈现多层排列的情况下,需要将直径长度是25毫米的短钢筋垫在两排相邻的钢筋之间,就纵向钢筋直径长度在25毫米的情况下,纵向钢筋规格与短钢筋直径规格是一样的。主梁与次梁出现交叉的地方,主梁钢筋处于下方的位置,次梁钢筋处于上方的位置,要是存在圈梁或着垫梁这种情况,位于上部位置的是主梁钢筋;(4)在对柱模板开始安装以前进行绑扎柱钢筋的操作,竖向钢筋具有的弯钩在方向上需要面向柱的中心,中间钢筋的弯钩与角部钢筋的弯钩同模板之间形成的角度分别是90°与45°。对箍筋的接头需要在四角纵向钢筋位置按照交错的方式布置,纵向钢筋同箍筋转角会形成一个交叉点,在这个位置一定要确保扎牢,对箍筋进行绑扎的时候,绑扣间需要保持八字形;(5)钢筋绑扎安装全部结束后,在施工阶段一定要做好防护措施,严防出现踩踏以及变形的情况,特别是要对弯起钢筋、梁、板的构造钢筋加大力度做好保护。在浇筑混凝土时,钢筋工需要跟班作业,这样才能保证做好加固与及时有效的调整。
4混凝土工程施工
(1)高层建筑的施工混凝土用量大,应尽量采用预拌混凝土和泵送混凝土;(2)高强混凝土适用于高层建筑底层柱等部位,但施工中应注意不宜使用强度过高的混凝土,以免引起收缩;(3)混凝土的浇筑时应注意每层楼按二次浇筑,分别浇筑柱和梁板。对于高度超过3m的柱子的浇筑,应在两侧开设门子板,并由其斜槽向模内灌入混凝土,按300-500mm的厚度分层浇筑,并采用高频振捣棒从顶部插入振捣。泵送混凝土时,应使料斗内始终保持有20cm以上厚度的混凝土,以防空气进入造成混凝土逆流形成堵塞。同一施工段的混凝土宜连续进行浇筑,在下一层的混凝土达到初凝前完成上层混凝土的浇筑;(4)混凝土浇筑后应及时养护,尤其要注意不能忽视墙、柱等竖向部位混凝土的混凝土。应结合季节和工程特点来选用浇水、蒸汽、综合蓄热、电热等养护方法,并覆盖薄膜等保温材料;(5)高层建筑混凝土结构标准层的楼板、梁的强度等级通常都是一致的,而板、梁的强度等级又比柱的强度低,并由下而上逐渐降低,因而节点处存在强度差,不利于施工操作,所以应采取有效措施,保证施工质量;(6)应由设计单位提出后浇带的浇筑时间和位置,并同施工方商量;后浇带宜选用早期,补偿收缩混凝土浇筑,浇筑混凝土前,应将后浇带表面清理干净,浇筑后也需对表面进行覆盖养护。
5结束语
以上三个方面是高层建筑结构施工的技术重点,也是难点,所以我们建筑工程技术人员一定要掌握好这三个方面的施工技术要点,做好施工质量管理,严格按照设计及规范施工,确保高层建筑结构的质量。
作者:胡阳琛 单位:厦门市斯特安装饰工程有限公司
参考文献:
[1]李珺.高层建筑结构施工技术要点[J].山西建筑,,33(2).
[2]袁廷伟,蒋根谋,杨克.高层建筑主体结构施工过程仿真分析[J].华东交通大学学报,(3)
高层建筑结构管理的论文
摘要:高层建筑结构嵌固端的确定对结构计算结果的真实性和准确性有很大的影响,因此正确选取结构嵌固端并对其在结构布又和配筋构造方面给予一定的必要保障,是结构设计中的一个重要环节。本文对高层建筑结构嵌固端的选择进行了探讨,并引伸出若干值得思考及解决的相关问题。
关键词:嵌固端首层地面刚度比地下室基础埋深
1.引言
高层高层建筑在进行结构分析计算之前必须首先确定结构嵌固端的所在位置,而嵌固端的选取却面临着各种不同情况,如不设地下室但基础埋深较大;没有地下室但其层数或多或少,且基础形式不同等。根据以上情况正确选取其结构嵌固端,是高层建筑结构计算模式中的一个重要假定,它不仅关系到结构中某些构件内力分配的准确性,而且还影响结构产生侧移的真实性,以及结构局部的经济性,因此有必要对结构嵌固端的选取作进一步探讨,并由此引伸出若干相关的技术问题。
2.结构嵌固端的条件
高层高层建筑的结构嵌固端通常是选择在地面标高处,但地面标高处要真正成为结构嵌固端是有条件的,而且在输入首层计算高度时还有许多讲究。
2.1设有地下室时的条件
(1)地下室顶板标高与室外地坪的高差不能太大,极端的情况如半地下室则首层楼面一般不能成为结构嵌固端,除非其高差仅为1—3级台阶高度时才可能考虑;
(2)地下室顶板结构应为梁板体系(即不可设计成元梁楼盖),且该层楼面不得留有大孔洞,楼面框架梁的抗弯刚度要足够大,楼板也要有相当厚度;
(3)地下室侧壁要有良好的侧限,即必须与“地球”有良好的接壤,上述半地下室顶板不能成为结构嵌固端的原因就是不满足此条件。
对于上述条件中对首层楼面框架梁的要求,假设满足《抗震规范》第6.1.14条“位于地下室的梁柱节点左右梁端截面实际受弯承载力之和不宜小于上下柱端实际受弯承载力之和”的要求,对于高层建筑来说,由于首层处的柱截面往往远大于框架梁截面,故即使有意增大框架梁截面并增加抗弯钢筋用量,上述要求仍很难满足。就此要求而言,则只有多层或小高层建筑才有可能以首层顶板作为结构的嵌固端,而真正意义的高层建筑则完全排除了这种可能性。
2.2不设地下室时的条件
高层建筑不设地下室通常是针对层数有限的小高层,或其基础持力层较浅的情况,但从抗震角度考虑是不宜提倡的。
(1)不管是采用天然地基基础或桩基础,都是以基础(承台)面作为结构嵌固端,且必须在该标高处的纵横方向设置刚度较大的基础梁加以连结,故首层层高应从基础面算起;
(2)若基础(承台)面标高与首层标高有一定距离而不设基础梁连结或其刚度过小,则地面标高处应设有刚性地面来作为结构嵌固端,首层层高可从地面层算起。若不设刚性地面,则上部结构无从形成嵌固端,也即结构计算简图不成立,设计上显然是不允许的。
以上列举的条件无非是说明要成为上部结构的嵌固端,其下部结构必须具有足够的刚度以保证柱根之间不产生相对位移,且能承受或平衡柱根弯矩。规范中规定“当地下室顶板作为上部结构嵌固部位时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的二倍”正是基于这一考虑。
3与嵌固端相关的技术问题
结构嵌固端的形成或者说上部结构对嵌固端的要求,在工程设计中还可引伸出若干相关的技术问题及其正确的设计方法,以下将分别探讨。
(1)单层地下室
当高层建筑仅设单层地下室且底板采用天然地基筏板基础或桩一筏基础时,通常选择基础底板而非首层作为结构嵌固端,这有利于充分利用其基础的“无限”刚度,为首层楼面的灵活结构选型创造条件,即使是首层楼面留有大孔洞,或选用无梁楼盖结构,都不影响结构计算的准确性。此外,规范规定地下室负一层的抗震等级与上部结构必须一致,以基础底板作为嵌固端不会造成地下室结构造价的提高,反而可能取得较好的经济效益。即使单层地下室底板是以桩为基础的普通梁板结构,一般情况下仍然取底板处为结构嵌固端,唯一例外的是地下室作为抗爆级别较高的防空地下室时,其顶板通常具有作为结构嵌固端的刚度,因此可取其作为上部结构的嵌固端。
(2)投影面积比例
高层塔楼在地下室顶板上的投影面积比例大小对首层作为嵌固端的结构有着不同的影响。当该比例*1时,若首层楼面符合作为嵌固端的其它条件,则该首层作为结构嵌固端就毫无疑问了,但当上述投影面积比例》1时,说明地下室侧限远离塔楼,塔楼发生的侧向位移将波及首层楼面并使其发生变形,即使变形量很小,但严格说来首层作为嵌固端的刚度必然小于前一种情况,且变形又增大了上部结构侧移的计算值,同时首层骨架构件也会由于自身的变形而产生附加内力。作为有经验的结构工程师,在实际设计中都会根据工程实际情况予以鉴别并作出相应的结构处理。
(3)大底盘多塔楼
大底盘多塔楼大多为商住楼,而且由于商用及居住性质不同,对柱网的要求也不同,故通常需设置结构转换层。当大底盘的商用部分层数不多(如仅1—2层),且结构转换层设于大底盘的屋顶标高处时,塔楼的嵌固端就可考虑取在大底盘的屋顶处,至少在塔楼初算时可以如此假定,如图3所示。这一考虑基于以下两点:
①既然属大底盘,其楼层面积肯定大于塔楼的投影面积,加上大底盘屋顶设置转换层,故大底盘的楼层平面刚度远大于塔楼的楼层刚度;
②转换层之上通常为剪力墙、部分短肢剪力墙或异形柱一短肢剪力墙结构,为使转换层上下部的侧向刚度相近,大底盘部分肯定要将原位剪力墙增厚或增加新的剪力墙,从而使塔楼下的大底盘部分具有足够的侧向刚度。目前高层建筑结构计算软件的功能已较为完善,因此大底盘多塔楼建筑均以整体结构进行计算,其嵌固端也不像结构初算阶段选择在大底盘屋顶标高处。
(4)高层建筑的基础埋深
在研究探讨高层建筑的结构嵌固端时,必然牵涉到其基础埋深问题,高层建筑基础要具有一定的埋置深度,首先是为了保证结构的整体稳定(包括抗滑),其次有利于减弱地震反应。规范对高层建筑的'基础埋深有一量化规定,即“天然地基或复合地基基础,可取阶15,桩基础可取阶18”,但这一规定仅与建筑物的总高月有关,而与其它因素无关。
但我们在认真思考后发现基础埋深除了与建筑物总高月有关外,还应与控制高层建筑体型重要指标的高宽比风心有关。如两栋建筑物的高度量相同,但其高宽比阶B分别为5,0和2,5,显然风/B值较小者整体稳定性更高,若采用相同的基础形式,则阶B值较大者其基础埋深应更大。换言之,基础埋深对月/B较大者应偏于严格,而对月/B较小者则可略为放松,不宜作相同处理甚至反其道而行之,否则就违背了基础需一定埋深的原则。除了高宽比风/6外,基础埋深还应与高层建筑的裙房底座宽度、地下室底盘宽度等因素有关,对地下室面积仅为塔楼投影面积者应偏于严格,相反对没有裙房或地下室面积大于塔楼投影面积者则可略为放松。
(5)首层楼面的活载作为结构嵌固端的首层楼面(地下室顶板),其正常使用时的活载一般不太大,即使作为商业用途,其活载也仅为3.5kN/m2,但设计中要考虑施工过程中可能产生的施工荷载,对于首层梁板构件取活载8.0—10.0kN/m2则往往是必要的。
当高层建筑主体结构建至2层楼面时,首层地面自然而然就成为理想的施工场所,或用于堆放材料(袋装水泥、砌块、搭架钢脚手架等),或用于钢筋加工,甚至作为载重汽车的行驶停放场等,即使是临时荷载,其楼面活载也就有必要取较高值(该活载值仅作用于该层梁板,并不需传给竖向构件的墙柱)。
此外,该层楼板配置通长面筋,不仅是出于增大刚度的考虑,而且是抵抗混凝土收缩和温度应力的需要,特别是由于开发商的原因可能导致地下室顶板完成后要裸露一段时间(从几个月到几年不等),为了防止或减少由于暴晒或暴露时间过长而产生的裂缝,配置足够的楼板面筋尤为必要。首层楼面考虑较大的施工荷载,其梁板截面就需较大,有利于满足首层楼面作为结构嵌固端刚度要较大的要求。
4结束语
在高层建筑结构设计中,无论选择哪个部位作为结构嵌固端,都可以通过结构计算程序获得准确的计算结果,但我们期望的是计算结果较真实地反映结构的实际情况。为了达到这一目的,结构计算时输入正确的参数和数据固然相当重要,但结构嵌固端的确定对结构计算结果的影响也相当大,因此重视结构嵌固端的确定并非微不足道,且在嵌固端确定后设计中如何保证其成为真正的嵌固端,还有许多细节有待研究和完善,这是结构设计人员不能忽视的重要环节。
1.1高层建筑结构类型分析
高层建筑结构选型决定高层建筑的整体安全性和可靠性。常见的几种结构可类型为分为框架结构、框架-剪力墙结构、剪力墙结构、筒体结构等。①框架结构主要是由梁柱、楼板等部分组成,根据建筑功能的需求,完成对平面框架的布置。框架结构造价低,但在水平荷载影响下变形较大,抗震效果不佳;②框架-剪力墙结构,高层建筑中,剪力墙主要布置在电梯间,通过核心筒承担水平荷载,抵抗地震力,整体稳定性高。但是框架剪力墙结构容易受到平面布局限制,出现质心和钢心不重合的现象,结构扭转过大,可能会出现的安全隐患;③剪力墙结构,具有较好强竖向和水平向的承载能力,对高层建筑的整体刚到和稳定性具有显著的提升效果,重点在于剪力墙的布置及自重的控制;④筒体结构,在电梯间及建筑外围布置剪力墙,形成筒体,该结构具有更高的刚度。
1.2高层建筑结构选型的影响因素
高层建筑结构选型,除了受建筑需求影响外,其主要因素可归纳为:①环境条件。主要包括设防烈度、场地条件、基本风压等;②建筑方案特征。主要包括方案建筑的高度、高宽比、长宽比以及建筑体型,其中建筑体型包括平面体型和立体体型。平面体型是由平面规则性、平面对称性、平面质量和刚度偏心等组成,立体体型是由结构高宽比、立面收进体型、塔楼和层间刚度等组成;③建筑使用功能要求。高层建筑的使用功能大体上可分为住宅、办公楼、旅馆和综合楼等。某种功能的建筑可能只有某几种结构型式和它相匹配。比如高层住宅,由于其使用空间较小,分隔墙体较多,且各层的平面布置基本相同,因此这种功能的建筑就比较适合采用剪力墙或框架剪力墙结构;④结构抗灾水平及现场施工、后期使用、运营维护等。
1.3结构选型实施案例
本章节以某工程为例,该工程中主要包含的高层住宅和多层商务办公两部分,建筑的`总占地面积95388.440m2,其中工程中主要以1号楼、2号楼、3号楼为高层建筑,且楼层均为36F,其中且高度分别为117.390m、119.400m、119.400m。本工程主要采用钢材、混凝土等材料。本章节以1号楼为研究对象,1号楼拟建楼层36层,设防烈度7度,基本风压0.75KN/m2,场地Ⅱ类。建筑对称布置,平面规则,其空间分隔小,隔墙多,且各层平面布置基本相同。通过考虑其竖向、水平向荷载、造价施工方面等因素,本工程采用剪力墙结构,通过合理布置剪力墙,控制结构的整体刚度及侧向位移等,使结构更安全、更稳定、更经济。
2.1结合建筑类型进行优化
汶川地震震害结果表明,对于教育类项目,如中小学,由于使用功能要求,相比其它建筑,教学楼竖向结构体系相对较弱,强度和刚度不足,并且建筑体型不对称,致使建筑在地震中易倾倒。因此教育类项目,应在建筑侧边及楼梯间布置剪力墙,以增强建筑结构的整体性与稳定性,使其具有良好的工作性能。针对文化体育类项目,例如图书馆、博物馆,根据其典藏书籍及文物的特点,其荷载大,使用空间大,平面不规则,在结构进行竖向布置时不必按照传统9m模数布置,某项目案列按12m模数优化柱网后,结构截面变化不大,但能更好满足建筑使用功能需求。
2.2结合建筑总高度进行优化
在某超高层中,通过对比分析钢骨砼柱—砼梁与钢管砼柱—钢梁,钢梁组合楼盖可有效降低梁柱截面,满足建筑使用净高要求,且中庭洞口各层交错布置,采用钢梁组合楼盖解决了传统支模难题;可有效控制塔楼标准层室内梁高,内部净高高出150~200mm;绝大部分构件都在工厂加工完成,最大化地提高建筑产品工业化水平,大大减少施工现场建筑垃圾;施工工期大大缩短。
2.3结合建筑荷载进行优化
越来越多的企业在项目建设过程中承受着巨额成本的压力,地下室优化的必要性不容忽视。在满足安全和建筑功能、效果的前提下,充分考虑覆土、消防车、人防等荷载,再进行平面布置,并进行多方案比选,项目实例表明,在常规8.5m×8.5m柱网情况下,荷载越大,采用大板结构,建筑物含钢量最低,最经济。在结构优化过程中应多方面考虑,对建筑安全、美观、经济等全面比较,以实现项目效益最大化。
2.4剪力墙结构优化理论在实际工程中运用
(1)在进行结构计算时,应通过软件分析,满足最大层间位移、周期比、位移比、轴压比等各项指标确要求。(2)通过适当的缩减剪力墙的长度,减轻自重,增加高层建筑内部使用空间。(3)剪力墙的肢截面控制,在具体的控制中,需要保障肢截面以简单、规则为基准,具体的门窗洞口,同样需要设计整齐成列,并形成明确的墙肢与连梁,进而使得应力可以的合理的分布,提升高层建筑的整体安全性和稳定性。(4)剪力墙过长的部分,采用的开设洞口的方式,完成对剪力墙的均分,再由的弱连梁对他们进行连接,避免剪力墙出现的脆性剪切破坏,影响高层建筑的整体质量和安全。(5)剪力墙应自上而下的连续性布置,减少高层建筑出现刚度突变的情况,保障剪力墙的连续性。设计过程中适当对剪力墙的厚度和混凝土强度进行调整,满足轴压比的要求。(6)对窗口梁和阳台梁等截面进行调整,完成对结构刚度及位移的微整,是结构布置更合理。针对高层建筑的结构选型设计的基本情况,可完成高层建筑的结构优化,从而使得高层建筑的空间效果、结构性能和高层建筑的整体综合效益等均可得到改善,在保障高层建筑基本功能的基础上,提升高层建筑的稳定性和安全性。
3结束语
高层建筑提升空间利用效率,高层建的结构选型及优化设计使高层建筑整体更安全稳定、空间更合理,本次研究还得到:①高层建筑结构主要框架结构、框架结构-剪力墙、剪力墙、筒体结构等,且结合工程的具体情况,充分分析荷载、场地、周边环境,选取合适的结构体系;②通过分析不同建筑类型、高度、荷载情况下优化方案及具体的高层建筑剪力墙结构优化情况,总结出结构优化方法,保证结构设计优化能高出建筑基本需求,同时能保障高层建筑安全与质量,更加经济合理。
★ 建筑结构抗震论文
★ 建筑结构工作总结